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Abstract: Cancer and diabetes are amongst the leading causes of deaths worldwide. There is an 
alarming rise in cancer incidences and mortality, with approximately 18.1 million new cases and 9.6 
million deaths in 2018. A major contributory but neglected factor for risk of neoplastic 
transformation is hyperglycemia. Epidemiologically too, lifestyle patterns resulting in high blood 
glucose level, with or without the role of insulin, are more often correlated with cancer risk, 
progression, and mortality. The two conditions recurrently exist in comorbidity, and their interplay 
has rendered treatment regimens more challenging by restricting the choice of drugs, affecting 
surgical consequences, and having associated fatal complications. Limited comprehensive literature 
is available on their correlation, and a lack of clarity in understanding in such comorbid conditions 
contributes to higher mortality rates. Hence, a critical analysis of the elements responsible for 
enhanced mortality due to hyperglycemia-cancer concomitance is warranted. Given the lifestyle 
changes in the human population, increasing metabolic disorders, and glucose addiction of cancer 
cells, hyperglycemia related complications in cancer underline the necessity for further in-depth 
investigations. This review, therefore, attempts to shed light upon hyperglycemia associated factors 
in the risk, progression, mortality, and treatment of cancer to highlight important mechanisms and 
potential therapeutic targets. 
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1. Introduction 

Cancer and diabetes together account for high mortality globally. Existing evidences suggest a 
significant role of hyperglycemia in all facets of cancer which has been repeatedly overlooked, from 
oncogenesis to mortality [1–8]. Hyperglycemia is defined by an elevated glucose level in blood 
plasma (>125 mg/dL while fasting and >180 mg/dL 2 h postprandial) [9]. Hyperglycemia occurs due 
to various reasons such as diabetes mellitus type I and type II, obesity, stress, pancreatic failure, drugs 
such as glucocorticoids, and estrogen. Numerous studies have correlated hyperglycemia with an 
increased risk of cancer [10,11]. Patients consuming foods with a high glycemic index have an 
enhanced cancer risk [12]. Women in the highest quartile for blood glucose levels have an increased 
risk of breast cancer compared to women in the lowest quartile (RR 1.63; 95% CI) [13]. While many 
cohort studies have highlighted diabetes-associated cancer risks, only a few reports have assessed 
the underpinning effect of hyperglycemia on the risk of cancer. The Vasterbotten intervention project, 
comprising 33,293 women and 31,304 men, calculated the relative risk of cancer due to hyperglycemia 
after adjusting for age, recruitment year, time of fasting, and smoking status for 10 years of repeated 
measurements. The study clearly demonstrated that total cancer risk in women increased with higher 
plasma level of post-load and fasting glucose. Also, elevated fasting glucose levels in men and women 
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were associated with statistically significant risks of pancreatic cancer, malignant melanoma, 
endometrial, and urinary tract cancers. Body mass index (BMI) adjustments showed no significant 
difference in risk estimates, suggesting that a high blood glucose level—irrespective of obesity or 
diabetes—is likely to be the key player in enhancing cancer risk [14]. HbA1c, a long-term marker of 
blood glucose level, was correlated with an increased all site cancer risk in a study comprising 29,629 
patients. Higher levels of HbA1c, even within the non-diabetic range, were associated with 28% 
higher risks of almost all cancers. However, in the case of liver cancer, low HbA1c levels were 
correlated with higher cancer risk [15]. Also, glucose tolerance was associated with an increased all 
site cancer incidence in a 20 year cohort study of men and women [16]. The risk of premalignant 
lesions, which act as precursors for cancer, is higher in hyperglycemic patients [17]. 

Hyperglycemia increases the risk of cancer and contributes towards its progression and 
mortality. Various cancers advance more aggressively under hyperglycemic conditions—especially 
cancers of the liver, pancreas, mammary gland, and endometrium [18,19]. In a meta-analysis of eight 
studies comprised of 4342 patients, hyperglycemia was associated with adverse disease-free survival 
(DFS) and overall survival (OS) of cancer patients [20]. Despite several reports stating an enhanced 
risk, progression, and mortality of cancer due to hyperglycemia, literature about the possible 
metabolic and molecular events responsible for creating a window of neoplastic transformation is 
scarce. 

2. Hyperglycemia and Risk Factors for Cancer 

Increased blood glucose levels affect the normal cellular system majorly at three steps 1. DNA 
(Genetic) 2. RNA (Transcription), and 3. Protein (Translation), which may contribute to dysregulated 
growth. (Figure 1). 

 
Figure 1. Hyperglycemia associated risk factors for cancer. 
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2.1. Hyperglycemia and DNA Damage 

DNA damage plays a pivotal role in carcinogenesis [21]. Hyperglycemia directly or indirectly 
causes DNA damage, ROS formation, DNA breaks, mutation accumulation, impairment in DNA 
repair, and dysregulation of oncogenes and tumor suppressors via various mechanisms. 

It promotes the formation of glycated moieties, such as advanced glycation end (AGE) products 
in various tissues [22]. AGE are products of a non-enzymatic reaction between reducing sugars and 
the amino groups of nucleic acids, lipids, or proteins. Accumulation of AGE and its precursors can 
lead to DNA damage by reacting with DNA bases and inducing ROS, NFkB, the receptor for AGE 
(RAGE), or inflammation, thereby contributing to carcinogenesis, e.g., pancreatic cancer and 
hepatocellular carcinoma (HCC) [23–25]. Excess ROS generated by AGE accumulation promotes 
oxidation of DNA bases, especially of guanine, resulting in G to T transversions. Oxidized bases, if 
not repaired, lead to mutations which can trigger oncogenes or deactivate tumor suppressor genes, 
causing initiation and/or progression of different cancers [26,27]. Methylglyoxal induced AGE 
accumulation in tissues may occur even in a relatively mild diabetic condition and cause DNA 
damage [28]. Avoiding sweetened foods and drinks is often recommended for inhibiting glycation 
product formation and accumulation, thereby highlighting the role of hyperglycemia in DNA 
damage [24]. 

Hyperglycemia also causes DNA damage by altering oncogene/tumor suppressor expression. 
Proximal tubular epithelial cells under high glucose conditions and type 1 diabetes-induced 
hyperglycemia undergo excess AKT oncogene activation. This further leads to 8-oxodG 
accumulation, a marker of oxidative DNA damage in vitro and in vivo models [29]. High glucose 
also induced phosphorylation of p53 at ser 18 in ventricular myocytes, which is indicative of DNA 
damage [30]. 

In addition, hyperglycemia also increases the accumulation of mutations in DNA. If the 
mutations induced are in oncogenes or tumor suppressors, it can contribute to elevated cancer risk. 
Diabetic mice exhibit increases in a number of mtDNA mutations and mutation sites in oocytes [31]. 
Moreover, diabetic patients have a higher incidence of somatic transversion mutations in mtDNA 
[32]. Hyperglycemia-induced mutations increased the mortality of subjects with DNA damage, 
which predisposed to cancer. In a meta-analysis of 2,645,249 subjects, patients with preexisting 
Diabetes mellitus (DM) had increased all-cause mortality risk in women with BrCa alteration by 37% 
(HR = 1.37; 95%CI: 1.34–1.41; p = 0.02) [33]. In oral oncogenesis, increased accumulation of mutations 
in the p53 gene occurs under diabetic conditions, leading to enhanced proliferation of tumor cells 
[34]. Moreover, in endothelial cells, high glucose levels induce DNA breaks, thereby contributing to 
neoplastic transformation [35]. Excess glucose metabolism in β cells cause double-strand breaks in 
DNA and activate p53 and apoptosis, possibly via oxidative stress and ROS generation [36]. High 
glucose enhances the number of micronuclei, nucleoplasmic bridges, and nuclear buds in normal 
colon cells in folate-deficient conditions, hence contributing to genomic instability [37]. 

Hyperglycemia causes DNA alterations, and the genes responsible for diabetes risk are also 
associated with an increased risk of cancer. The long island breast cancer study revealed that the 
genetic polymorphisms which account for an increased diabetes risk are involved in enhanced 
mortality and risk of developing breast cancer; for example, SLC30A8 (a zinc transporter insulin-
related secretion gene), CDKN2A-CDKN2B (cell cycle related genes), IGFBP2 and IRS2 (Insulin 
pathway related genes). The single nucleotide polymorphisms (SNPs) listed indirectly suggest an 
association between genes involved in metabolic and molecular glucose signaling, the cell cycle, and 
risk/progression of cancer [38]. Type 2 diabetes (T2D) associated SNPs are also present in JAZF1, 
which plays an important role in stromal cancer oncogenesis. JAZF1 downregulation impairs AMPK 
oncogene phosphorylation, thus demonstrating that aberrant JAZF1 expression and SNPs links to 
oncogenesis and T2D pathogenesis. Moreover, JAZF1 overexpression in C2C12 normal myoblast cells 
exhibited enhanced proliferation by altering AMPK expression. Collectively, these studies highlight 
the important role of hyperglycemia in DNA damage and neoplastic transformation [39]. 

Hyperglycemia also interferes with DNA repair mechanisms [40–42], which has been reported 
widely as the origin of carcinogenesis [43–48]. Hyperglycemic conditions significantly reduce the 
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functionality of DNA repair mechanisms by downregulating DNA damage repair genes. If normal 
cells are not able to maintain genomic stability, neoplastic transformation is favoured. In a rat prostate 
model and normal human prostatic RWPE-1 cell line, a number of DNA damage repair genes such 
as Rad51L3, Mre11, Xrcc3, dpoLL, Nudt5, Ube2c, Msh5, Msh3, and SEMA6c are downregulated under 
diabetic conditions [42]. Nucleotide excision repair is regulated by xeroderma pigmentosum 
complementation group D protein (XPD), which was downregulated in high glucose conditions in 
Chinese hamster ovary (CHO) cells [49]. Moreover, DNA damage repair genes were downregulated 
in peripheral blood mononuclear cells (PBMC) isolated from diabetic patients (n = 20) as compared 
to their normal counterparts (n = 8) [50]. These reports state the crucial role of hyperglycemia in 
interfering with DNA damage repair. 

Besides directly affecting genetic stability, hyperglycemia also causes epigenetic dysregulation, 
leading to a series of downstream signaling cascades, which, in turn, increases the risk of neoplastic 
transformation [51]. 

2.2. Hyperglycemia and RNA 

Hyperglycemia causes transcriptional modifications in cells by affecting mRNA, transcription 
factors, miRNA, and lncRNA. Transcription factors are regulators of mRNA expression in tissues. 
Carbohydrate responsive element binding protein (ChREBP) is a promoter of glycolysis in normal 
and cancer cells. Excess glucose causes a hepatocyte nuclear factor 4 (HNF4) mediated increase of 
ChREBP transcription factor [52]. High glucose treated human umbilical vein endothelial cells 
(HUVEC) elicited upregulation and accumulation of Alu-sc dsRNA leading to increased oxidative 
stress by promoting ROS generation and suppressing eNOS and SOD2 at both transcriptional and 
translational levels [53]. In another study, hyperglycemia altered the expression of hypermethylated 
in cancer 1 (HIC1) and increased ROS accumulation in renal tubular epithelial cells (HK-2) by 
epigenetically repressing SIRT1 [54]. 

Recent reports suggest the emerging roles of miRNA and lncRNA in several functions at a sub 
transcriptional level. miRNA and lncRNA provide an additional layer of regulatory control in cellular 
functioning, and hence, their altered expression plays a pivotal role in transformation and 
dysregulated signaling [55]. OncomiR-9 is overexpressed in prediabetic patients and progressively 
enriched in T2D patients. It induces immortalization/transformation of normal mouse bone marrow 
progenitor cells in vitro and promotes leukemogenesis in vivo [56,57]. Similarly, miR-199a-5p 
downregulates hypoxia-inducible factor-1 (HIF-1α) oncogene and oxidative stress-induced growth 
inhibitor 2 (OSGIN2) expression. miR-199a-5p is downregulated under diabetic conditions, and its 
expression is directly correlated to the prognosis of soft-tissue sarcoma patients [58,59]. 

MALAT1 lncRNA expression is associated with carcinogenesis of different cancers [60,61]. 
Interestingly, it was overexpressed in streptozotocin (STZ) induced diabetic mice, upregulated in the 
diabetic mice retinas, in the RF/6A hyperglycemia model, in aqueous humor samples, and the 
epiretinal fibrovascular membranes (FVM) of diabetic patients [62–64]. Another lncRNA, ANRIL, is 
upregulated under high glucose conditions in normal cells and is correlated with the carcinogenesis 
of gastric, oral, breast, and cervical cancers [65–69]. Altogether, these evidences demonstrate that 
hyperglycemia affects cells at transcriptional as well as sub-transcriptional levels, predisposing them 
to neoplastic transformation. 

2.3. Hyperglycemia and Proteins 

Hyperglycemia contributes to carcinogenesis by triggering various oncogenic pathways via 
inflammation, oncometabolite accumulation, post-translational modifications, proto-oncogene 
dysregulation, and field cancerization. Oncometabolites such as fumarate accumulated more under 
hyperglycemic conditions. Fumarate accumulation can trigger oncogenesis and drive transformation, 
even without genetic alteration [70]. Diabetic patients had altered YAP/TAZ-TEAD signaling in 
normal mucosa, which play key roles in the initiation and field cancerization of the colon compared 
to non-diabetic patients [71]. Hyperglycemia also causes inflammation [72] via increasing obesity 
[73], gut permeability [74], and LDL levels in humans [75]. Inflammatory markers like NFKB, TNF-
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α, IL-6, and IL-18 levels were elevated in hyperglycemic patients [76–79]. Inflammation is strongly 
correlated with various cancers [80,81]. Besides these, almost all the major proto-oncogenes such as 
c-myc [82], HIF-1α [83], AKT, mTOR [84], c-FOS, and c-JUN [82] are activated/overexpressed under 
hyperglycemic conditions in normal cells. Although overexpression of a single molecule may not 
lead to carcinogenesis, it contributes towards the larger process which involves a constellation of 
steps. 

Post-translational modifications (PTM’s) are specific changes in proteins at pre-coded sites that 
dictate their activity for different functions like protein synthesis, cell proliferation, apoptosis, etc. 
Several PTM’s such as phosphorylation, ubiquitination, SUMOylation, and acetylation play a 
decisive role in cancer risk and incidence. The important PTM’s in cancer are those involved in 
chromatin histone modifications and proliferation/cell cycle. Tumor cells have a euchromatin 
structure, and much of their DNA is unpacked and active, owing to the acetylation of histone proteins 
which exposes DNA to transcription factors (TF). Hyperglycemia inhibited phosphorylation of TET2 
(a tumor suppressor), resulting in its destabilization, and dysregulation of its tumor suppressive 
activity and its substrate, 5-hydroxymethylcytosine (5hmC), in vitro as well as in vivo. 5hmC is often 
decreased in many cancers and is linked with DNA demethylation and gene activation/deactivation. 
The anti-diabetic drug metformin shields phosphorylation of TET2, thereby increasing its stability 
and 5hmC levels. This study clearly demonstrates how high extracellular glucose levels lead to a 
series of global epigenetic, genetic, and molecular alterations, resulting in an oncogenic state [85]. 
Pyruvate kinase M2 (PKM2), a glycolysis enzyme, phosphorylates histone H3 causing dissociation of 
HDAC3 from CCND1 and the MYC promoter region, thereby increasing their expression, tumor cell 
proliferation, cell cycle progression, and brain tumor formation. Also, histone H3 phosphorylation 
levels correlate with nuclear expression levels of PKM2, malignancy grades of glioma, and 
nasopharyngeal carcinoma and its prognosis [86,87]. It is important to note here that glucose 
regulates the expression of PKM2 transcriptionally as well as translationally via Sp1 [88]. 

3. Hyperglycemia and Cancer Progression 

Hyperglycemia affects the following characteristics in cancer progression: (a) Metabolic 
reprogramming and molecular alterations; (b) Avoiding immune destruction, increasing tumor, and 
promoting inflammation; (c) Proliferation and apoptosis inhibition; (d) Metastasis. 

3.1. Metabolic Reprogramming and Molecular Alterations 

One of the most catastrophic hallmarks of cancer cells is its ability to reprogram metabolism—
including that of glucose. Normal metabolism generates energy that meets regular functioning. 
However, owing to excess energy demands, cancer cells shift to an inefficient glycolytic mode by 
directing a major flux of nutrients into glycolysis instead of oxidative phosphorylation (OXPHOS); 
this is known as the Warburg effect. It was previously hypothesized that cancer cells reprogram their 
metabolism due to defects in mitochondria. However, it was later proven that not only are 
mitochondria functional in many cancers, but they also contribute as a major source of energy. By 
upregulating glycolysis, cancer cells increase the production of glycolytic intermediates, which 
function as important precursors required for the synthesis of carbohydrates, fats, and proteins [89]. 
They thereby prevent the accumulation of NADH and inhibit the feedback loop of ATP [90]. This 
facilitates the production of ATP at a much faster rate, even in the presence of oxygen [91]. For this 
purpose, cancer cells uptake more glucose as can be detected by positron emission tomography (PET) 
than normal cells, which gives a selective advantage in a nutrient limiting environment [92]. 
However, in hyperglycemia, these restrictions are warded off as glucose is abundantly available. 
Hyperglycemia, therefore, promotes glycolysis in various cancer cells [93,94]. It increases the 
expression of glycolytic enzymes such as hexokinase-II (HK-2) and pyruvate kinase M and 
contributes to enhanced metabolic reprogramming [95]. Also, lactate generated as a byproduct of this 
rewiring is utilized as a shuttle and energy source for tumor cells in regions where blood and oxygen 
cannot reach due to inefficient angiogenesis via transporters such as MCT1 which can be targeted by 
AZD3965 [96,97] (Figure 2). 
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Excess ATP generated via rewiring is utilized for a series of dysregulated signaling events 
contributing to the loss of cell cycle regulation and uncontrolled proliferation [98]. How cancer cells 
activate or regulate favorable pathways and control cell cycle—despite the presence of gatekeepers 
and strict regulatory checkpoints—by using excess ATP derived from metabolic reprogramming is 
an intriguing topic for further in-depth investigation. 

 

 
Figure 2. Hyperglycemia associated metabolic reprogramming in cancer cells and potential targets. 
Pathways altered due to hyperglycemia leading to proliferation are indicated by green arrows. 
Inhibitors of various molecules are indicated in red. The inhibitors presented here and the 
corresponding clinical or research studies are mentioned in Table 1 with their respective targets. 
STF31: 4-[[[[4-(1,1-Dimethylethyl)phenyl]sulfonyl]amino]methyl]-N-3-pyridinyl-benzamide; CYTO 
B: Cytochlasin B; GPNA: L-γ-Glutamyl-p-nitroanilide; FBP: Fructose-1,6-bisphosphate; GLUT: 
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Glucose transporter; MCT: Monocarboxylate transporter; PPP: Pentose Phosphate Pathway; G6P: 
Glucose-6-phosphate; F6P: Fructose-6-phosphate; F1,6BP: Fructose-1,6-bisphosphate; 3PGAL: 
Glyceraldehyde-3 phosphate; 13BPG: 1,3 Bisphosphoglyceric acid; 3PG: 3-phosphoglycerate; 2PG:2-
phosphoglycerate; PEP: Phosphoenol pyruvate ; HK: Hexokinase; GPI: Glucose-6 phosphate 
isomerase; PFK: Phosphofruktokinase-1; ALDO: Aldohexose; DHAP: Dihydroxyacetone phosphate; 
GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; PGK: Phosphoglycerate kinase; PGAM: 
Phosphoglycerate mutase-1; ENO: Enolase; PKM: Pyruvate kinase M1/M2; TG: Triglyceride; 3BRPA: 
3 Bromopyruvic Acid; 2DG: 2-deoxyglucose; LND: Lonidamine; 3PO: (2E)-3-(3-Pyridinyl)-1-(4-
pyridinyl)-2-propen-1-one; TIGAR: TP53-inducible glycolysis and apoptosis regulator; ATP: 
Adenosine triphosphate; IAA: 1-O-Indol-3-ylacetyl-beta-D-glucose; DCA: Dichloroacetic acid; PDK: 
Pyruvate Dehydrogenase kinase; LDH: Lactate Dehydrogenase; OXPHOS: Oxidative 
phosphorylation. 

For upregulation of metabolism, molecules such as GLUTs, and their translocation to the 
membrane—together with upregulation of glycolytic enzymes—are essential. These events take 
place under the aberrant expression of oncogenes/tumor suppressors such as PI3K, AKT, p53, and 
RAS [90]. However, the activation of potential oncogenes and tumor suppressors can occur only 
subsequent to an increase in ATP production. The GLUT family of receptors are often upregulated in 
different cancers; GLUT-1 is upregulated in a number of cancers [99], GLUT-2 in hepatocellular 
carcinoma (HCC) [100], GLUT-3 in endometrial cancer [101], GLUT-4 in prostate cancer [102], GLUT 
8 in breast cancer [103], and GLUT 12 in breast and prostate cancer [104]. Numerous small molecule 
inhibitors and chemical approaches have been devised to block these receptors as strategies to treat 
cancers (Table 1).  

Table 1. Strategies to target cancer cells via glucose metabolism. 

Target Agent Cancer Phase 
Reference 

NCT 
no./Pubmed ID 

GLUT1 

WZB117 

NSCLC 
H1299 and A549 (in vitro and 
in vivo) 

22689530 

Breast  MCF-7 (in vitro and in vivo)  

Breast 
MCF-7/ADR resistant (in 
vitro) 

28609310 

Breast MDA-MB-231 and MCF-7 27011212 

Colon  
5-FU-resistant human colon 
cancer cell line (in vitro) 

25227787 

Neuroblastoma SH-SY5Y (in vitro) 30553996 
Glioblastoma Tumor-derived A172 29949049 

STF31 RCC 
RCC4, Caki-1, SN12C(in 
vitro) 786-O and (in vitro and 
in vivo) 

21813754 

Apigenin 
Pancreatic cancer 

CD18 and S2-013 pancreatic 
cancer cell lines 

18953257 

Colon cancer 
Phase 2 prevention of the 
recurrence of neoplasia 

NCT00609310 

Genistein/Isoflavon
e G-2535 

Hepatocellular 
carcinoma 

HCC-LM3, SMMC7721, 
Hep3B, Bel-7402, and Huh-7 

28926527 

Prostate Phase 2 NCT00058266 
NSCLC Phase 2 NCT01628471 
Colorectal Phase 2 NCT01985763 
Prostate Phase 3 NCT00584532 
Breast Phase 2 NCT00290758 
Endometrial Phase 1 NCT00099008 
Pancreatic Phase 2 NCT00882765 
Bladder(I,II,III) Phase 2 NCT00118040 
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Kidney Early Phase 1 NCT00276835 
Melanoma Early Phase 1 NCT00276835 
Head and Neck Phase 1 NCT02075112 
Leukemia Phase 1 NCT00004858 
Lymphoma Phase 1 NCT00004858 

Resveratrol/SRT501 

Ovarian cancer 
PA-1, OVCAR3, 
MDAH2774,SKOV-3  

25307508 

Colon Phase 1 NCT00256334 
Liver Phase 2 NCT02261844 
Colon Phase 1 NCT00433576 
Colorectal Phase 1 NCT00920803 
Solid Tumor Phase 1 NCT00098969 
Multiple 
Myeloma 

Phase 2 NCT00920556 

Forskolin 
Multiple 
Myeloma 

H929 and OM-2 26306624 

Quercetin 
Breast and 
ovarian cancer 

MCF-7, MDA-MB-231, 
HBL100, BT549, OVCAR5, 
TOV112D, OVCAR3, CAOV3 

26259240 

GLUT2 Phloretin 
Hepatocellular 
carcinoma 

HepG2 19123483 

GLUT3 Adriamycin and 
etoposide 

Cervical and 
colon cancer 

Hela and Caco-2 cell lines in 
vitro and in vivo 

20870738 

GLUT4 Ritonavir 
Multiple 
myeloma 

MM.1S and U266 cell lines  22452979 

GLUT5 

N-[4-
(methylsulfonyl)-2-
nitrophenyl]-1,3-
benzodioxol-5-
amine (MSNBA) 

Breast cancer MCF-7 27074918 

SLCA15 

GPNA, 
Benzylserine, γ-
FBP, AOC, 
Chloroalanine 

 in silico 
26444490, 
29212300 

HK 

3-Bromopyruvate Melanoma in vivo 30206027 

2 Deoxy Glucose 
Breast cancer 

SKBR-3, MCF-7, MDA-MB-
468, BT474  

12232767 

Prostate cancer Phase 2 NCT00633087 
Solid tumors Phase 1 NCT00096707 

Lonidamine Melanoma DB-1 xenograft model 27497601 
3PO Bladder cancer in vitro 26504012 

PFK N4A 

Lung cancer, 
colon cancer, 
pancreatic cancer 

in vivo 23674815 

Breast Cancer in vivo 18202014 
Breast Cancer , 
Cervical cancer 

HeLa, T47D 21957443 

GAPDH Gossypol 

Non-small Cell 
Lung Cancer 

in vitro 30038571 

Non-small Cell 
Lung Cancer 

in vitro 31055235 

PKM ML265 Lung cancer in vitro 23905203 

LDH 

Oxamate 
Renal cell 
carcinoma 

in vivo 28983605 

FX11 
Breast Cancer in vivo 28243322 
Neuroblastoma in vitro 27919448 
Prostate cancer in vitro 25983002 



Cancers 2019, 11, 1402 9 of 23 

 

AT101 /Gossypol 

Lymphoma in vivo 20133848 
Prostate Cancer Phase 2 NCT00666666 
Small Cell Lung 
Cancer 

Phase 2 NCT00773955 

Galloflavin 
Breast cancer in vitro 22954722 
Endometrial 
cancer 

in vitro 25631326 

PDH 
DCA 

Oral squamous 
cell carcinoma 

in vitro 25544754 

Head and Neck 
cancer 

Phase 1 NCT01163487 

TT232 Melanoma Phase 2 16393913 

MCT-4 Phloretin 
Breast cancer, 
prostate cancer, 
lymphoma 

in vitro 27127175 

Complex 1 
Metformin Colon cancer in vitro and in vivo 24843020 
Rotenone Leukemia in vitro 12496265 
Piericidin Breast cancer in vitro 23690779 

Complex 2 TTFA Melanoma in vitro 26521302 

Complex 3 
Stigmatellin 

Lung cancer and 
Bone 
osteosarcoma 

in vitro 17562787 

Myxothiazol Colon cancer in vitro 24772329 
 
Following the entry into the cells, glucose is metabolized via hexokinase into glucose-6-

phosphate (G-6-P) which is utilized for either glycolysis, nucleotide synthesis, or lipid synthesis, all 
of which are upregulated in cancer. Strategies for targeting enzymes which regulate key metabolic 
steps have been devised (Table 1).  

Excess lactate produced due to metabolic shift is effluxed out of cells via the monocarboxylate 4 
(MCT-4) class of transporters. This creates an acidic tumor microenvironment causing extracellular 
drug deactivation. Since the accumulation of lactate induces a metabolic catastrophe, inhibition of 
extracellular efflux of lactate via MCT-4 inhibitors such as phloretin have been conceived to achieve 
intracellular acidic cytotoxicity. In addition to glucose, cancer cells rely on glutamine as an alternate 
energy source, which enters into Krebs cycle and is used for the production of scavenging molecules 
to keep excess ROS in check. In mouse model studies, glutamine uptake has also been reported to 
increase in diabetic conditions. Therefore, glutamine metabolism has been targeted in cancer 
treatment by the inhibition of glutamine transporter, SLCA15, by L-γ-glutamyl-p-nitroanilide 
(GPNA), γ-2-fluorobenzyl proline (γ-FBP), benzyl serine, aminooxetanecarboxylate (AOC), and 
chloroalanine [105,106] (Table 1).  

Also, cancer cells exhibit enhanced lipogenesis, which is tightly coupled with glucose 
metabolism. Hyperglycemia enhances the expression of ChREBP in cancer cells, which is a known 
promoter of lipogenesis [107]. Many tumor types produce 95% of mono-unsaturated and saturated 
fatty acids (FA) de novo, even in the presence of an excess dietary lipid supply. It is utilized for 
survival during oxidative stress, resistance towards drugs, signal transduction, gene expression, and 
rapid proliferation, in addition to forming building blocks for the synthesis of membrane 
phospholipids. This is achieved by utilizing energy derived from metabolic reprogramming in 
overexpression of key molecules involved in lipid metabolism such as FASN, acetyl-CoA-carboxylase 
(ACACA), and ATP-citrate lyase (ACLY). In leukemia and prostate tumors, cancer cells exhibit a 
major dependence on lipids as the primary source of energy. As these molecules play a major role in 
lipid metabolism, which is correlated with a poor prognosis in various cancers, they have been 
proposed as important anticancer targets via drugs such as TVB-2640, orlistat, soraphen A, cerulenin, 
etc. However, upon inhibition of lipogenesis or FA synthesis, cancer cells also possess the ability to 
utilize extracellular lipids via lipolysis [108,109]. 
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Along with lipogenesis, cancer cells also upregulate nucleotide synthesis via metabolic rewiring. 
Hyperglycemia can drive metabolism towards the pentose phosphate pathway (PPP) because of 
activation of oncogenes and tumor suppressors such as c-MYC and mTOR. It enhances the production 
of purine nucleotides in cancer cells [110]. As nucleotide synthesis is critical for rapid proliferation, 
this pathway has been targeted widely via inhibition of important intermediates or enzymes such as 
DHFR (methotrexate, pemetrexed), glucose-6-phosphate dehydrogenase (polydatin), thymidylate 
synthase (Pemetrexed, capeciatbine, 5-fluorouracil), PRPP amidotransferase (6-mercaptopurine, 6-
thioguanine), DNA polymerase/ribonucleotide reductase (gemcitabine, cytarabine), dihydroorotate 
dehydrogenase (leflunomide), etc. [111–117]. 

3.2. Avoiding Immune Destruction and Increasing Tumor Promoting Inflammation 

Evidence suggests that hyperglycemic conditions increase cancer-associated inflammation by 
the secretion of cytokines. High glucose stimulates the upregulation of TNF-α, IFN-γ, resistin, and 
IL-6 [79]. Hyperglycemia, in obese patients, elevates pro-inflammatory cytokines, and tumor 
promoted inflammation. These cytokines are also responsible for insulin resistance [118–120] and 
activation of oncogenic downstream signaling pathways such as NFKB, c-Jun, and JNK/MAPK [120–
122]. Pathologies associated with these cytokines are mitochondrial dysfunction, oxidative stress, 
intracellular lipid accumulation in the liver or skeletal muscle, and decreased β-oxidation, which are 
all linked to cancer progression, as shown in Supplementary Figure S1 [123].  

Several immune cells exert an impact on tumor progression and prognosis. Hyperglycemia has 
a profound effect on these cells. Tumor-infiltrating leukocytes—such as CD8+ T cells, neutrophils, 
MDSCs, macrophages, etc.—are dysregulated under the influence of high blood glucose levels. 
Hyperglycemia induces the Hexosamine biosynthetic pathway (HBP) by enhancing M2 polarization, 
resulting in an upregulation of O-GlcNacylation [124]. Myeloid derived suppressor cells (MDSCs) 
are reported to be present at tumor sites, suppressing anti-tumor immunity—particularly T cells 
through multiple mechanisms. SIRT1 plays a key role in regulating MDSC differentiation to M1 and 
M2 phenotypes through HIF-1α induced metabolic reprogramming. This impacts MDSC induced 
functions in immune suppression and tumor growth [125,126]. Moreover, high glucose stimulates 
monocytes and macrophages to enhance the secretion of IL-6 by inducing PKC and TNF-α, which 
promote tumor progression and invasiveness [127–130]. An increase in glucose metabolism leads to 
low CD8+ T cell infiltration in renal cell carcinoma, which attenuates the mTOR pathway and IFNγ 
production [131,132]. In melanoma, the impaired IFNγ expression in tumor-infiltrating T cells and 
NK cells, along with LDHA activity associated lactate production, promotes tumor growth by 
exerting an immunosuppressive phenomena [133]. Altogether, hyperglycemia and its effect on these 
altered phenomena significantly affect tumor progression and presents a potential avenue for 
therapeutic intervention. 

3.3. Proliferation and Apoptosis Inhibition 

Normal cells grow slowly and exhibit apoptosis under hyperglycemic conditions [134–136]. 
However, this phenomenon is reversed in cancer. Hyperglycemia fuels the excess energy required 
for rapid cell proliferation. Cancer cells proliferate faster with negligible apoptosis in high glucose 
conditions in vitro as well as in vivo [137]. Studies performed in several cancer cells demonstrate that 
hyperglycemia and obesity favor cancer cell proliferation by oncogene or metabolic and molecular 
alterations [118,138]. Hyperglycemia promotes cancer progression by independent and synergistic 
mechanisms. Epidermal Growth Factor and its receptor, EGFR, were upregulated under 
hyperglycemic conditions in pancreatic cancer [139]. High glucose stimulates Protein kinase C (PKC) 
and Peroxisome proliferator-activated receptor gamma (PPARγ) levels, which induced an aggressive 
phenotype [140]. In diabetes-associated inflammation, several factors which enhance cancer 
progression—like peripheral estrogen, pro-mitogen cytokines, and growth factors—were increased 
[84]. Hyperglycemia promotes breast cancer progression by altering leptin/IGFR1 and Akt/mTOR 
signaling, whereas, in pancreatic cancer, it contributes to ROS stimulated cancer progression via 
suppression of the JNK and c-Jun pathways [141]. 
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Apoptosis inhibition, an important characteristic in transformation, is improperly regulated in 
cancer cells. High glucose conditions triggered apoptosis in normal cells. However, it protects cancer 
cells from cytochrome-c mediated apoptosis [142]. Protein Kinase C (PKC) dependent ubiquitin-
proteasome activation in high glucose increased proliferation and prevented apoptosis in breast 
cancer cells [143]. Metformin rescues breast cancer cells from apoptosis by suppressing STAT3 and 
Bcl-2, and elevating Bax levels [144]. Hyperglycemia inhibits the expression of growth arrest-specific 
5 (GAS5) and subsequently elevates tribbles homolog 3 (TRIBS3), which inhibits apoptosis and 
induces proliferation of non-small cell lung cancer [145]. 

3.4. Metastasis 

Metastasis causes an aggressive spread of cancer to other body parts. Studies over a period have 
shown hyperglycemic conditions enhance the migration of cells and reengineers them into primary 
lesions. Hyperglycemic cancer patients have a higher proportion of metastasis and worse outcomes 
compared to patients without hyperglycemia [18]. In pancreatic cancer, hyperglycemia increased 
lymph node metastasis by 27.8% and liver metastasis when compared with euglycemic conditions 
(14.3%) [146].  

The mechanisms by which high glucose aggravates migration of cancer cells are unclear. 
Hyperglycemia-induced ROS production promotes the motility and invasiveness of cancer cells. 
Oxidative stress also induces epithelial to mesenchymal transition (EMT) and vascular destruction 
[18]. TGF-β/PI3/AKT pathways and upregulated HO-1 expression, which enhances tumor invasion, 
were induced under hyperglycemic conditions [147]. Moreover, hyperglycemia increases the 
migratory spread of cancer cells by impairing G-CSF secretion and hinders the mobilization of 
antitumor neutrophils [148]. Variation in the glycemic index in pancreatic ductal carcinoma alters the 
pro-metastatic signal axis, Rarb/Runx3/Col6a1, and promotes local invasion. Improper management 
of glucose levels in cancer patients may lead to increased metastatic seeding [149]. High glucose also 
aggravates cell migration by increasing the expression of global O-GlyNacylated proteins, vimentin, 
hexokinase, and glucosamine-fructose-6-phosphate amidotransferase (GFAT) [150]. 

4. Hyperglycemia and Treatment of Cancer 

Hyperglycemia influences the outcome of cancer therapy via various mechanisms such as 
chemoresistance, drug deactivation, affecting drug pharmacokinetics and dosages, and impairing 
immune responses. 

Hyperglycemia can result in chemo-toxicity and, on the contrary, impart chemoresistance in 
cancer cells. High glucose downregulates multidrug resistance protein 1 (MDR-1), thus conferring a 
selective advantage to 5FU and causing more cell death in MCF-7 breast cancer cells [151]. 
Contrastingly, hyperglycemia attenuated the anti-proliferative effect of chemotherapy. Docetaxel 
induced apoptosis was reduced by 40% for DU145 cells and 88% for LNCaP prostate cancer cells 
[152]. Hyperglycemia also decreases the efficacy of cancer drugs. In a meta-analysis of preclinical 
studies comprising of 14 cell lines and two animal models, the chemotherapeutic response was less 
in hyperglycemic (>15 mmol/L) conditions as compared to that in normoglycemic conditions (5 
mmol/L). However, in 5 other cell lines, it was the opposite [153]. In gastric cancer, hyperglycemic 
conditions enhance NAMPT and Sirtuin 1 levels and upregulate mutated p53 expression and 
multidrug resistance (MDR) via p-glycoprotein (P-gp) [154]. Hyperglycemia promoted tumors 
display several aspects such as modulation in tumorigenic ability, enhanced glucose utilization by 
tumor cells leading to altered acidosis and drug deactivation, organ dysfunction, and dysregulation 
of MDR-1, p53, Bcl-2, etc. [155]. Organ dysfunctions impact the dosages tolerated by patients, 
increasing the risk of toxicity. Additionally, hyperglycemia also affects the pharmacokinetics of 
chemotherapeutic drugs. It increases the renal secretion of cisplatin, thereby lowering its circulatory 
concentration compared to the non-hyperglycemic condition [156]. 

Besides directly affecting cancer cells, hyperglycemia also impairs immune responses and 
contributes to ineffective immuno-chemotherapeutic regimes [157]. Chemotherapeutic drugs 
ipilumumab and pembrolizumab, along with immune checkpoint inhibitors like nivolumab (anti-
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PD1 or anti-CTLA-4), exhibit better progression-free survival in metastatic malignant melanoma 
when combined with anti-hyperglycemic drug metformin [158]. Numerous pre-clinical studies 
suggest that metformin and phenformin, along with immune checkpoint blockade agents, inhibit 
tumor cell metabolism by increasing endogenous CD8+ T cell metabolism as well as cytokine 
production, which regresses tumor progression by improving T cell functioning [158–160]. 
Metformin is also effective on CD19-CART cells, which inhibit cell proliferation, cytotoxicity, and 
induce apoptosis [161]. Resveratrol, a mimic of calorie restriction agent, inhibits cell proliferation, 
and tumor angiogenesis by increasing immunosurveillance mechanisms [162,163]. It functions as an 
immunomodulator and chemosensitizing agent in melanoma and neuroblastoma by improving IL-2 
based immunotherapy [164,165]. These phenomena take place due to an increased infiltration of 
immune cells in the tumor microenvironment and by promoting the susceptibility of tumor cells to 
the cytotoxicity of killer cells activated by IL-2 [166]. Understanding how glucose levels modulate the 
activity of immune cells could facilitate designing effective therapeutic approaches and improve 
outcomes. 

The mechanisms by which hyperglycemia exerts its effect on immuno-chemotherapeutic 
combination are least explored. Excess glucose aids tumor cells in escaping NK-mediated killing via 
regulation of MHC class I chain-related protein A/B(MIC A/B) [167]. CD8+ T cells depend on glucose 
availability for their clonal expression and exhibiting anti-cancer properties, which include cytolytic 
activity and cytokine secretion. Tumor progression and T cell effector functions are impaired by 
dysregulation of CD8+ T cell metabolism within the tumor microenvironment due to hyperglycemia. 
Several reports suggest that an administration of immune checkpoint blockade, along with anti-
CTLA-4 or anti-PD-1, improves the glycolytic capacity and cytokine secretion from CD8+ T cells 
[131,168,169].  

Because of rising concern, advancements have been made in cancer chemotherapy to overcome 
hyperglycemia-induced chemoresistance. An improved glycemic control may positively influence 
the patient therapeutic index. In MCF-7 breast cancer cells, Selenadiazole was used to overcome 
hyperglycemia-induced doxorubicin resistance via activation of the AMPK pathway [170]. Also, in 
breast cancer studies, hyperglycemia-induced chemoresistance can be partially reversed by 
inhibiting fatty acid synthase (FASN) or ceramide production [171]. 

Due to a complex interplay between hyperglycemia and cancer, antihyperglycemic drugs such 
as Thiazolidinediones (TZD) and bile acid sequestrants have often been devised alone or in 
combination with anticancer drugs for cancer treatment (Table 2). Metformin, an oral antidiabetic 
drug, has been widely investigated for anticancer therapy. Earlier studies have suggested that 
metformin used for T2DM treatment reduces the overall progression and mortality rate of cancer. It 
has been shown to reduce tumor formation in rodent animal models [172]. In spite of promising 
advances in this field, further investigations are required for detailed insights into hyperglycemia 
and its correlation with chemoresistance to improve patient outcomes.  

Table 2. Anti-hyperglycemic/anti-diabetic drugs alone or in combination for cancer therapy. 

Cancer Combination Phase NCT no: 
Metastatic colorectal cancer Metformin, 5-Fluorouracil Phase 2 NCT01941953 

Her2 positive breast cancer 
Liposomal Doxorubicin, Docetaxel, 
Trastuzumab, Metformin 

Phase 2 NCT02488564 

Breast cancer Metformin, Doxorubicin Phase 2 NCT02472353 
Human epidermal growth 
factor 2 negative carcinoma of 
breast 

Metformin, Myocet, Cyclophosphamide 
Phase 2 NCT01885013 

Myocet + Cyclophosphamide 

Diffuse large B-cell lymphoma 
Metformin, Rituximab, Cyclophosphamide, 
Doxorubicin, Vincristine, Prednisone, 
Pegfilgrastine 

Phase 2 NCT02531308 

Lung cancer, Breast cancer, 
Pancreatic cancer, Head and 
neck cancer, Gastric cancer 

2-Deoxyglucose, Docetaxel Phase 1 NCT00096707 
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Pancreatic cancer 
Capecitabine, Cisplatin, Epirubicin, 
Gemcitabine, Metformin 

Phase 2 NCT01167738 

Prostate cancer Rosiglitazone and Placebo Phase 3 NCT00182052 
Pancreatic cancer Pioglitazone Phase 2 NCT01838317 

 
Hyperglycemia-induced effects, such as enhanced metabolic reprogramming in combination 

with dysregulated molecular signaling, contribute to uncontrolled proliferation; the same, in 
combination with chemoresistance or immune evasion, contributes to apoptosis inhibition. Thus, 
hyperglycemia, via a net result of uncontrolled proliferation and apoptosis inhibition, enhances 
cancer progression and mortality, as shown in Supplementary Figure S2. 

5. Hyperglycemia and Cancer Mortality  

Hyperglycemia associated risk factors severely impact the mortality rate in cancer subjects. The 
correlation between increased random blood glucose (RBG) in non-diabetic breast cancer subjects 
with their overall survival (OS) and time to tumor recurrence (TTR) was analyzed. Patients with 
elevated random blood glucose levels were reported to have shorter OS (HR 3.01; 95% CI (1.70–5.33); 
p < 0.001) and TTR tumor reoccurrence rate (HR, 2.08; CI (1.04–4.16); p = 0.04) when compared to 
patients with non-elevated RBG levels after controlling for tumor grade, tumor stage, race and BMI 
(HR, 3.50; CI (1.87–6.54); p < 0.001) [173]. In a study comprising 265 breast cancer patients receiving 
palliative chemotherapy, no significant difference was observed in the OS of diabetic versus non-
diabetic subjects. However, OS was less in patients with hyperglycemia versus those not having a 
proper metabolic control (in both diabetic and non-diabetic groups). Moreover, a high mortality risk 
to cancer patients with glucose level of more than 130 mg/dL was observed [174]. A number of reports 
demonstrated that hyperglycemia enhances mortality of glioblastoma, non-small cell lung cancer, 
pancreatic cancer, breast cancer, hepatocellular carcinoma, gastric cancer, cervical cancer, esophageal 
cancer, endometrial, and colorectal cancer as shown in Supplementary Table S1. 

Hyperglycemia associated risk factors affect the mortality and severity of the disease. A 
comprehensive literature survey investigating the effect of diabetes on any prognostic outcome in 
cancer patients compared with their nondiabetic counterparts was evaluated. Studies from 
MEDLINE, The Cochrane Library, CINAHL, and PsycINFO, which included patients with cancer 
and diabetes, were assessed. Cancer subjects with diabetes resulted in worse patient-reported 
outcomes (PRO) compared to having either one of the diseases [175].  

6. Conclusions and Future Directions 

Cancer is a disease of uncontrolled proliferation. The role of glucose, which functions as the 
primary source of energy, cannot be underestimated. The effect of variable extracellular levels of 
glucose on cancer cells is poorly understood. The recent resurgence in the diabetes–cancer link 
warrants further in-depth investigation. In diabetes, hyperglycemia, in particular, has been 
undervalued as a risk factor not only for cancer progression but also for disease development. 
Differential glucose uptake of cancer cells over normal cells is the primary mode of diagnosis through 
PET. Therefore, mechanisms by which cancer cells enhance glucose uptake, upregulate glycolysis 
and dysregulate the cell cycle can be strategically exploited for specifically targeting all types of 
cancers. The molecular events accompanying these are downstream effects of the former and play 
the secondary but essential role required to achieve important cancer characteristics such as immune 
evasion, apoptosis inhibition, etc. Since these effects vary according to the cancer type, the targets 
may be cell type specific. Hence, hyperglycemia-induced alterations serve as a model system for 
studying cancer metabolism and also for the discovery of a common therapeutic approach. This 
review presents a comprehensive study of hyperglycemia and its correlation with risk, progression, 
mortality, and outcome of various cancers to emphasize its role in all facets of cancer. 

Hyperglycemia, irrespective of diabetes, obesity, or any other disorder, has pan effects on 
various organs throughout the body, causing global chaos via multiple metabolic and molecular 
mechanisms affecting DNA, RNA, and protein. DNA damage, DNA repair inhibition, mutation 
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accumulation, activation of various pathways via lncRNA/miRNA, posttranslational modifications, 
rewiring energy metabolism, immune evasion, and chemoresistance are few of the effects resulting 
due to hyperglycemia on the biological system. Cellular alterations of hyperglycemia eventually lead 
towards adaptations, which if sustained, may cause worse consequences, resulting in conditions that 
favor or drive towards neoplastic transformation.  

In light of increasing lifestyle changes and growing pandemics of metabolic disorders, 
understanding how these alterations favor neoplastic transformation would not only help to reveal 
new druggable targets, but also to design a holistic approach towards prevention as well as treatment 
of this global epidemic. A coordinated effort of experts in metabolism, molecular biology, and 
pharmacology is needed for improving the understanding, prognosis, and better therapeutic 
outcomes in cancer patients. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Metabolic 
disorders and cytokine signaling in cancer, Figure S2: Combinatorial effect of hyperglycemia associated 
alterations in cancer, Table S1: Increased mortality of different cancers under hyperglycemic/diabetic conditions.  
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