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Abstract: The present study applies for the first time as Matrix-Assisted Laser Desorption/Ionization 
(MALDI) Mass Spectrometry Imaging (MSI) on real thyroid Fine Needle Aspirations (FNAs) to test 
its possible complementary role in routine cytology in the diagnosis of thyroid nodules. The primary 
aim is to evaluate the potential employment of MALDI-MSI in cytopathology, using challenging 
samples such as needle washes. Firstly, we designed a statistical model based on the analysis of 
Regions of Interest (ROIs), according to the morphological triage performed by the pathologist. 
Successively, the capability of the model to predict the classification of the FNAs was validated in a 
different group of patients on ROI and pixel-by-pixel approach. Results are very promising and 
highlight the possibility to introduce MALDI-MSI as a complementary tool for the diagnostic 
characterization of thyroid nodules. 
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1. Introduction 

The application of innovative technologies, such as Matrix-Assisted Laser Desorption/Ionization 
(MALDI) Mass Spectrometry Imaging (MSI), on cytological thyroid specimens is feasible and robust 
protocols are now available, enabling the molecular signature of different lesions to be characterized 
[1–3]. After the pioneering phase, challenging technical aspects of this approach, such as the 
interference of hemoglobin and the stability of the samples, were overcome [4,5]. Furthermore, recent 
technical improvements related to the increased lateral resolution that can be achieved by MALDI-
TOF-MS instrumentation enable the detection of small cell subpopulations based on their different 
protein profiles (i.e., profiles of single cell types), even within regions that are indistinguishable at 
the microscopic level, highlighting how molecular imaging can be combined with traditional 
pathology to generate protein signatures and build classification models [6–9]. Moreover, we have 
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reported that MALDI-MSI is able to distinguish benign and malignant cases in different cytological 
thyroid specimens [1–3]. Moving forwards from the first results obtained using ex vivo cytological 
smears taken from surgical procedures, the present study applies MALDI-MSI on real Fine Needle 
Aspirates (FNAs). Even if thyroid FNAs are safe, cost-effective, and efficient diagnostic tools, a 
significant rate of 20–30% of cases are still indeterminate for malignancy [10]. Ancillary tests like 
immunohistochemistry and genetics may improve the diagnostic performances but, theoretically, 
MALDI-MSI could represent an alternative option too [1–3]. To the state of the art, MALDI-MSI was 
restricted to translational research and the reproducibility across multiple centers was the largest 
remaining obstacle in moving it toward clinical routine. However, promising results came from 
microbiology, where MALDI-MSI-based classifiers applied the technology in real time in the 
diagnostic setting. Recently published studies showed the usefulness, advantages, and applicability 
of MALDI-MSI in different fields of pathology (diagnosis, prognosis, and treatment response) [10]. 
The preliminary findings of our trial are encouraging especially for the methodological improvement 
of the protocol and the feasibility of the technique in a particularly complicated field like thyroid 
cytological specimens. 

A statistical model, able to manage the big data that were generated by this high-throughput 
proteomics approach, was applied for the characterization of thyroid lesions. Our results suggest an 
association between pathological thyroid features and proteomic information from the FNAs, 
representing the basis for proteomic signatures that are predictive of disease status. 

2. Material and Methods 

The study was carried out in accordance with the relevant guidelines and regulations; the 
protocol was approved by the ASST Monza Ethical Board (Associazione Italiana Ricerca sul Cancro 
Associazione Italiana Ricerca sul Cancro-AIRC-MFAG 2016 Id. 18445, HSG Ethical Board Committee 
approval October 2016, 27102016). Appropriate informed consent was obtained from all patients 
included in the study. The present study considers a subset of the consecutive series of subjects who 
underwent ultrasound (US)-guided FNAs in Monza and were prospectively enrolled in an AIRC-
granted clinical study that was powered to discover new markers for the diagnosis of thyroid 
nodules.  

2.1. Pathology  

US-guided FNAs were performed using a 25-gauge needle at the Department of Radiology, San 
Gerardo Hospital. One or two passes per nodule were executed and needle washing from every pass 
was sent for proteomics MALDI-MSI analysis [6]. In blind, pathologists evaluated the corresponding 
Pap-stained smears for traditional morphological diagnosis and were classified according to the 5-
tiered Italian SIAPEC system for reporting thyroid cytopathology [11]. We certified benign Thy2 
cases by performing a US examination of patients 12 months after the first US-guided FNA 
confirming absence of new echographic malignant features, absence of significant increasing of 
nodule size, absence of nodes metastasis, and no incidence of new suspicious nodules. For malignant 
cases, histological diagnoses were progressively collected after thyroidectomy to certify the nature of 
the nodules. The training set included nine subjects with a confirmed benign diagnosis at the 
pathologist’s morphological examination (hyperplastic nodules/Thy2) and nine patients that were 
classified as malignant papillary thyroid carcinoma (PTCs/Thy5). An additional 11 patients were 
involved in the validation set and their cytological classes included: Thy2 (n = 4), Thy3 (n = 1), Thy4 
(n = 1), Thy5 (n = 4), and 1 PTC metastatic lymph node. Table 1 summarizes the relevant clinical–
pathological characteristics for all the cases in the study.  
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Table 1. Clinical information of the lesions and the patients included in the study. Green corresponds 
to Thy2 hyperplastic nodules; orange corresponds to nodules with an indeterminate for malignancy 
or suspicious cytological diagnosis; in red, malignant Thy5 cases are listed. 

TRAINING SET 
Study 
Lesion 
Code 

Age 
(Years) 

Sex 
Nodule 

Size (mm) 
FNA  

Classification at Follow-
Up or Histology 

262 81 F 30 THY2 Hyperplastic 
268 81 F 10 THY2 Hyperplastic 
302 63 F 15 THY2 Hyperplastic 
308 32 F 10 THY2 Hyperplastic 
384 71 F 20 THY2 Hyperplastic 
475 39 F 25 THY2 Hyperplastic 
565 69 M 22 THY2 Hyperplastic 
1046 56 F  18 THY2 Hyperplastic 
1122 76 F 11 THY2 Hyperplastic 
213 48 F 15 THY5 PTC 
250 87 F 20 THY5 PTC 
436 69 M 14 THY5 PTC 
 440 45 F 23 THY5 PTC-FV 
442 40 F 15 THY5 PTC 
992 46 F 13 THY5 PTC-FV 
995 61 F 50 THY5 PTC-FV 
1012 69 M 18 THY5 PTC-FV 
1076 38 F 14 THY5 PTC 

VALIDATION SET 
1081 79 F 35 THY2 Hyperplastic 
1083 49 F 15 THY2 Hyperplastic 
1123 36 F 36 THY2 Hyperplastic 
1156 53 F 11 THY2 Hyperplastic 
1149 30 F 15 THY5 PTC 
1084 60 M 11 THY5 PTC-FV 
1126 54 M 20 THY5 PTC 

1187 * 24 F 25 THY5 PTC 
1082 49 F 35 THY3 Hyperplastic 
1202 36 M 20 THY4 PTC-FV 

1188 * 24 F 25 Metastasis Lymph node 
Legend: M = male, F = female, PTC = Papillary Thyroid Carcinoma, FV = Follicular Variant. * The two 
lesions are from the same patient. 

2.2. In Situ Proteomics: MALDI-MSI 

Needle washing from thyroid FNAs were collected into a CytoLyt solution (20% buffered 
methanol-based solution, ThinPrep™ 2000 system, CYTYC Corporation, Hologic) and samples were 
prepared as previously described and finally transferred as a cytospin spot onto ITO glass slides 
[4,5,12–14]. Then, all slides were washed with increased concentration of ethanol (70%, 90%, and 95%) 
for 30 s each, dried under vacuum for 15 min, and stored at −80 °C until the day of the analysis (mean 
24–48 hours after the time of biopsy). Before MALDI-MSI analysis, cytological specimens were 
equilibrated to room temperature, dried under vacuum for 30 min, and the MALDI-matrix sinapinic 
acid (10 mg/mL in 60:40 acetonitrile:water w/0.2% trifluoroacetic acid) was uniformly deposited, with 
an optimized method, using the iMatrixSpray (Tardo GmbH, Subingen, Switzerland) automated 
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spraying system. MALDI-TOF-MSI was performed using an ultrafleXtreme MALDI-TOF/TOF 
(Bruker Daltonik GmbH, Bremen, Germany) in positive-ion linear mode, using 300 laser shots per 
spot, with a laser focus setting of 3 medium (diameter of 50 μm) and a pixel size of 50 × 50 μm. Protein 
Calibration Standard I (Bruker Daltonics, Billerica, MA, USA), that contained a mixture of standard 
proteins within the mass range of 5730 to 16,950 Da, was used for external calibration (mass accuracy 
± 30 ppm). Spectra were recorded within the m/z 3000–20,000 range. Data acquisition and 
visualization were performed using the Bruker software packages (flexControl 3.4, flexImaging 5.0). 
After the analysis, the MALDI matrix was removed with 70% EtOH and the slides were stained with 
haematoxylin and eosin (H&E), digitally scanned using a ScanScope CS digital scanner (Aperio, Park 
Center Dr., Vista, CA, USA), and images were coregistered to the MSI datasets in flexImaging for the 
integration of proteomic and morphological data. Regions of interest (ROIs) containing pathological 
areas will be comprehensively annotated. Satisfactory specimens should include at least 6 groups of 
10 thyrocytes, as per SIAPEC guidelines [15].  

2.3. Statistical Analysis 

Quartiles, ranges, mean, and standard deviation (sd) were calculated for descriptive purposes. 
The analysis on proteomic data in the training set was performed on ROIs that included only 
epithelial cells, while for each patient in the validation set, three different approaches were tested: 
the average spectra generated from the MALDI-MSI analysis, the spectra from each ROI selected by 
the pathologist, and all the single spectra of the imzML MALDI-MSI analysis (pixel by pixel). The 
spectra were processed by performing baseline subtraction (median method), smoothing (moving 
average method, half window width 2.5), normalization (total ion current, TIC), peak alignment, and 
peak picking (S/N ≥ 6). The open-source software mMass v.5.5 (http://www.mmass.org) was used to 
confirm mass spectra alignment. Only peaks with an absolute intensity of less than 0.0003, after TIC 
normalization, were retained. Intra- and interpatient filters were applied on the detected features in 
the training set: (i) only the features (m/z) detected in at least 25% of the ROIs within the same patient 
were considered and (ii) the features (m/z) that were common to at least 25% of the Thy2 and to 25% 
of the Thy5 were included in the model and considered to be those most representative of benign and 
malignant lesions, respectively.  

For the two groups in the training set (benign vs. malignant lesions), a logistic regression with a 
Lasso regularization method was performed [16–18]. To select the Lasso penalizing parameter, and 
to assess the predictive accuracy within the training set, cross-validation was performed. The 
validation was done in blind from the patient’s histological diagnosis and considering only the 
features selected by the Lasso model to quantify the probability of malignancy. 

Data preprocessing (MALDIquant package) and statistical analyses (glmnet package) were 
performed using the open-source R software v.3.5.0.  

3. Results 

The cohort of 28 patients included in this study had an average age of 54 years old (sd = 17) and 
23 (79%) were females. The average nodule diameter was 20 mm (sd = 9). In the group of patients 
used in the training phase, the selected ROIs varied in terms of the number of clusters and cells that 
composed the placards. In the Thy2 cases, an average number of 10 ROIs (range = 5–22, median = 9) 
was recorded by the pathologist, while, in the Thy5 cases, a mean of 8 ROIs (range = 4–19, median = 
6) was selected. To compensate for this variability, equivalent groups of ROIs were generated for 
each patient: five groups of ROIs for Thy2 cases and four ROIs for Thy5 cases, each comprising from 
one to seven ROIs. These were then used to calculate the average spectra for the statistical analysis. 
ROIs from Thy2 lesions had an average number of 9 pixels (range = 3–39, median = 7) while those in 
the Thy5 had an average of 31 (range = 3–162, median = 13). Therefore, 45 mean spectra were 
generated for the benign and 36 for the malignant lesions and used for the statistical analysis of the 
training data. After preprocessing and the two intra- and interpatient filters, 69 features were found 
to be the most representative of Thy2 and Thy5 lesions; 20 of these were selected from the statistical 
model as the most discriminant to correctly distinguish samples and quantify their probability of 
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being malignant lesions. Then, the capability of the features included in the model to discriminate 
benign from malignant lesions was also tested on each single pixel present in the analyzed specimens. 
This was performed using the same groups of patients included in the training phase. A complete 
overlap of the cytological diagnosis and MALDI-MSI results was observed. In particular, specimens 
of the benign group were observed to be very homogeneous (uniformly distributed green color, 
Figure 1a), indicating that all the protein profiles were similar.  

 
Figure 1. Examples of pixel-by-pixel images and distributions of the probabilities of being malign in 
the training and validation set of benign Thy2 nodules. (a) imzML MALDI-MSI data of the Thy2 P_308 
in the training sample; (b) haematoxylin and eosin (H&E) staining of P_308; (c) validation of Thy2 
samples using imzML MALDI-MSI data. 

In the validation phase on 11 additional lesions (10 patients), three different approaches were 
applied based on: (i) average of spectra of the ROIs, (ii) overall average spectra of the entire FNA, 
irrespective of the morphological selection of the ROIs, and (iii) pixel-by-pixel analysis 
(Supplementary Figure S1). The average number of ROIs for the specimens used in the validation 
phase was 12 (2–25, median 11), with a mean number of pixels for each ROI of 15 (1–208, median 5). 
The model correctly classified all the benign cases (four Thy2, as shown in Figure 1c, and one 
morphological Thy3, as shown in Figure 3). In the malignant scenario, three Thy5 cases were 
particularly challenging due to the paucity of cells (Figure 2e: P_1126) or to a heterogenous 
background of benign/malignant cells (Figure 2c: P_1084, cytological image not shown) or colloid-
rich, cystic variant PTC (Figure 2c: P_1187, cytological image not shown). As a consequence, the 
proteomic analysis did not identify diagnostic signals of alert at the first screening classifying these 
samples as benign (Figure 2c). Patients Thy5 P_1149 and Thy4 P_1202, both adequate specimens, 
were correctly classified based on the distribution of the probabilities to be malignant using both 
ROIs and pixel-by-pixel data (Figure 2c, 2h, and 3; Supplementary Table S1b, S1c, and S2c). Then, an 
additional experiment was planned to support the hypothesis to justify the incorrect classification 
using ex vivo specimens. Samples from the same nodules (taken ex vivo after thyroidectomy, as 
previously described [19]) were now correctly classified as malignant by the model, due to a greater 
amount of neoplastic clusters that did not limit the analysis (Figure 2d, 2f, 2g). Analysis of an in vivo 
specimen of a metastatic lymph node (P_1188) resulted in a correct classification as malignant based 
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on ROIs but as benign in the pixel-by-pixel classification (P_1188). A specimen collected ex vivo from 
this lymph node was correctly classified based on both ROIs and the pixel-by-pixel model (Figure 3). 
Finally, the comparison of the three methodological approaches employed for the validation set 
highlights improved discriminant power in both the pixel-by-pixel and ROI analyses with respect to 
when the average spectra of the whole sample was employed (Supplementary Table S1 and S2). This 
result underlines the particular strengths of MALDI-MSI that could be exploited to support, as a 
complementary tool, the fundamental diagnostic role of the pathologist. 

 
Figure 2. Examples of pixel-by-pixel images and distributions of the probabilities of being malign in 
the training and validation set of malignant Thy5 nodules. (a) imzML MALDI-MSI data of the Thy5 
P_250 in the training sample; (b) H&E staining image of P_250; validation of (c) in vivo Thy5 samples 
and (d) ex vivo Thy5 samples using imzML MALDI-MSI data; (e) low cellularity in the H&E staining 
image of the P_1126 in vivo sample; (f) high cellularity in the H&E staining image of P_1126 ex vivo 
sample and (g) a zoom-in of thyrocyte clusters; (h) H&E staining image of high-quality cluster of 
thyrocytes cells of P_1149 in vivo. 
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Figure 3. Validation set of indeterminate for malignancy (Thy3), suspicious (Thy4) cases, and 
metastatic lymph node. Pixel-by-pixel images and distribution of the probabilities of being malignant 
for each pixel in the MALDI-MSI analysis. 

4. Discussion 

4.1. Proteomics for the Diagnosis of Thyroid Carcinoma 

The development of new diagnostic tools to support cytopathologists in the diagnostic triage of 
indeterminate for malignancy thyroid nodules can be approached from the alternative perspective 
offered by proteomics [20,21]. Previous reports enlightened the possibility to apply imaging methods 
such as MALDI-MSI to cytological specimens to combine the analytical power of traditional 
morphology and molecular signatures [22]. Preliminary experiments were done using ex vivo 
specimens taken from surgical samples [19], while in the present study, true needle washing 
specimens were used. The feasibility of the MALDI-MSI approach to spatially localize proteins in a 
cancer cell area is enlightened in Supplementary Figure S2. This represents an intriguing and 
important methodological step, leading to the recovery of leftover material from the FNAs that can 
be recovered by washing the needle and stabilizing the cells for two weeks [5]. This procedure allows 
specimens to be collected from centers that do not have a diagnostic unit with proteomics facilities 
and then shipped to the referee lab within the following 10 days. In the near future, the more 
systematic enrollment of patients from multiple centers could ensure the generation of diagnostic 
libraries containing molecular signatures, which include different malignant and rare histotypes for 
research purposes.  
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4.2. Big Data and Biostatistics: A Requirement for the Introduction of Proteomics in Clinics 

Indeed, the application of proteomics as a routine option for the characterization of challenging 
cases also requires the development of an enlarged network given that the validation of protocols, 
biostatistic models, and putative analytical features is related with the interlaboratory 
reproducibility, standardization of workflows, and diagnostic strengthening of the methods. In 
particular, with the advent of molecular techniques like next-generation sequencing (NGS) and 
proteomics approaches (MALDI-MSI), biostatistics models and bioinformatics that can manage big 
data are necessary for improving the confidence of pathologists [23,24]. Statistical models of cancer 
at the genomic, proteomic, and transcriptomic levels have proven effective in developing diagnostic 
and prognostic molecular signatures, as well as in identifying pathogenetic pathways [25]. High-
throughput experimental tools allow for the simultaneous measurement of thousands of 
biomolecules, integrating heterogeneous data into quantitative predictive models to significantly 
improve cytological diagnoses. Molecular diagnostic workflows can be divided into those that 
employ unbiased statistical inference and those that also incorporate a priori constraints of specific 
biological interactions from data [26]. In the present study, a diagnostic model was trained using 
clear-cut benign or malignant cases to identify specific discriminant features to be tested in the 
validation phase. Three different approaches were used: the analysis of groups of ROIs that the 
pathologists selected using morphological criteria, a pixel-by-pixel approach, and examination of the 
average spectrum of the whole sample.  

4.3. Training Phase: Features Selection for Benign and Malignant Thyroid FNAs Discrimination 

The histograms in  Figure 1;  Figure 2 show how the probability of being malignant can be 
effectively represented with curves and the samples from FNAs should not pass the diagnostic 
proteomic triage whenever a signal of alert was pointed out. After the application of filters, 
biostatisticians designed a combination of features that was able to correctly distinguish all the 
training cases, in blind, when they were retested. The highest probability to be malignant of 7% 
(overall mean of the 3rd quartiles = 2.89%, sd = 2.03%) for the Thy2 and the minimum of 28% (overall 
mean of the 3rd quartiles = 81.81%, sd = 22.66%) for Thy5 were observed in the training phase 
(Supplementary Table S2A, S2B).  

4.4. Validation Phase of the Selected Features and Pixel-by-Pixel Classification of Thyroid FNAs  

Results obtained in the pixel-by-pixel validation phase showed that all benign lesions, including 
the Thy3 (later confirmed as benign after surgical resection), had a 3rd quartile value of the 
probability of being malign below 7%. The malignant lesions had a 3rd quartile above 28% with the 
exception of specimens with scarce cellularity or a heterogeneous background. These specimens 
stressed the model due to particularly challenging nodules that were representative of the diagnostic 
situation characterizing routine thyroid pathology. Samples with issues in terms of quantitative 
adequacy, haemorrhagic slides, colloid-rich or very heterogeneous FNAs with interspersed 
macrophages and lymphocytes are all good examples of challenging specimens. In benign lesions, a 
minimum amount of cells was sufficient to confirm the nature of the hyperplastic goiter and no signal 
of alert was recorded. In the malignant group, three FNAs from histologically proven PTC (Thy5) 
were not correctly assigned (Figure 2c) due to the quality of the samples taken from the patient. Two 
different situations were highlighted: samples with paucity of malignant thyrocytes or with high 
inflammatory or colloidal background. In fact, when the analyses were repeated with samples taken 
ex vivo from the thyroid of the same patients after surgical removal, they were easily diagnosed as 
malignant by our diagnostic tool due to the increased quality of the specimens with a greater amount 
of neoplastic clusters (Figure 2d). An in vivo specimen of a metastatic lymph node was also 
misclassified as benign only in the pixel-by-pixel classification (P_1188). A possible explanation for 
this failure could be due to the low number of thyrocytes present in the sample. As a consequence, 
the correct classification was obtained when using the ROIs, where the background was less impacted 
by the quality of the spectra, but this confounded the model in the pixel-by-pixel classification. 



Cancers 2019, 11, 1377 9 of 11 

 

However, the specimen that was collected ex vivo was correctly classified using either the ROIs or 
the pixel-by-pixel model (P_1188: Figure 3 and Supplementary Table S1c1). This suggests that, once 
the pathologist certified the presence of a satisfying quantity of neoplastic cells in the washing 
material, the model also correctly triaged malignant PTC cells in a sample taken from a metastatic 
lymph node. 

5. Conclusions 

Notwithstanding the consideration that the diagnostic validity of the model needs to be verified 
in the large cohort of patients that is currently under enrollment, the present study introduces an 
original methodological approach to build a proteomic diagnostic tool in thyroid cytopathology by 
taking advantage of MALDI-MSI technology. The next step will be to systematically test the 
workflow and to putatively identify the most significant features employed by the classification 
model. The direct consequences of successful results could be the use of MALDI-MSI proteomics as 
a complementary approach for the characterization of indeterminate for malignancy thyroid nodules. 
Despite the technical challenges of this study, the application of proteomics and imaging may help 
to elucidate key biomolecular events and pathways in oncogenic processes [27,28]. Collectively, this 
represents an important paradigm for both the fundamental characterization of cancer systems and 
the discovery of molecular targets for diagnostic application. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Example of 
single spectra from 4 benign (green) and 4 malignant (red) patients of the training set, Figure S2: MALDI-MSI 
molecular images of an area of an area of a malignant specimen and spatial localization of two m/z features in 
the (A) cancer cell clusters (feature A); and (B) stromal area (feature B); (C) Haematoxylin and eosin stained 
image and (D) Total ion count normalized average spectrum, Table S1: Probability of being malignant for each 
patient of the validation set (ROIs and average spectrum), Table S2: Distribution of the probabilities to be 
malignant in the pixel by pixel analysis.  
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