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Abstract: Reprogrammed glucose metabolism is one of the hallmarks of cancer, and increased
expression of key glycolytic enzymes, such as pyruvate kinase M2 (PKM2) and lactate dehydrogenase
A (LDHA), has been associated with poor prognosis in various malignancies. Targeting these enzymes
could attenuate aerobic glycolysis and inhibit tumor proliferation. We investigated whether the
PKM2 activator, TEPP-46, and the LDHA inhibitor, FX-11, can be combined to inhibit in vitro and
in vivo tumor growth in preclinical models of pancreatic cancer. We assessed PKM2 and LDHA
expression, enzyme activity, and cell proliferation rate after treatment with TEPP-46, FX-11, or a
combination of both. Efficacy was validated in vivo by evaluating tumor growth, PK and LDHA
activity in plasma and tumors, and PKM2, LDHA, and Ki-67 expression in tumor tissues following
treatment. Dual therapy synergistically inhibited pancreatic cancer cell proliferation and significantly
delayed tumor growth in vivo without apparent toxicity. Treatment with TEPP-46 and FX-11 resulted
in increased PK and reduced LDHA enzyme activity in plasma and tumor tissues and decreased
PKM2 and LDHA expression in tumors, which was reflected by a decrease in tumor volume and
proliferation. The targeting of glycolytic enzymes such as PKM2 and LDHA represents a promising
therapeutic approach for the treatment of pancreatic cancer.

Keywords: pancreatic cancer; pyruvate kinase M2; lactate dehydrogenase A; glycolytic enzymes;
combination therapy

1. Introduction

Pancreatic cancer is one of the most aggressive and lethal malignancies, leaving patients with
a 5-year survival rate of approximately 10% [1,2]. Lack of early symptoms and detection leads to
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most patients being diagnosed with advanced inoperable disease and a median survival of less
than a year. Current treatment regimens offer limited survival benefit and substantial toxicities;
therefore, more effective therapeutic strategies need to be developed [3].

In recent years, the importance of metabolic alterations during malignant transformation has
gained increased interest, and regulation of cancer cell metabolism is being investigated as a potential
therapeutic intervention. Tumor cells adopt a unique metabolic phenotype, consuming high amounts
of glucose and producing lactate through catalytic enzyme-mediated processes, even in the presence of
adequate levels of oxygen, which is known as the Warburg effect or aerobic glycolysis [3,4]. Pyruvate
kinase (PK) and lactate dehydrogenase A (LDHA) are two crucial glycolytic enzymes that facilitate
these processes, conferring a growth advantage for tumor cells [5–7].

PK is the rate-limiting enzyme in the last step of the glycolytic pathway, catalyzing the
conversion of phosphoenolpyruvate (PEP) to pyruvate. There are four PK isoforms—L, R, M1,
and M2, expressed in the liver, erythrocytes, adult skeletal muscle and brain, and proliferating
cells, respectively [5,7]. In these tissues, catalytically active PKM2 is a tetramer, but in tumor cells,
PKM2 is present as a dimer and is unable to convert PEP to pyruvate [8,9]. As a result, there
is an accumulation of glycolytic intermediates, which can be used for the biosynthesis of lipids,
nucleic acids, and proteins, required by rapidly proliferating cells. Upregulated expression of PKM2
has been reported in multiple malignancies, including pancreatic cancer, and is associated with
cell proliferation, survival, migration, invasion, and angiogenesis [7,10,11]. Several small molecule
activators, which induce the tetramerization of PKM2 (activation), have been developed and have
shown promising results in blocking glycolysis and inhibiting tumor cell proliferation [12–14], including
TEPP-46, 6-((3-aminophenyl)methyl)-4-methyl-2-methylsulfinylthieno[3,4]pyrrolo[1,3-d]pyridazin-5-
one [13–15]. TEPP-46 is a potent and selective activator of PKM2 (inducing PKM2 tetramerization)
with no significant effects on PKL, PKR, and PKM1 isoforms. Treatment with TEPP-46 has shown
altered metabolism in cultured cells and antitumor activity in preclinical models of lung and colorectal
cancer [13,16,17].

LDHA is another crucial glycolytic enzyme that converts pyruvate to lactate and oxidizes the
reduced form of nicotinamide adenine dinucleotide (NADH) to NAD+ to sustain glycolysis [18–20].
LDHA is predominantly expressed in muscle tissue and at low levels in other tissues. High LDHA
expression has been reported in a number of malignancies, including pancreatic cancer, and has
been associated with tumor development, invasion, and metastasis [21–23]. Targeting of LDHA with
siRNA or small molecule inhibitors has been reported to increase oxygen consumption and reactive
oxygen species production, reduce glucose uptake and lactate production, and decrease tumor cell
growth [21,24–26]. FX-11, 3-dihydroxy-6-methyl-7-(phenylmethyl)-4-propylnaphthalene-1-carboxylic
acid, is a selective, reversible, NADH competitive inhibitor of LDHA that has shown antitumor activity
in lymphoma and pancreatic cancer xenografts [24,27,28]. Moreover, inhibition of LDHA in combination
with gemcitabine has shown synergistic cytotoxic activity in pancreatic cancer cells [29]. A multivariate
analysis identified serum LDH levels as a significant prognostic predictor and a statistical trend for
overall survival of patients with advanced pancreatic cancer after gemcitabine-based chemotherapy [30].
Similar results were observed by Faloppi et al. in advanced pancreatic cancer patients receiving
sorafenib [31]. Patients with low LDH serum levels treated with sorafenib showed an advantage in
progression-free survival and in overall survival.

PKM2 and LDHA seem to synergistically catalyze the glycolytic process to promote oncogenic
metabolic reprogramming and appear to play a crucial role during the initiation and progression
of pancreatic cancer [32–34]. Indeed, we have shown that increased expression of both PKM2 and
LDHA can contribute to the initiation and progression of pancreatic cancer and is associated with poor
prognosis [35]. Furthermore, a recently published study confirmed that PKM2 and LDHA also play
a key role in pancreatic cancer-associated fibroblasts (CAFs) metabolism. PKM2 and LDHA protein
expression in CAFs was higher than that in normal fibroblast [36].
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Therefore, targeting these glycolytic enzymes could be a potential therapeutic strategy that
can attenuate aerobic glycolysis and inhibit tumor cell proliferation. We evaluated this concept by
combining the PKM2 activator, TEPP-46, with the LDHA inhibitor, FX-11, and assessed efficacy in vitro
and in vivo in preclinical models of pancreatic cancer.

2. Results

2.1. Both PKM2 and LDHA are Expressed by Pancreatic Cancer Cells

All human pancreatic cancer cell lines analyzed expressed both PKM2 and LDHA at both
proliferative and nonproliferative stages of cell culture. The BxPc-3, MIA PaCa-2, PK-45P, and PK-1
cell lines had a stable and relatively high expression of PKM2 and LDHA at both stages of cell culture
in comparison to the other cancer cell lines analyzed (Figure 1). Since the BxPc-3 and MIA PaCa-2
cell lines had similar expression of both PKM2 and LDHA, we selected these two cell lines for further
studies. The high expression of PKM2 observed in PDAC cells correlates with published data by
Yokoyama et al. [7].
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Figure 1. Pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA) expression in human
pancreatic cancer cell lines. (A) Relative PKM2 expression and (B) Relative LDHA expression in
proliferative and nonproliferative phases of cell culture in nine pancreatic cancer cell lines. (C) Western
blots showing expression levels compared with loading controls across the cell lines. Data presented as
relative expression ± SE, obtained from chemiluminescence intensity of PKM2 and LDHA normalized
to chemiluminescence intensity of β-actin.

2.2. Synergistic Inhibition of Pancreatic Cancer Cell Proliferation with the Combined Treatment

The response of BxPc-3 and MIA PaCa-2 cells to TEPP-46 and FX-11 alone or in combination was
assessed by the MTS assay. Treatment with TEPP-4 or FX-11 alone reduced cell metabolic activity in
a concentration-dependent manner. The half maximum inhibitory concentration (IC50) of TEPP-46
single treatment was >75 µM for both cell lines. The IC50 of FX-11 was 49.27 µM for BxPc-3 and
60.54 µM for MIA PaCa-2 cells. When the two compounds were combined, a significant reduction in
cell proliferation was observed compared with each single treatment in both cell lines (Figure 2A,B).
The IC50 of the combination therapy was 30.3 µM and 40.2 µM for the BxPc-3 and MIA PaCa-2 cell
lines, respectively. The combination treatment was considered synergistic as CI < 1 was observed for
both cell lines: CI = 0.45 for BxPc-3 and CI = 0.48 for MIA PaCa-2.
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Figure 2. Effect of TEPP-46 and FX-11 on BxPc-3 and MIA PaCa-2 cells. Cell proliferation in response
to increasing concentrations of TEPP-46 and FX-11 alone or in combination in (A) BxPc-3 cells and
(B) MIA PaCa-2 cells. Relative PK and LDHA enzyme activity with increasing concentrations of
TEPP-46 and FX-11 in (C) BxPc-3 cells and in (D) MIA PaCa-2 cells. There was a correlation between
PK activity and increasing TEPP-46 concentrations (R2 = 0.98 and R2 = 0.97 for BxPc-3 and MIA PaCa-2
cells, respectively) and between LDHA activity and increasing concentrations of FX-11 (R2 = 0.94
and R2 = 0.96 for BxPc-3 and MIA PaCa-2 cells, respectively). PK activity increased with increasing
concentrations of TEPP-46, and LDHA activity decreased with increasing concentrations of FX-11.
There was a significant inverse correlation between PK and LDHA enzyme activity with increasing
concentrations of TEPP-46 and FX-11 in both cell lines (E) BxPc-3 (R2 = 0.93, p = 0.002) and (F) MIA
PaCa-2 (R2 = 0.95, p = 0.001). Decreased cell proliferation with increasing concentrations of TEPP-46,
FX-11, and a combination of both was confirmed by hematoxylin staining in (G) BxPc-3 and (H) MIA
PaCa-2 cells. Scale bar: 500 µm. Cell proliferation data presented as mean ± SE; means plotted for
enzyme activity correlations.
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PK and LDHA enzyme activity were evaluated in response to treatment with TEPP-46 and FX-11.
There was a positive correlation between PK activity and increasing TEPP-46 concentrations and an
inverse correlation between LDHA activity and increasing FX-11 concentrations in both cell lines
(Figure 2C,D). Moreover, there was a significant inverse correlation between PK and LDHA activity for
both cell lines when treated with increasing concentrations of TEPP-46 and FX-11 (Figure 2E,F).

BxPc-3 and MIA PaCa-2 cells were also stained with hematoxylin to microscopically assess the
effect of each treatment on cell morphology and proliferation rate. There was a significant reduction in
the size of the colonies and the number of viable cells with increasing concentrations of TEPP-46 and
FX-11 compared with controls (0 µM group), and the combined treatment further reduced cell density,
proliferation rate, and viability in both cell lines compared to TEPP-46 or FX-11 alone (Figure 2G,H).

2.3. Combination Therapy Significantly Attenuated Tumor Growth in the Subcutaneous Tumor Model

We assessed efficacy in vivo in a subcutaneous BxPc3-Luc tumor xenograft model. All treatments
significantly reduced tumor growth compared with controls (Figure 3A–C). However, FX-11 and
both low- and high-dose combination treatments significantly delayed tumor growth compared with
TEPP-46 monotherapy, whereas the high-dose combination protocol significantly reduced tumor
growth compared to all treatments (Figure 3A–C).
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Figure 3. Efficacy and toxicity evaluation of TEPP-46, FX-11, and combination therapy in the
subcutaneous BxPc-3-Luc tumor model. Efficacy was evaluated based on (A) Tumor volume over
time, (B) Bioluminescent images of mice from each treatment group at the start and end of treatment
(day 0 and day 21, respectively), and (C) Tumor weights at the end of treatment. Toxicity was evaluated
based on change in (D) Weight of mice over the course of therapy and (E) Liver enzyme function and
albumin. Each treatment significantly delayed tumor growth compared with the control group; FX-11,
low- and high-dose combination therapy significantly reduced tumor growth compared with TEPP-46,
and the high-dose combination therapy significantly reduced tumor growth compared with all other
treatments (p < 0.05, 2-way ANOVA and multiple t-tests). No significant weight loss or change in liver
enzyme function and albumin were encountered in the treatment groups compared with control mice.
Data presented as mean ± SE; * indicates significantly different from controls; ** indicates significantly
different from controls and TEPP-46; *** indicates significantly different from controls and all other
treatment groups.
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All treatments were well tolerated, as mice did not encounter any significant changes in body
weight, liver enzyme function, and albumin compared with the control group, indicating no observable
toxicity (Figure 3D,E).

2.4. Significant Therapeutic Efficacy with the Combination Therapy in the Orthotopic Tumor Model

We also assessed the effect of high-dose combination therapy in a more clinically relevant
orthotopic tumor model, generated with BxPc3-Luc cells. Similar to the results from the subcutaneous
tumor model, the combination treatment significantly delayed tumor growth (Figure 4A,B). At the
end of the experiment, post-mortem examination revealed liver and spleen metastases in the control
groups; however, no metastases were observed in the animals treated with the combination therapy.
Tumor weights were significantly lower in the combination treatment group compared with controls
(Figure 4B). No significant weight loss was encountered by the mice (Figure 4C).
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Figure 4. Efficacy and toxicity evaluation of the combination therapy in the BxPc-3-Luc orthotopic
tumor model. (A) Bioluminescent images of mice from the control and high-dose combination therapy
group obtained at the start and end of treatment (day 0 and day 21, respectively); (B) Tumor weights
at the end of treatment and (C) Weight of mice over the course of therapy. The combination therapy
significantly reduced tumor growth compared with the control group (p = 0.006, Student’s t-test).
No significant changes in weight were encountered by the treated mice compared with the controls.
Data presented as mean ± SE; * indicates significantly different from controls.

2.5. PK and LDHA Enzyme Activity in Plasma and Tumor Lysates

PK enzyme activity was significantly higher in plasma and tumor lysates from the TEPP-46,
low- and high-dose combination therapy groups compared with controls, whereas no significant
differences were found between the FX-11 treated group and controls (Figure 5A). In contrast, LDHA
activity was significantly lower in plasma and tumor lysates from the FX-11, low- and high-dose
combination groups compared with controls, and no difference was observed between the TEPP-46
and control groups (Figure 5B). Overall, enzyme activity in plasma was reflected by enzyme activity in
tumor lysates.
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Figure 5. Glycolytic enzyme activity in plasma and tumor lysates in response to TEPP-46, FX-11,
and combination therapy in the subcutaneous BxPc-3-Luc tumor model. (A) PK activity and (B) LDHA
activity. Overall, TEPP-46 treatment increased PK activity and FX-11 treatment decreased LDHA
activity in plasma and tumor lysates. Enzyme activity in plasma was reflected by enzyme activity in
tumor lysates. Data presented as mean ± SE. * indicates significantly different from controls (p < 0.05,
1-way ANOVA).

2.6. Reduced PKM2 Detection, LDHA Expression, and Significantly Decreased Proliferation in Tumor Tissues

To further assess response to treatment, the detection of inactive PKM2 (dimeric form), and the
expression of LDHA and Ki-67, was examined in tumor sections from each treatment group by
immunohistochemistry. PKM2 detection and LDHA expression were considerably lower in tumor
sections from all treatment groups compared with controls (Figure 6A).
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Figure 6. Detection of inactive PKM2 and LDHA and Ki-67 expression in response to TEPP-46, FX-11,
and combination treatment. (A) Representative images of tumor sections from each group from the
subcutaneous tumor model stained with H&E, PKM2, LDHA, and Ki-67 (40×magnification). Scale bar:
20 µm; Proliferation indices in response to treatment in the (B) subcutaneous and (C) orthotopic tumor
model. PKM2 detection and LDHA expression were lower in tumor sections from all treatment groups
compared with controls. Ki-67 expression was significantly lower in the FX-11, low- and high-dose
combination treatment groups compared with controls, and significantly lower in the high-dose
combination group compared with all other treatments. Significantly decreased proliferation indices
were observed in tumor sections from the high-dose combination treatment compared with controls
in the orthotopic tumor model. Data presented as mean ± SE. * indicates significantly different from
controls; ** indicates significantly different from controls and all other treatment groups.
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The expression of the proliferation marker Ki-67 was significantly lower in the FX-11, low- and
high-dose combination treatment groups compared with controls, whereas there were no significant
differences between the TEPP-46 and control groups (Figure 6A,B). Moreover, proliferation indices
were significantly lower in the high-dose combination group compared with all other treatments
(Figure 6A,B). Similarly, significantly decreased proliferation indices were observed in tumor sections
from the high-dose combination therapy compared with controls from the orthotopic tumor model
study (Figure 6C).

3. Discussion

Altered energy metabolism is a hallmark of cancer and plays a crucial role in tumor initiation,
progression, and resistance to treatment [4,6,13,26]. Cancer cells can use aerobic glycolysis to divert
glucose metabolites from ATP production toward the synthesis of cellular building blocks (nucleotides,
amino acids, and lipids) to meet the demands for sustained proliferation. This shift in cellular
metabolism can be achieved through increased expression of glycolytic enzymes, such as PKM2 and
LDHA. These enzymes are overexpressed in various malignancies, including pancreatic cancer, and we
and others have shown that this is associated with poor prognosis [32,34,35,37–39].

In this context, we examined whether targeting PKM2 and LDHA can alter tumor cell metabolism
and inhibit tumor cell proliferation. We demonstrate that the PKM2 activator, TEPP-46, and the LDHA
inhibitor, FX-11, can effectively activate PKM2 and inhibit LDHA activity, respectively, both in vitro
and in vivo. We also show that combining TEPP-46 and FX-11 can significantly and synergistically
inhibit pancreatic cancer cell proliferation in vitro, and significantly delay tumor growth in vivo in
preclinical models of pancreatic cancer, without observable toxicity. To our knowledge, our study is
the first to examine this combination strategy in pancreatic cancer.

Our in vitro studies demonstrate that pancreatic cancer cells express both PKM2 and LDHA and
that the activity of both enzymes can be effectively altered by TEPP-46 and FX-11. PKM2 activity
was increased with increasing concentrations of TEPP-46 and LDHA activity was decreased with
increasing concentrations of FX-11. Moreover, there was a significant inverse correlation between the
activity of both enzymes. Cell metabolic activity decreased in a concentration-dependent manner with
TEPP-46 and FX-11, and the combination of both had synergistic effects on reducing pancreatic cancer
cell proliferation.

Similar to our in vitro results, both agents significantly reduced tumor growth in vivo compared
with control groups. Indeed, these findings are in agreement with other studies reporting therapeutic
activity with single agent TEPP-46 or FX-11 in various tumor models, including pancreatic cancer [13,24].
However, single-agent FX-11 and both low- and high-dose combination treatments were significantly
more effective than TEPP-46 alone, whereas the high-dose combination therapy resulted in the best
response. The significant delay in tumor growth was accompanied by increased PK activity and
decreased LDHA activity in plasma and tumor lysates, and reduced detection of PKM2 and expression
of LDHA in tumor tissues, along with significantly decreased tumor proliferation. The decreased
detection of PKM2 in tumor sections is reflective of enzyme activation as a result of TEPP-46,
which binds to a pocket at the PKM2 subunit interface, enhancing the association of PKM2 subunits into
stable tetramers [13] (tetramer form not detected by PKM2 antibody used for immunohistochemistry.
This mechanism of tetramer stabilization by TEPP-46 is reported to be refractory to inhibition by
tyrosine-phosphorylated proteins and to have an impact on cell metabolism [13].

Although TEPP-46 can enhance PKM2 activity, leading to reduced lactate production and lipid
synthesis, treatment with TEPP-46 alone does not induce cytotoxic changes and it is likely that cancer
cells persist in a quiescent state, which has been linked to treatment resistance and disease recurrence.
The metabolic requirements of different cells vary, and while tumor cells might adopt various means of
gaining energy, decreased PKM2 activity might not be required for the survival of all tumor cells.

In addition to its function as a glycolytic enzyme in the cytoplasm, the dimeric form of PKM2 can
also act as a protein kinase and a transcriptional co-activator in the nucleus. PKM2 can promote cell
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cycle progression by regulating mitotic checkpoint, chromosome segregation, and cytokinesis [7,40–42].
Nuclear PKM2 can promote the transcriptional activities of hypoxia-inducible factor (HIF), β-catenin,
STAT 3, and Oct 4 [43–46]. β-catenin-mediated transactivation of cyclin D and c-Myc can promote
the expression of Cdc25A, GLUT1, LDHA, and PKM2 [47], while HIF-1α can induce transcription of
LDHA, PDK1, and VEGF. The upregulated expression of glycolytic genes enhances the Warburg effect,
while cyclin D expression promotes G1-S phase transition, collectively encouraging cell proliferation
and tumor progression.

It is likely that in addition to the depletion of glycolytic intermediates, tetramerization of PKM2 by
TEPP-46 might also impede nuclear translocation of PKM2 and hence inhibit transcription of LDHA,
possibly contributing to the effectiveness of the combination treatment. Inhibition of LDHA by FX-11
can reduce the ability of cancer cells to metabolize pyruvate to lactate, halting the regeneration of NAD+,
which is required for sustained glycolysis, and consequently prevent tumor cell proliferation [24].
Inhibition of LDHA has been reported to impair lymphoma and pancreatic cancer growth by decreasing
ATP levels, inducing oxidative stress and cell death [24].

Both TEPP-46 and FX-11 alone reduced tumor growth and decreased tumor cell proliferation.
However, combined treatment using the high-dose regimen of TEPP-46 and FX-11 significantly
enhanced efficacy and produced synergistic antitumor activity without apparent toxicity—although a
limitation of the study is that the in vivo studies were performed using only one pancreatic cancer
cell line. However, in phase I–III trials, metabolism modulating agents have generally also been
well tolerated.

In summary, we demonstrate that TEPP-46 and FX-11 can be safely and effectively combined to
synergistically reduce pancreatic tumor growth. Although most inhibitors are still in the preclinical
phase, the targeting of glycolytic enzymes, such as PKM2 and LDHA, represents a very promising
approach for the treatment of pancreatic cancer.

4. Materials and Methods

4.1. Cell Lines and Chemicals

Nine different human pancreatic cancer cell lines were purchased from RIKEN BioResource Centre
(RIKEN BRC, Tsukuba, Japan) and PerkinElmer (Caliper LifeSciences, Hopkinton, MA, USA). PANC-1,
PK-1, PK-45H, KLM-1, BxPc-3, PK45P, and PK-59 were maintained in RPMI-1640 medium, while MIA
PaCa-2 was maintained in DMEM and KP-4 in DMEM/F12 medium. All media were supplemented
with 10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 2mM glutamine. Cells were
maintained in a humidified atmosphere of 21% O2, 5% CO2 at 37 ◦C.

The PKM2 activator IV, TEPP-46, was obtained from Cayman Chemicals (Ann Arbor, MI, USA)
and the lactate dehydrogenase A inhibitor, FX-11, was obtained from Toronto Research Chemicals Inc.
(Toronto, ON, Canada).

4.2. Expression of PKM2 and LDHA in Pancreatic Cancer Cells

The expression levels of PKM2 and LDHA were evaluated in the abovementioned pancreatic
cancer cell lines by western blotting when cells reached approximately 50% and 90% of confluence in
culture (proliferative and nonproliferative stage, respectively).

Whole protein content was extracted by lysis using RIPA buffer (Sigma-Aldrich, St Louis, MA, USA)
complemented with a tablet of complete EDTA-free protease inhibitors (Roche Diagnostics Ltd., Welwyn
Garden City, UK). Total protein concentration was measured by the BCA assay (Pierce, Rockford,
IL, USA). Then 15 µg protein was run on pre-cast gels (NuPAGE Novex 4–12% Bis-Tris 1.0 mm,
10 wells gel, Invitrogen, Waltham, MA, USA) and transferred onto 0.45 µm pore size polyvinylidene
difluoride (PVDF) membrane (Invitrogen). The membrane was blocked with a 5% BSA solution and
incubated overnight at 4 ◦C with mouse anti-PKM2 (DF-4, ScheBo®Biotech, Giessen, Germany) or
rabbit anti-LDHA antibodies (Cell Signaling, London, UK) (1:1000 dilution), followed by incubation
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with appropriate horseradish peroxidase conjugated secondary antibodies (Cell Signaling; 1:2000).
The antigen–antibody reaction was detected using an enhanced chemiluminescence substrate (Thermo
Scientific, Waltham, MA, USA), and anti-β-actin antibody (Cell Signaling; 1:1000) was used as a
protein loading control. Relative protein expression was evaluated as chemiluminescence intensity
of PKM2 and LDHA normalized to chemiluminescence intensity of β-actin. Densitometry readings
and analysis were performed using the ImageJ software and have been included as Supplementary
Materials (Figures S1–S3 and Table S1).

4.3. Evaluation of Cell Proliferation Rate

The MTS assay was used to assess the effect of treatments on tumor cell proliferation (Abcam,
Cambridge, UK). Briefly, pancreatic cancer cells were seeded at a density of 3000–5000 cells per well in
96-well plates. Cells were treated with TEPP-46, FX-11, or a combination of both agents for 72 h and
cell proliferation was measured as per manufacturer’s protocol. To evaluate whether the combination
treatment was synergistic, the combination index (CI) was calculated based on the Chou and Talalay
method from dose-response data (CI = 1, additive effect; CI < 1, synergism; CI > 1, antagonism) [48].
The CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA) was used for drug dose–response
analysis and calculation of the dose–effect curve, IC50, and combination index (CI). The algorithm is
based on the same Chou-Talalay’s Combination Index Theorem that CalcuSyn is based on:

CI =
(D)1

(Dx)1
+

(D)2

(Dx)2

where (Dx)1 = dose of drug 1 to produce 50% cell kill alone; (D)1 = dose of drug 1 to produce 50% cell
kill in combination with (D)2; (Dx)2 = dose of drug 2 to produce 50% cell kill alone; (D)2 = dose of drug
2 to produce 50% cell kill in combination with (D)1.

4.4. In Vitro PK and LDHA Enzyme Activity

PK and LDHA enzyme activity were assessed in response to TEPP-46 and FX-11 by commercially
available PK and LDHA activity assay kits (BioVision, Milpitas, CA, USA) as per manufacturer’s
protocols. Briefly, pancreatic cancer cells were seeded in 6 well-plates and treated with different
concentrations of either TEPP-46 or FX11 (0–100 µM) for 6 h, following which, PK and LDHA activity
was measured and compared with controls.

4.5. Tumor Models and Assessment of In Vivo Efficacy and Toxicity

Immunocompromised CD-1 mice (age, 6–8 weeks; weight, 20–25 g) were purchased from Charles
River Laboratories Inc., (Harlow, UK). All animal experiments were performed in accordance with the
UK Home Office Animals Scientific Procedures Act 1986 and UK Co-ordinating Committee on Cancer
Research Guidelines for the Welfare and Use of Animals in Cancer Research [49] and approved by
the University College London Animal Welfare and Ethical Review Body (UK Home Office approved
Animal Project License PPL PPL-70/7100, 2013).

Subcutaneous xenografts were established using the luciferase-expressing human pancreatic
cancer cell line BxPc-3. Briefly, 6 × 106 cells were injected into the right flank of mice and allowed to
grow until reaching a volume of ~150–200 mm3. Mice (n = 5 per group) with similar tumor volumes
were allocated into the following groups: (1) Control (40% (2-hydroxypropyl) beta-cyclodextrin
in saline), (2) TEPP-46 (30 mg/kg), (3) FX-11 (2 mg/kg), (4) Low-dose combination therapy of
TEPP-46 and FX-11 (15 mg/kg and 1 mg/kg, respectively), and (5) High-dose combination therapy
of TEPP-46 and FX-11 (30 mg/kg and 2 mg/kg, respectively). TEPP-46 and FX11 were prepared
in 40% (2-hydroxypropyl) beta-cyclodextrin solvent in saline. Daily injections (100 µL) of the
vehicle or treatments were administered intraperitoneally for a period of 3 weeks. Tumor volumes
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were measured thrice a week using a digital caliper and calculated using the following formula:
Tumor Volume = length (mm) ×width (mm) ×width (mm) × 0.52.

Mice were weighed three times per week, and toxicity was evaluated as changes in body weight,
liver enzyme function [alanine transaminase (ALT), aspartate transaminase (AST)], and albumin (Roche
Diagnostics Ltd.). Mice were sacrificed following the three-week treatment period, approximately
one hour after the last injection; blood samples were collected via cardiac puncture and tumors were
harvested. Blood was collected in heparinized polystyrene tubes and the plasma was immediately
separated by centrifugation at 10,000 rpm for 15 min at 4 ◦C; plasma was stored at −80 ◦C until analysis.
Tumors were weighed, and half of each tumor tissue sample was flash-frozen in liquid nitrogen or
fixed in formalin.

4.6. Orthotopic Tumor Model

In order to enhance the clinical relevance of this study, orthotopic tumor models were generated
in immunocompromised CD-1 mice by injecting BxPc3-Luc cells directly into the pancreas, using a
well-established method [50]. Briefly, mice were anesthetized with 2–3% isoflurane, and an incision
was made in the abdominal cavity directly above the pancreas to allow visualization of the pancreatic
lobes. The pancreas was gently retracted and injected with 6 × 106 BxPc3-Luc cells in a 100 µL solution
of 1:1 PBS and matrigel. A dissection microscope was used to confirm delivery of the tumor cells under
the capsule of the pancreas. The pancreas was then placed back within the abdominal cavity and both
muscle and skin layers were sutured. All procedures were conducted under sterile conditions. Tumor
engraftment was confirmed by bioluminescence imaging using the IVIS system (PerkinElmer/Caliper
Life Sciences, Hopkinton, MA, USA) as previously described [51], and mice were allocated to 2 groups
with similar tumor burden based on bioluminescence signal (n = 5 per group): (1) Vehicle control, and
(2) High-dose combination therapy of TEPP-46 and FX-11, as described above. Mice were monitored
and weighed thrice weekly. At the end of the treatment period, mice were imaged once more prior to
sacrifice and tumors were harvested and weighed.

4.7. PK and LDHA Activity in Plasma and Tumor Lysates

The enzymatic activity of PK and LDHA was evaluated in tumor lysates and plasma samples from
each treatment group from the subcutaneous tumor model studies, using a commercially available kit
(BioVision) as per manufacturer’s protocol.

4.8. Immunohistochemistry

Excised tumors were formalin-fixed, paraffin-embedded, and sectioned. Tumor sections from
each treatment group (from the subcutaneous tumor model) were stained with hematoxylin and
eosin, and the expression of dimeric PKM2 (inactive), LDHA, and the proliferation marker Ki-67 was
evaluated by immunohistochemistry. Samples from the orthotopic tumor model were stained for
Ki-67 only.

Briefly, sections were subjected to heat-mediated antigen retrieval and endogenous peroxidase
activity was blocked using 3% hydrogen peroxide for 20 min, followed by incubation with 2.5%
normal horse blocking serum for 20 min. Sections were then incubated with primary antibody
for 1 h at room temperature for Ki-67 (1:300, Dako, Didcot, UK), and overnight at 4 ◦C for PKM2
(1:100, ScheBO®Biotech, Giessen, Germany) and LDHA (1:250, ScheBO®Biotech). Immunoreactivity
was visualized using horseradish peroxidase (HRP)—Conjugated secondary antibodies (Vector
Laboratories, Peterborough, UK) and 3, 3′-diaminobenzidine (DAB; Dako). Sections were then
counterstained with hematoxylin, dehydrated, and mounted with DPX (Sigma Aldrich, Dorset, UK).
Proliferation indices were evaluated by counting positively stained nuclei in 2–3 random regions and
expressed as percentage of positively stained nuclei per 1000 tumor cells using a standardized grid.
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4.9. Statistical Analyses

Data were plotted and analyzed using Prism (GraphPad Software, USA). Two-way ANOVA and
multiple t-tests were used to assess differences between groups, and linear and nonlinear regression
analyses were used for correlation of results. Results were considered statistically significant at p < 0.05.
The CompuSyn software (ComboSyn, Inc., Paramus, NJ, USA) was used for analyses of synergy
and for calculation of combination indices (CIs). If the CI = 1, the effect was considered additive,
if the CI < 1, the combination effect was considered synergistic, and if the CI > 1, the effect was
considered antagonistic.

5. Conclusions

In this study, we investigated whether the PKM2 activator, TEPP-46, and the LDHA inhibitor,
FX-11, can be effectively combined to inhibit in vitro and in vivo tumor growth in preclinical models of
pancreatic cancer. Our results demonstrate that combining TEPP-46 with FX-11 synergistically inhibited
pancreatic cancer cell proliferation and significantly delayed tumor growth in vivo compared with all
other groups, without apparent toxicity. Dual treatment with TEPP-46 and FX-11 resulted in increased
PK and reduced LDHA enzyme activity in plasma and tumor tissues and decreased PKM2 and LDHA
expression in tumors, which was reflected by a decrease in tumor volume and proliferation. Although
most inhibitors are still in the preclinical phase, the targeting of glycolytic enzymes, such as PKM2 and
LDHA, represents a very promising therapeutic approach for the treatment of pancreatic cancer.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/9/1372/s1,
Figure S1: Whole plot showing the expression of PKM2 and LDHA in different pancreatic cancer cell lines
compared to the loading control (beta-actin), Figure S2: Whole plot showing the expression of PKM2 and LDHA in
different pancreatic cancer cell lines compared to the loading control (beta-actin), Figure S3: Whole plot showing
the expression of PKM2 and LDHA compared to the loading control (beta-actin) in the pancreatic cancer cell line
BxPc-3, Table S1: Densitometry readings and intensity ratio of each band included in the western blot assays
(av. = average).
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