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Abstract: The purine nucleotides ATP and GTP are essential precursors to DNA and RNA synthesis 
and fundamental for energy metabolism. Although de novo purine nucleotide biosynthesis is 
increased in highly proliferating cells, such as malignant tumors, it is not clear if this is merely a 
secondary manifestation of increased cell proliferation. Suggestive of a direct causative effect 
includes evidence that, in some cancer types, the rate-limiting enzyme in de novo GTP biosynthesis, 
inosine monophosphate dehydrogenase (IMPDH), is upregulated and that the IMPDH inhibitor, 
mycophenolic acid (MPA), possesses anti-tumor activity. However, historically, enthusiasm for 
employing IMPDH inhibitors in cancer treatment has been mitigated by their adverse effects at high 
treatment doses and variable response. Recent advances in our understanding of the mechanistic 
role of IMPDH in tumorigenesis and cancer progression, as well as the development of IMPDH 
inhibitors with selective actions on GTP synthesis, have prompted a reappraisal of targeting this 
enzyme for anti-cancer treatment. In this review, we summarize the history of IMPDH inhibitors, 
the development of new inhibitors as anti-cancer drugs, and future directions and strategies to 
overcome existing challenges. 
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1. Introduction 

Purine nucleotides (e.g., ATP and GTP) are involved in many cellular functions including 
serving as building blocks for DNA and RNA, sources of energy, enzyme cofactors in metabolic 
pathways, and components of signal transduction. More specifically, GTP is a purine nucleoside 
triphosphate used as a source of energy for protein synthesis and a signaling molecule that regulates 
various cellular processes. Cellular GTP concentrations are markedly elevated in many types of 
cancers [1,2]. Until recently, the upregulation of the GTP pool size in cancers was thought likely to be 
an epiphenomenon. However, recently, we have shown that this is a primary result of elevated GTP 
synthesis via upregulation of the rate-limiting enzyme of the de novo GTP nucleotide synthesis 
pathway, known as inosine monophosphate dehydrogenase (IMPDH) [2]. Moreover, this increased 
synthesis directly increases cellular anabolism and induces malignant transformation of tumors. 

The human genome encodes two IMPDH isoenzymes, IMPDH1 on chromosome 7 and IMPDH2 
on chromosome 3. Unlike IMPDH1, studies suggest that IMPDH2 expression is elevated in neoplastic 
cells [3–5]. We and others recently reported the importance of the GTP de novo pathway in 
glioblastoma [2], brain tumor initiating cells [6], mTORC1-activated tumors [7], and a subset of small 
cell lung cancers [8]. These findings suggest de novo guanine nucleotide biosynthesis through 
IMPDH may be a promising therapeutic target for some cancers. Mycophenolic acid (MPA), the first 
IMPDH inhibitor discovered more than 100 years ago, has shown anti-tumor activity in various 
cancer cell lines and mouse models [9–11]. However, despite these long-known anti-tumor actions, 
no IMPDH inhibitor has been clinically approved as an anti-cancer drug in large part due to side 
effects at high treatment dose and variable responses. In this paper, we will review the history of 
IMPDH inhibitors, the reasons for the limited progress in establishing an effective antitumor 
derivative, and the prospects for successful development of new inhibitors. 

2. Historical Review of IMPDH Inhibitors: The Discovery of Mycophenolic Acid 

The history of the first IMPDH inhibitor, mycophenolic acid (MPA), dates back more than 100 
years ago with its purification of penicillium fungal species culture in 1893 by the Italian scientist, Dr. 
Bartolomio Gosio (Figure 1). He was searching for the etiology of pellagra in populations in which 
corn is a primary dietary staple. In that era, before the discovery that pellagra was caused by the lack 
of niacin (vitamin B3), pellagra was speculated to be secondary to toxin-producing bacteria or fungus 
in spoiled corn [12]. Although Dr. Gosio did not elucidate the cause of pellagra, he identified a fungal 
metabolite that inhibited the growth of Bacillus anthracis [13]. 

 
Figure 1. Timeline of events in the history of MPA and other IMPDH inhibitors. 
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of the active metabolite in spoiled corn, which rendered acidic properties by fungal infections, they 
chose to name the compound mycophenolic acid denoting an acidic phenol from a fungus (prefix 
“myco-“ means fungus) observing, at the time, the close similarity to the compound purified by Dr. 
Gosio 20 years earlier. In 1928, Dr. Alexander Fleming noticed the antibacterial effects of 
contaminating mold in petri dish cultures of Staphylococcus, but actual purification and use of 
penicillin as an antibiotic was not achieved until 1939. While penicillin is traditionally considered to 
be the first true antibiotic, in reality, MPA, purified in 1893 by Dr. Gosio, could be considered to be 
the first antibiotic. However, MPA was abandoned as a feasible antibiotic, partly due to its 
gastrointestinal toxicity at effective doses [15]. 

3. MPA Inhibits IMPDH Activity and Possesses an Immunosuppressive Effect 

In 1955, IMPDH was first described in the investigation of purine biosynthesis as a NAD+ 
requiring dehydrogenase necessary to convert inosine monophosphate (IMP) to xanthosine 
monophosphate (XMP) in rabbit bone marrow extracts [16,17] and pigeon liver extracts [18]. IMPDH 
is the rate-limiting step in de novo biosynthesis of guanine nucleotides (Figure 2). The fundamental 
observation that MPA inhibits IMPDH was first reported in the UK in 1968 in a patent application 
(application no. 26562/68), but the complete specification was reported in 1969 [19,20]. 

 
Figure 2. MPA: Mechanism of Action. IMPDH catalyzes the rate-limiting, NAD-dependent oxidation 
of inosine monophosphate (IMP) to xanthosine 5′-monophosphate (XMP), which is an intermediate 
metabolite in the production of guanosine-triphosphate (GTP). MPA is a potent, selective, reversible, 
and noncompetitive inhibitor of IMPDH. Abbreviations: SAMP: succinyl-AMP, and PRPP: 
phosphoribosyl pyrophosphate. 

In the 1970s, at the Medical Research Council’s Clinical Research Center in London, the South 
African geneticist, Dr. Anthony Allisson, was investigating biochemical causes of immune deficiency 
disorders in children. He discovered that the defect of adenosine deaminase (ADA) in the patient was 
accompanied by decreased guanine nucleotides [21]. Coincidently, in 1969, a Japanese group 
primarily investigating the antibiotic effects of MPA [22] reported immunosuppressant properties of 
MPA. Dr. Allison predicted that depleting pools of GTP would have immunosuppressive effects on 
lymphocytes and set out to improve the oral bioavailability of MPA. This led to the development of 
a pro-drug amino ester derivative of MPA, mycophenolate mofetil (MMF), which was activated after 
de-esterification by the liver [23] (Figure 3). After it underwent large successful clinical trials, MMF 
was approved by the U.S. Food and Drug Administration (FDA) in 1995 as an immunosuppressant 
drug for use in solid organ transplantation and was marketed under the brand CellCept (Roche). In 
2004, an enteric-coated formulation of mycophenolic acid (mycophenolate sodium) was also 
approved as an immunosuppressant in organ transplant and marketed as Myfortic (Novartis). Table 
1 summarizes labeled (FDA approved) and off-label indications of MMF. 
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Figure 3. MPA and its metabolites: phenolic MPA-glucuronide (MPAG), phenolic 7-0-glucoside 

(M1), acyl glucuronide (M2), and acyl-glucoside (M3), a CYP450 oxidation product. 

Table 1. Labeled and off-labeled indications of MMF. 

Indication Studies 
Labeled (FDA Approved) Indications Studies that led to FDA approvals 

Renal transplant Sollinger 1995 [24], Grinyo 1995 [25], Keown 1996 [26] 
Liver transplant Eckhoff 1998 [27], Wiesner 2005 [28], Nashan 2009 [29] 

Cardiac transplant 
Eisen 2005 [30], Kobashigawa 2006 [31], Kaczarek 2013 [32], 

Andreassen 2014 [33] 
Off-Label Use Studies supporting off-label use 

Lung transplant Treede 2001 [34], Zuckermann 2003 [35], Speich 2010 [36] 
Pancreatic transplant Ricart 2012 [37], Descourouez 2018 [38] 

Refractory acute graft-versus-host disease Alousi 2009 [39] 
Refractory chronic graft-versus-host 

disease 
Wolff 2010 [40] 

Prevention of graft-versus-host disease Sabry 2009 [41] 
Aplastic anemia Scheinberg 2006 [42] 

Autoimmune hepatitis, first line Zachou 2016 [43] 
Refractory autoimmune hepatitis Manns 2010 [44] 

Lupus nephritis 
Contreras 2004 [45], Ong 2005 [46], Dooley 2011 [47], Hahn 

2012 [48] 
Myasthenia gravis Meriggiolo 2003 [49], Sanders 2016 [50], Sieb 2014 [51] 

Psoriasis Menter 2009 [52] 

Systemic sclerosis 
Gerbino 2008 [53], Derk 2009 [54], Le 2011 [55], Mendoza 

2012 [56], Tashkin 2016 [57], Herrick 2017 [58] 
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4. Current Use of IMPDH Inhibitors and Their Application in Cancer Therapy 

The development of IMPDH inhibitors as anti-cancer drugs can be divided into three eras. The 
first era was highlighted by the appreciation in the 1960s and 1970s of the anti-tumor activity of MPA, 
and these effects were discovered in the context of burgeoning interest in GTP metabolism in many 
overlapping fields. Notably, MPA was shown to have antiviral [59], antifungal [60], antibacterial [60], 
antitumor [9,59], anti-psoriasis [61], and immunosuppressant properties [22]. Specifically, with 
respect to cancer, MPA was shown to have anti-tumor effects in cell lines obtained from different 
malignancies and murine models (see Section 4.1). Based on these early preclinical studies, a second 
era (1980s–2000s) expanded the focus to a variety of potential clinical applications. MMF and 
competitive inhibitors such as tiazofurin and small molecule non-competitive inhibitors like VX-944 
were developed. However, phase II cancer trials showed limited clinical efficacy. The third and 
current era (2015–present) was propelled by advances in molecular analyses (e.g., CRISPR/Cas9-
based gene manipulation, mass spectrometry-based metabolome), which lead to a renewed interest 
in the anti-cancer potential of IMPDH inhibitors. 

4.1. Evidence of the Antitumor Activity of IMPDH Inhibitors 

The anti-tumor activity of MPA (Figure 4A) has been known since the late 1960s [59,62–64]. MPA 
was shown to suppress cell proliferation of leukemia, lymphoma, pancreatic cancer, non-small cell 
lung adenocarcinoma, and colon cancer cell lines [11]. MPA also induced differentiation or apoptosis 
of several cancer cell lines including breast [65], prostate [66], melanoma [67], leukemia [68], and 
neuroblastoma [69]. In 2004, based on the apoptotic properties of MMF (Figure 4B) noted by Dr. 
Takebe et al. [70], a phase I clinical trial was conducted using MMF in relapsed/refractory multiple 
myeloma [71]. Doses ranged from 1–5 g/day and were well tolerated even at the maximum dose of 5 
g/day. There was also a significant correlation with the decrease of GTP levels in peripheral blood-
derived mononuclear cells to levels of MPA measured in some patients who were deemed responders 
(partial response and stable disease). However, the other patients showed marginal changes in GTP 
levels. This suggested the potential for monitoring MMF activity in clinical use, but it remains unclear 
why peripheral blood GTP was only decreased in a subset of patients.  

 

Figure 4. MPA and other IMPDH inhibitors and chemical structures. 

In 2013, MPA activity in pancreatic ductal carcinoma (PDA) and its anti-angiogenic effects was 
tested using six patient-derived xenograft mouse models (PDX), followed by a pilot proof of concept 
study performed in resectable pancreatic cancer patients [72]. In the PDX study, one of the patient-
derived PDA tumors showed a significant response to MMF treatment, with the tumor size 
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decreasing to less than half (46%) compared to the vehicle control. Another PDA tumor showed a 
partial response, decreasing size to 75%, compared to the control. Interestingly, there are two PDA 
tumors that showed progression with MMF treatment (121% and 148% increase in tumor size). Since 
these MMF-treated PDA tumors decreased vascular endothelial growth factor (VEGF) synthesis and 
secretion, the results suggested that there is likely a genetic factor(s) or cellular context that renders 
the PDA tumor susceptible to MMF. In the clinical trial, 12 patients received MMF (6 with 1 g/day 
and 6 with 2 g/day) for 5–15 days before surgery, compared to 6 non-treated patients. However, no 
significant anti-angiogenic effect was observed in MMF-treated patients, in contrast to the result of 
the PDX mouse study. Based on the limited growth inhibition activity in mice and the marginal 
responses in patients, further clinical development of MMF in PDA was not recommended following 
the study.  

It is conceivable that the marginal in vivo anti-pancreatic cancer effect of MMF could be due to 
desmoplasia and stromal components outnumbering pancreatic tumor cells, which is a proposed 
cause of drug resistance in pancreatic cancer [73]. In addition, whether MPA accessed the PDA 
tumors in mice and human patients, and what drug concentration was achieved within the tumor, 
are unclear. Regardless, these studies can serve as benchmarks for future pharmacodynamic studies 
using MMF in human patients. 

4.2. Long-Term Treatment Effect of MPA/MMF in Tissue-Transplanted Patients 

Post-transplant malignancy is a well-recognized complication of transplantation with a three-
fold to four-fold increase in the incidence of cancer in transplant patients compared to age-matched 
controls in the general population [74,75]. This is in part a consequence of chronic 
immunosuppression increasing the risk for viral infection and expansion, including oncogenic 
viruses (e.g., Epstein-Barr virus (EBV), Hepatitis B virus (HBV)). Nonmelanoma skin cancers and 
post-transplant lymphoproliferative disorders (PTLD) lymphoma are the most common 
malignancies observed in these patients [76]. Multiple studies have shown decreased incidence of 
PTLD, other malignancies, and risk of death when using MMF as a part of immunosuppression [77–
80]. This could be explained by one or more of a variety of documented MPA actions including: 
blocking expansion of EBV infected B lymphocytes, anti-viral effects on HIV and Hepatitis, 
potentiation of other anti-viral agents [81], and its reported anti-tumor properties. If future research 
clarifies the benefit and the mechanism of suppression using MMF, this may substantially improve 
personalized post-transplant treatment. 

4.3. Metabolism of MPA and Improved Routes of Delivery  

The major drawback of MPA as an anticancer agent is its dose-limiting GI toxicity. Most of the 
GI side effects are thought to be secondary to enterocytes toxicity [82]. MPA is extensively 
glucuronidated at the phenol group, which generates an inactive glucuronide that is quickly cleared 
by the kidney (Figure 3). Thus, the effective serum MPA concentration declines quickly in-vivo, 
which hampers the development of MPA-based anti-tumor therapies. However, substitutions of the 
phenolic hydroxyl and all other chemical modifications of MPA to avoid glucuronidation drastically 
reduce activity against IMPDH [83]. In recent years, a series of mycophenolic adenine nucleotides 
were developed and are known as “MAD” compounds (mycophenolic adenine dinucleotide 
analogue) [84–86]. While these analogues were not as potent as MPA, they were resistant to 
glucuronidation, which suggests that they might become lead compounds for further modification 
in the future. 

To surmount MPA’s drawbacks as an anti-tumor drug, we have employed nano-technology to 
generate a biodegradable, MPA-integrated nanofiber [87]. The first generation MPA-fiber released 
and sustained an MPA concentration of about 10 μΜ in cell culture media [87] and suppressed 
growth of both the human glioblastoma cell line U87MG and patient-derived glioblastoma neuro-
spheres [87]. A guanosine supplement reversed the inhibition, which suggests a specific effect of 
MPA on GTP. These results suggest that local MPA delivery, an approach that obviates 
gastrointestinal toxicity, increases the MPA stability and maintains local high concentrations of MPA, 
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which may be an effective strategy for glioblastoma, an aggressive malignancy that recurs in nearly 
all patients and comes with a mortality of greater than 90% at five years [88]. Since the recurrent 
tumors predominantly appear adjacent (~2 cm) to the original lesion [89–91], continuous delivery of 
MPA to the region of resection has high potential to suppress glioblastoma recurrence. More research 
is needed to develop MPA delivery as well as other MPA analogues with improved potency, 
selectivity, and toxicity profiles with the retention of the inhibitory potential against IMPDH. 

5. Other IMPDH Inhibitors 

In addition to MPA, a different series of structurally distinct IMPDH inhibitors has been 
evaluated as potential anti-cancer drugs. Hematological malignancies, such as leukemia and multiple 
myeloma, are typically targeted for two primary reasons. First, IMPDH activity is 15–42-fold higher 
in leukemia cells compared to normal leukocytes [92] and IMPDH inhibition leads to depletion of 
guanine nucleotides and reduction of cell proliferation, selectively, in leukemia cells compared to 
bone marrow leukocytes [93,94]. Second, unlike solid tumors, it is easy to determine the extent of 
IMPDH inhibition in hematological malignancies by monitoring the reduction of GTP levels in blood 
and bone marrow specimens. A measured GTP level within the tumor serves as a biomarker and has 
assisted in accurate dose titration in clinical trials, as detailed below. 

5.1. Tiazofurin Trials for Hematological Malignancy and Solid Tumors 

Tiazofurin, a C-nucleoside (2-beta-D-ribofuranosylthiazole-4-carboxamide), was the first anti-
tumor agent in the class of new IMPDH inhibitors. It was first synthesized in 1977 [95] as part of 
research efforts at ICN Pharmaceuticals, Inc. to develop new antiviral agents [96]. Tiazofurin (Figure 
4C) is structurally related to the antiviral agent, ribavirin (Figure 4D). While tiazofurin exhibited 
weak antiviral activity, it was found to be effective against cancer cells [96]. This prompted further 
development of tiazofurin as an antineoplastic agent, and it was introduced in clinical trials in 1983 
under the sponsorship of the National Cancer Institute (NCI) [97]. 

Tiazofurin is a prodrug and thus requires metabolic conversion intracellularly to its active 
metabolite thiazole-4-carboxamide adenine dinucleotide (TAD) in two sequential steps, as shown in 
Figure 5. TAD is an analogue of nicotinamide adenine dinucleotide (NAD) where nicotinamide is 
replaced by thiazole-4-carboxamide (Figure 6). TAD mimics NAD and interacts with the NAD 
cofactor binding domain of IMPDH 1 and 2 by acting as a non-competitive inhibitor [98–101]. Given 
that TAD is very similar to NAD (Figure 6), it is highly likely that the other NAD-dependent enzymes 
are affected by TAD. TAD is metabolically unstable and is degraded by nicotinamide mononucleotide 
adenylyltransferase (NMNATase), a phosphodiesterase. Resistance to tiazofurin is primarily 
associated with a decrease in NMNAT activity [92,101–103]. 

 
Figure 5. Intracellular metabolism of tiazofurin. Tiazofurin is a prodrug that is metabolized 
intracellularly in two steps to its active form TAD. TAD is an NAD analogue that inhibits IMPDH. 
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Figure 6. TAD and NAD chemical structures. 

In vitro activity of tiazofurin was observed against many human cancer cell lines, including 
leukemia, colon, lung, ovarian, renal, breast, and melanoma [104–109]. Tiazofurin induced 
differentiation of the human promyelocytic leukemia cell line HL60 [110] and the erythroleukemia 
cell line K-562 [111]. In vivo cytotoxicity of tiazofurin was observed against several murine tumors, 
including Lewis lung carcinoma, hepatoma 3924A, and P388 and L1210 murine leukemias [112–114]. 
Tiazofurin was most efficacious against hematological malignancies. There was selective 
accumulation of TAD in leukemia cells compared to normal leukocytes [115,116]. Based on these 
findings, a phase I/II trial of tiazofurin in myeloid malignancies was conducted in 1987 that showed 
encouraging results especially in chronic myeloid leukemia in blast crisis (CML-BC) (Table 2). The 
overall response rate of 48% was very promising since the best reported objective response rate (ORR) 
in other Phase I and II trials between 1974 to 1982 ranged from 5.8% to 44% [117]. Despite significant 
toxicity, a subsequent successful phase II tiazofurin trial led in 2000 to orphan drug designation by 
the FDA for treatment of CML-BC. 

Table 2. Summary of clinical trials of Tiazofurin for hematological malignancy. 

Phase Study Population Dose Clinical Response References 
I/II Relapsed/refractory AML, 

CML-BC, and MDS. 
n = 27 

Biochemically directed 
protocol. 

Starting dose 2,200 mg/m2 
daily, dose escalated based 

on IMPDH and GTP levels in 
the leukemic cells 

Complete response 
(CR) 20% 

Objective response 
rate (ORR) 48% 

[117–119] 

II CML-BC 
n = 6 

Started at 2,200 mg/m2 daily 
for 10 days and escalated 

based on hematological and 
biochemical response. 

Objective response 
rate (ORR) 100% 
but no complete 
response (CR) 

[120] 

One of the major limitations of therapy observed in these trials was the short duration of 
response and toxicity. There was rapid normalization of the white blood cell count and disappearance 
of blasts from the circulation within days of starting treatment. However, increased GTP levels were 
observed within a week of discontinuation of therapy, which lead to clinical relapse within three to 
four weeks [119]. Reinstitution of therapy initially led to a clinical response, but patients became 
refractory after a few cycles [103]. The second major limitation was the substantial toxicity profile of 
tiazofurin. This was anticipated to some extent because the close resemblance of tiazofurin to NAD 
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would predict multiple targets besides IMPDH. Severe and life-threatening complications, including 
neurotoxicity, pleuropericarditis, and infections were observed in patients treated for longer than 15 
days and with underlying comorbidities [117]. These were minimized by restricting the treatment 
duration, by administering the drug via one-hour daily infusions and promptly and effectively 
treating side effects [119–121]. After tiazofurin was granted orphan drug designation for treatment 
of CML-BC, a Phase III trial was planned. However, the development of imatinib and its FDA 
approval in 2001 revolutionized the treatment of Chronic Myelogenous Leukemia (CML) [122], and 
further development of tiazofurin for CML was halted. 

Several phase I and phase II clinical trials of tiazofurin in advanced solid malignancies were 
conducted from 1983 to 1993 and are summarized in Table 3. Overall, despite promising results in 
vitro, tiazofurin showed minimal activity in solid tumors along with severe and unpredictable 
toxicities. 

Table 3. Summary of clinical trials of Tiazofurin for solid malignancy. 

Phase Study Population Dose Clinical Response References 
I Advanced solid 

malignancies 
Maximum tolerated 
dose varied between 

studies 

Response reported with only 
one trial 

Maroun et al. reported 12 of 
25 patients had stable disease, 

including one patient with 
anaplastic astrocytoma who 

was in remission for 50 
months. 

[123–128] 

II Glioma 1,100 to 1,375 mg/m2 IV 
daily for five days 

Five of 16 patients had stable 
disease for a median of 75 

days, but no responses seen. 

[129–132] 

5.2. VX-944/AVN-944 and VX-497, Direct IMPDH Inhibitors 

The development of tiazofurin as an anti-leukemia drug expanded the areas of clinical 
application of IMPDH inhibitors. Vertex Pharmaceuticals, Inc. developed a novel series of human 
IMPDH inhibitors that were structurally distinct from mycophenolic acid and nucleoside analogues 
[133]. Merimepodib (VX-497) (Figure 7L) was the lead compound developed in this series, and 
displayed immunosuppressive, anti-tumor, and anti-viral activity. As an immunosuppressive agent, 
it inhibited antibody production in vivo, as demonstrated by the murine plaque formation assay 
[134]. It had anti-proliferative activity against keratinocytes suggesting a possible role in the 
treatment of psoriasis [134]. VX-497 had broad spectrum anti-viral activity and was 10-100 times more 
potent than ribavirin against Hepatitis B, human cytomegalovirus, respiratory syncytial virus, and 
herpes simples virus [135]. More recently, VX-497 was found to be active against several globally 
emerging viruses like Zika virus and Ebola virus [136] reaching to Phase II trials for Hepatitis C and 
psoriasis [137], and displaying anti-tumor activity in vitro (Table 4). 

Table 4. Summary of VX-497 as an anti-viral reagent. 

IMPDH Inhibitor Mechanism of Action Study Results 
VX-497 (Merimepodib) 
(S)-N-3-[3-(3-methoxy-4-
oxazol-5-yl-phenyl)-
ureido]-benzyl-carbamic 
acid tetrahydrofuran-3-yl-
ester 
(Figure 7L) 

VX-497 is a non-nucleoside, 
orally bioavailable, selective, 
reversible, uncompetitive 
inhibitor of IMPDH, which was 
developed by Vertex 
Pharmaceuticals [134]. 

Clinical studies  
VX-497 was efficacious as monotherapy for 
Hepatitis C in combination with interferon-
alpha in treatment naïve patients [138]. 
However, phase II trials in patients with 
genotype 1 chronic hepatitis C, who were 
non responders to standard treatment, 
showed mixed results. 
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Figure 7. Other IMPDH inhibitors of chemical structures. 

A related compound, VX-944, was found to have broad anti-cancer properties in vitro and was 
investigated further [139] (Figure 4E). VX-944 is an orally bioavailable, small-molecule, non-
competitive inhibitor of both human IMPDH1 and IMPDH2 [140]. VX-944 was developed using a 
structure-based drug design program and displayed a novel mode of interaction with IMPDH. 
Unlike tiazofurin, VX-944 does not require intracellular activation, which circumvents one of the 
mechanisms of resistance to tiazofurin. Since it is not a nucleoside/nucleotide analogue, VX-944 does 
not incorporate into the DNA/RNA and was predicted to work synergistically with other agents 
[141]. Preclinical studies showed that VX-944 was 3 to 40 times more potent than MPA in acute 
myeloid leukemia (AML) cell lines and was active against both FLT3 mutated and unmutated cells 
[139]. The efficacy of VX-944 was confirmed in a mouse model using a murine Ba/F3 pro-B cell line 
transformed with an oncogenic FLT3 mutant [142]. The mice treated with VX-944 had significantly 
longer median survival time compared to those treated with standard therapy. VX-944 suppressed 
proliferation of multiple myeloma cell lines, including drug-resistant cells [140], and several human 
cancer cell lines including colon, breast, lung, pancreatic, melanoma, and prostate [142]. 
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Vertex entered into a licensing agreement with Avalon Pharmaceuticals in February 2005 for the 
development and commercialization of VX-944 in oncology as AVN-944 [143]. A phase I dose 
escalation study conducted in 2002 with 25 healthy male volunteers showed that AVN-944 was well 
tolerated [141]. In December 2005, a Phase I trial of AVN-944 in patients with advanced hematological 
malignancies commenced (ClinicalTrials.gov Identifier: NCT00273936). AVN-944 was well tolerated 
with no serious adverse events attributable to the drug. Additionally, 12 of 24 patients had a stable 
disease for 2 to 10 months [144]. Depletion of GTP pools, inhibition of IMPDH activity, and changes 
in gene expression were studied as biomarkers and demonstrated good correlation with a clinical 
response. Though more rigorous research is needed especially for the gene expression, these could 
be used to identify patients for Phase II trials. A phase II trial of AVN-944 in combination with 
gemcitabine, which is a current standard in pancreatic cancer treatment, commenced in June 2007 
(ClinicalTrials.gov Identifier: NCT00493441), but the study was terminated in 2009 without reporting 
any results. Avalon pharmaceuticals was acquired by Clinical Data Inc. in 2009, which was acquired 
by Forest Labs in 2011. Since then, further clinical studies using AVN-944 have not been reported. 
The reason for the suspension is currently unclear. 

5.3. FF-10501 

Fujifilm pharmaceuticals developed FF-10501 as part of its effort to develop new drugs for cancer 
treatment. FF-10501 is a purine-analogue antagonist and one of the most recently studied IMPDH 
inhibitors for the treatment of cancer (Figure 4F). It is an orally bioavailable, competitive, second 
generation inhibitor based on the previously studied SM-108 [145]. SM-108 was synthesized through 
chemical modification of the nucleoside mizoribine [146] and was found to be effective against 
several hematological malignancies in Phase I and II clinical trials conducted in Japan in the late 1980s 
[147–150]. FF-10501 is converted to its active form, FF-10501 ribosylmonophosphate (FF‐10501RMP), 
intracellularly by using adenine phosphoribosyl transferase [151]. It reduces cell proliferation in a 
dose-dependent manner by inhibiting the production of guanine nucleotides (Figure 8). The efficacy 
of FF-10501 is dependent on the pathways that convert it to the active form as well as the salvage 
pathway to generate guanine nucleotides [145]. 

 
Figure 8. Activation of FF-10501. FF-10501 is metabolized intracellularly to its active form, FF-10501 
ribosylmonophosphate (RMP), which inhibits IMPDH. 

Pre-clinical studies showed the anti-leukemic effect of FF‐10501 in multiple AML cell lines—
MOLM13, SKM1, HL-60, U937, HEL, and OCI-AML3, including those that are resistant to 
hypomethylating agents [145,151]. The safety and efficacy of FF-10501 were tested in a phase I clinical 
trial, which is summarized in Table 5 [152,153]. A phase 2 study of FF-10501 in combination with 
azacitidine in patients with Myelodysplastic Syndrome (MDS) was initiated but has now been 
withdrawn without any enrollment [154]. Further studies to define the metabolic pathways that 
regulate sensitivity to FF-10501 and effective drug combinations may help increase enrollment for 
clinical trials. 
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Table 5. Summary of a clinical trial of FF-10501. 

Phase Study Population  Dose Clinical 
Response  Toxicity References  

I 
Relapsed/refractory 
AML and MDS  
n = 37 

Escalating doses from 
50–500 mg/m2. 
Recommended phase II 
dose 400 mg/m2 for 21 
days every 28-day cycle. 

Response 
observed 
in 4 of 37 
patients  

Well 
tolerated, 
frequently 
Grade 1–2  

[152,153] 

Several new IMPDH inhibitors have been evaluated as anti-cancer drugs in pre-clinical studies. 
Many novel IMPDH inhibitors have been developed as antivirals and immunosuppressants. These 
are summarized in Tables 6 and 7. 

Table 6. Summary of preclinical studies of other IMPDH inhibitors as antitumor agents. 

IMPDH Inhibitor Mechanism of Action Study Results 
Reversible nucleoside inhibitors 

Benzamide riboside (BR)  
3-(1-Deoxyribofuranosyl) 
benzamide 
(Figure 7A) 

Benzamide riboside (BR) was first 
synthesized in 1992 [155]. Similar 
to tiazofurin, BR, is converted to 
its active metabolite, BAD 
(benzamide adenine dinucleotide) 
intracellularly via NMNAT. BAD 
is proposed as a dual inhibitor of 
IMPDH and NAD kinase. IMPDH 
inhibition leads to depletion of 
guanine nucleotides and halts 
DNA/RNA synthesis [156,157]. 
NAD kinase inhibition leads to 
decreased levels of NADPH. Low 
NADP+ and NADPH levels lead to 
instability and lower levels of 
dihydrofolate reductase [158]. 

BR was more cytotoxic than 
tiazofurin in a broad panel of 
human cancer cell lines, including 
leukemia, lung, colon, CNS, 
melanoma, ovarian, and renal cell 
carcinoma [104,159,160]. CNS cell 
lines showed selective sensitivity to 
BR. BR was 3-10 times more 
cytotoxic than tiazofurin against 
leukemia [104]. 
In vivo, BR prolonged survival of a 
mouse model with murine leukemia 
L1210 [161] but caused significant 
skeletal muscle toxicity [162]. BR 
induced apoptosis in the VX2 model 
of liver cancer in rabbits via hepatic 
artery infusion [163]. Mouse model 
of LX-1 human small cell lung 
carcinoma was relatively refractory 
to treatment with BR in vivo and 
the high doses required for anti-
tumor effect lead to significant 
morbidity and mortality [162]. The 
clinical application of BR was 
limited by its toxicity profile. 

Mizoribine (MZR)  
(INN, trade name Bredinin)  
5-hydroxy-1-β-D-
ribofuranosyl-1H-imidazole-
4-carboxamide 
(Figure 7B) 

An imidazole nucleoside isolated 
from Eupenicillium brefeldianum, 
mizoribine (MZR) is metabolized 
to MZR-5’-monophosphate 
(MZRP) by adenosine kinase. 
MZRP, the active metabolite, 
inhibits IMPDH and guanosine 
monophosphate synthetase, which 
are sequential enzymes in the de 
novo pathway. Therefore, MZR 
completely inhibits the synthesis 
of guanine nucleotides [164–166]. 
MZR selectively inhibits 
lymphocyte proliferation, thereby 

MZR was originally isolated as an 
antibiotic with activity against 
Candida albicans [167] but was 
subsequently found to have potent 
immunosuppressive activity [169].  
Preclinical 
Early pre-clinical studies reported 
that MZR was not active against 
mice inoculated with Ehrlich and 
P388 tumor cells and had a minimal 
life prolonging effect on mice 
inoculated with L1210 leukemia 
cells [167]. However, more recently, 
MZR was found to produce a 
marked anti-leukemic response and 
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inhibiting both humoral and 
cellular immunity [167,168]. 

increased survival in mice 
inoculated with resistant acute 
lymphoblastic leukemia with 
NT5C2+/R367Q mutation [170]. The 
expression status of adenosine 
kinase dramatically affects the 
efficacy of MZR [157]. 
Further preclinical studies are 
needed to better define the role of 
MZR in leukemia.  
Clinical  
MZR is currently used as an 
immunosuppressive drug. It has a 
favorable adverse effect profile and 
is usually used in combination with 
other drugs. It has been approved 
in Japan to prevent rejection after 
renal transplantation (1984), lupus 
nephritis (1990), rheumatoid 
arthritis (1992), and nephritic 
syndrome (1995) [171]. The use of 
MZR is being investigated in other 
nephropathies [172], pemphigus 
vulgaris [173], and polymyalgia 
rheumatica [174]. 

Ribavirin  
1-β-D-ribofuranosyl-1,2,4-
triazole-3-carboxamide 
(Figure 4D) 

Ribavirin is a guanosine analogue 
that is phosphorylated 
intracellularly to ribavirin-5-
monophosphate, which inhibits 
IMPDH [175]. Ribavirin has 
broad spectrum antiviral activity 
[176]. It exerts antitumor activity 
through inhibition of IMPDH, 
eukaryotic translation initiation 
factor 4E (eIF4E), and histone 
methyltransferase, Enhancer of 
Zeste Homolog 2 (EZH2) 
[177,178]. 

Pre-clinical studies have shown that 
ribavirin inhibits the proliferation of 
several tumor types including 
malignant glioma [177], acute 
myeloid leukemia [179], acute 
lymphoblastic leukemia [180], 
esophageal [181], colon, cervical 
[182], breast [183], and prostate 
cancer [184]. 
Clinical studies  
Phase I/II trials are underway for 
assessing the use of ribavirin in 
various cancers including head and 
neck cancer, mantle cell, and 
follicular lymphoma [185–187]. 
Ribavirin has been approved by the 
FDA as an inhaled agent for 
respiratory syncytial virus [188] 
and in combination with interferon-
alpha for the treatment of chronic 
hepatitis C [189]. 

EICAR  
5-ethynyl-1- β -D-
ribofuranosylimidazole-4-
carboxamide 
(Figure 7C) 

Imidazole derivative of ribavirin, 
EICAR is metabolized 
intracellularly via adenosine 
kinase to EICAR 5’-
monophosphate, which inhibits 
IMPDH [190]. 

EICAR had broad antiviral activity, 
which was 10-100 fold greater than 
ribavirin [191]. It was cytotoxic to 
several human cancer cell lines in 
vitro and murine leukemia L1210 
and P388 in vivo [192]. 

Selenazofurin 
2- β -D-
ribofuranosylselenazole-4-
carboxamide 

Selenium analogue of tiazofurin, 
selenazofurin is converted to its 
active metabolite, selenazole-4-
carboxamide adenine dinucleotide 

As an antitumor agent, 
selenazofurin was found to be 5–10 
fold more potent compared to 
tiazofurin in several in vitro studies 
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(Figure 7D) (SAD) intracellularly, via 
NMNAT. SAD is a NAD analogue 
and inhibits IMPDH [193,194]. 

[194]. It had broad antiviral activity 
[195] and was synergistic in 
combination with ribavirin [196]. 

Thiophenfurin  
5-β-D-
ribofuranosylthiophene-3-
carboxamide 
(Figure 7E) 

Thiophene analogue of tiazofurin, 
it is converted intracellularly to 
thiophene-3-carboxamide adenine 
dinucleotide (TFAD), a NAD 
analogue, which inhibits IMPDH 
[197]. 

In vitro studies showed that 
thiophenfurine was cytotoxic 
toward several cancer cell lines, 
including human promyelocytic 
leukemia HL-60, human colon 
adenocarcinoma LoVo, and B16 
melanoma at similar concentrations 
as tiazofurin [197]. 

Flavonoids 

Myricetin  
3,5,7-trihydroxy-2-(3,4,5-
trihydroxyphenyl)-4-
chromenone 
(Figure 7F) 

Myricetin is a dietary flavonoid 
found in berries and vegetables. It 
causes cell cycle arrest and 
apoptosis through various 
mechanisms, including inhibition 
of tumorigenic kinases [198], 
which increases mitochondrial 
apoptotic pathways, reactive 
oxygen species, and IMPDH 
inhibition [199]. 

Myricetin has extensive biological 
activity, including anti-viral, anti-
inflammatory, and anti-cancer 
[200]. In vitro studies have shown 
that myricetin has anti-leukemia 
effect on K562 cell lines through 
IMPDH inhibition [199]. It is 
cytotoxic to several other human 
cancer cell lines like colon [201], 
ovarian [202], prostate [203], breast 
[204], and thyroid [205] cancer cell 
lines by targeting various pathways. 

Diterpene ester 

Gnidilatimonoein (Gn) 
(Figure 7G) 

Diterpene ester isolated from the 
leaves of Daphne mucronata, Gn 
exerts anti-neoplastic activity 
through inhibition of IMPDH 
[206]. 

In vitro studies have shown that Gn 
has antiproliferative activity against 
several human cancer cell lines and 
induced differentiation in the HL-60 
human leukemia cell line [207]. 

Table 7. Summary of IMPDH inhibitors as immunosuppressants. 

IMPDH Inhibitor Mechanism of Action Study Results 
Mizoribine See Table 5.  

VX-148 
1-cyanobutan-2-yl N-
[(1S)-1-[3-[(4-cyano-3-
methoxyphenyl) 
carbamoyl amino] 
phenyl] ethyl] 
carbamate 
(Figure 7H) 

VX-148 noncompetitively 
inhibits IMPDH by binding to 
the NAD cofactor binding site. It 
is an orally bioavailable small 
molecule that was developed by 
structural modification of VX-497 
by Vertex Pharmaceuticals [208]. 

VX-148 was found to have in vivo and in 
vitro immunosuppressive activity similar to 
MPA but with less cytotoxicity [208]. Vertex 
Pharmaceuticals selected it as its lead drug 
development candidate for autoimmune 
diseases [134].  
VX-148 has been evaluated in a Phase II trial 
in moderate to severe psoriasis in 2004. It 
was well tolerated. The most frequent 
adverse events were diarrhea and itching. It 
showed a statistically significant clinical 
activity with a response rate of 18% 
compared to a placebo [209,210]. 

BMS-566419 
N-(1-(6-(4-Ethyl-1-
piperazinyl)-3-
pyridinyl)-1-
methylethyl)-2-fluoro-
9,10-dihydro-9-oxo-3-
acridinecarboxamide 
(Figure 7I) 

Acridone based derivative of VX-
497, BMS-566419 is an orally 
bioavailable IMPDH inhibitor 
developed in 2007 [211]. 

In vitro studies demonstrated the anti-
proliferative activity of BMS-566419 on 
immune cells. Preclinical studies showed 
that it was efficacious in the murine model of 
rheumatoid arthritis and prevented cardiac 
allograft rejection with less GI toxicity 
compared to MMF [211,212]. 
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BMS-337197 
N-[2-[2-(3-methoxy-4-
oxazol-5-yl-anilino) 
oxazol-5-yl] phenyl]-
N-methyl-2-
morpholino-acetamide 
(Figure 7J) 

2-aminooxazole derivative of 
VX-497, BMS-337197 is an orally 
bioavailable, uncompetitive 
inhibitor of IMPDH [213]. 

Preclinical studies showed that BMS-337197 
had potent immunosuppressive activity. It 
inhibited antibody production in mice and 
was efficacious as an anti-arthritis drug in a 
murine model of rheumatoid arthritis [214]. 

AS2643361 
N-((4-fluorophenyl) (1-
methyl-1H-imidazol-2-
yl) methyl)- 2-methyl-
3-(1,2,4-thiadiazol-5-
yl)-1H-indole-6-
carboxamide 
(Figure 7K) 

An indole derivative of MMF 
developed from the Astellas 
compound library, AS2643361 is 
an orally bioavailable IMPDH 
inhibitor [215]. In vitro, it has 
similar inhibitory activity as 
mycophenolate to inhibit 
IMPDH. 

AS2643361 had lower serum protein binding 
activity. In vivo, it showed higher potency 
and less toxicity than MMF as an 
immunosuppressant. It prevented cardiac 
allograft rejection in a murine model [215]. 

5.4. Future Directions for IMPDH Inhibitors as Anti-Tumor Drugs 

Despite numerous efforts, many of which are summarized in this review, there remain no 
IMPDH inhibitors FDA approved for cancer treatment. The primary impediments continue to be (1) 
adverse effects upon high dose treatment, (2) highly variable responses, and (3) limited efficacy in 
cancers, such as pancreatic, in which IMPDH is not elevated. Overcoming these persistent challenges 
requires a greater fundamental understanding of the molecular features and roles of IMPDH 
enzymes. With this knowledge, inhibitors could be designed to preferentially target the tumor over 
normal cells. The remainder of this review summarizes recent efforts to understand the basic biology 
of IMPDH enzymes and GTP and how this might lead to advances in IMPDH inhibitor treatments. 

6. Regulation of IMPDH by GTP 

IMPDH1 and IMPDH2 share more than 80% identity at the amino acid level and are primarily 
found as a tetramer in vitro [216]. Both are comprised of two domains: the (α/β)8 barrel (also known 
as a TIM barrel) core containing the active site, and the disordered 120-residue subdomain, which 
consists of two cystathionine-β-synthase (CBS) domains (Figure 9A) [217,218]. The CBS domain is a 
~60 amino acid domain discovered in 1997 by Dr. Alex Bateman and is found in a variety of proteins, 
including IMPDH, cystathionine-β-synthase, chloride channels, and AMP-activated protein kinase 
(AMPK) [219]. CBS domains are typically found as tandem repeats (also known as a Bateman 
domain) that can adopt a globular protein structure via intramolecular folding [219,220]. The function 
of the CBS domain is diverse and can range from a binding site for allosteric regulation to regulatory 
protein binding to multimerization [221,222]. The CBS domains of IMPDH, however, have little 
known function. Deletion of the subdomain has no effect on enzymatic activity in vitro [223]. Despite 
this, the CBS domains of both IMPDH1 and IMPDH2 are suspected to be involved in regulating 
enzymatic activity. 

Supporting evidence of this concept was reported by Dr. Buey et al. with the discovery of GTP-
binding sites within the CBS domains of fungal IMPDH, which lead to octamerization of the enzyme 
and subsequent inhibition of activity [224]. The inhibitory effect of GTP was also observed in human 
IMPDH1 and IMPDH2 [224]. This data suggests a form of negative feedback involving IMPDH, 
where the end-product GTP inhibits the biosynthesis of GTP through inhibition of IMPDH. In a 
subsequent series of studies, Dr. Buey’s group further revealed that the CBS domain of IMPDH can 
bind to three GTP/GDP molecules, including two that bind to a similar pocket to ATP. However, the 
third GDP molecule binds to the loop between the second CBS domain and the catalytic domain. 
GDP binding at this site causes rotation in the CBS domain and structural rearrangement of the 
catalytic domain (Figure 9B). This structural change significantly affects the enzyme conformation, 
which forms an inhibited conformation, as compared to the ATP-induced active form [225]. Thus, 
interaction with GTP/GDP decreases the flexibility of the CBS domain, and the activity of IMPDH is 
suppressed by forming a compact structure (Figure 9C,D). 
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Figure 9. Schematics of IMPDH structures. (A) Schematic representation of the human IMPDH2 
protein (upper) and monomer of human IMPDH2 structure (lower) (PDB ID: 6i0m). IMPDH structure 
is shown in cartoons while α-helixes are shown in a coiled model. The CBS domain is colored orange, 
and the MPDH catalytic domain is shown in light purple. (B) Structural changes of the CBS domain 
upon ATP (Cyan) and GDP (Red) binding in monomeric IMPDH from Ashbya gossypii. Superposed 
ATP binding (PDB ID: 5mcp) and GDP binding (PDB ID: 4z87) by using Cα overlap and 243 aa was 
aligned. Α-helixes were shown in a cylindrical model. The CBS domain rotated toward an IMPDH 
catalytic domain (light blue) significantly when GTP binds to the CBS domain, compared with ATP 
binding. (C,D) Different octameric forms between ATP binding (C) and GTP binding (D). Two 
monomers of octameric IMPDH (Gray) are colored orange (CBS domain) and light purple (catalytic 
domain). The approximate longitudinal dimensions of the octamers are indicated on their side. 
Comparing to ATP binding (C), the interaction changes between CBS domains upon GTP binding 
made the octameric structure of human IMPDH2 (D, PDB ID: 6i0o) more compact. Since no ATP-
bound structure of human IMPDH has been determined, IMPDH from Ashbya gossypii (PDB ID: 
5MCP) is used as the ATP binding model. 

7. Dynamic Feature of IMPDH—Macrostructural Formation 

Interestingly, IMPDH is one of several metabolic enzymes that organize into large filaments 
[226–231]. Multiple groups, including ours, have found the localization of IMPDH1 and IMPDH2 are 
influenced by intracellular GTP concentration, which forms self-assembled, macroscale assemblies, 
called Ring and Rod (RR) structures or Cytoophidia (Figure 10) [232–235]. In most cell types under 
steady state growing conditions, IMPDH isozymes localize primarily to the cytoplasm. However, 
under purine-depleted conditions, primarily when GTP biosynthesis is inhibited, IMPDH organizes 
into these RR structures most prominently found in the cytoplasm [233,234,236,237]. The RR structure 
does not colocalize with any organelles and does not associate with actin or tubulin [232,234]. 
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Figure 10. IMPDH Ring and Rod (RR) structure is responsive to GTP concentration. A total of 100 μM 
Acivicin (GMP synthase inhibitor) treatment for 6 hours decreased cellular GTP levels (data not 
shown) and induced RR structure formation in U87MG cells, which was rescued by 2 hours pre-
treatment with 100 μM guanosine that increased cellular GTP (data not shown). 

The effect of the RR structure formation on enzymatic activity remains controversial, with 
evidence supporting both increased activity [238] and inhibition [239]. Potential IMPDH isotype-
specific differences and the possibility of mixed-isoform structures further hinder progress in this 
area. One common theme for RR structure formation appears to be decreased intracellular GTP levels, 
with subsequent dissociation of RR following guanosine treatment, which is a metabolite of the 
salvage pathway, that restores GTP concentration to normal or supraphysiological levels 
[233,234,236,237,239]. According to the recent research by Dr. Fernandez-Justel et al. [239], purified 
human IMPDH could assemble into RR formation without nucleotide treatment in vitro. They 
showed that the RR form is catalytically active in vitro, and GTP/GDP within the CBS domains could 
depolymerize the RR conformation to suppress IMPDH activity. Moreover, the RR form is more 
resistant to GTP inhibition by enzyme assay analysis in vitro [240]. 

8. IMPDH Immunohistochemical Analysis may Report the Metabolic Status of Tumors 

Taking these discoveries into consideration, we propose that pathological analysis of IMPDH in 
tumors has a high potential to assess the GTP demand and metabolic status of tumors. We favor the 
model that RR structure-positive tumors would be more sensitive to IMPDH inhibitors because of 
their high demand for GTP. If this were the case, it is possible that we may increase the anti-tumor 
efficacy of IMPDH inhibitors by selecting patients based on their RR structure status. Additionally, it 
would be of interest to develop compounds that specifically target the RR structure formation. 
Alternatively, it is possible that RR structure formation may alter drug accessibility to IMPDH or 
sensitivity to IMPDH inhibitors. The physiological relevance of the RR structure remains to be tested. 
Additionally, several studies have shown the generation of autoantibodies for RR structures in 
patient serum, particularly in hepatitis C patients treated with interferon α and ribavirin. Although 
auto-antibody formation in human cancer patients exhibiting RR structure-positive tumors has not 
been studied, theoretically this could provide a noninvasive predictor of a patient’s response to 
IMPDH inhibitors. 

9. Potential Biomarker for the Anti-Tumor Effect of IMPDH Inhibitors in the Target Tumor 

As stressed throughout this review, the key challenge is increasing both the specificity, efficacy, 
and kinds of cancer susceptible to IMPDH inhibitors without incurring unacceptable side effects. 
Better pharmacodynamic markers would be helpful to this end. For instance, in most treated patients, 
it is not known if effective concentrations of the IMPDH inhibitor are achieved within the tumors due 
to a lack of biomarkers for IMPDH inhibition. To measure the pharmacodynamics of IMPDH 
inhibitor penetrance in tumors as well as guanine nucleotides ideally requires a direct measurement. 
Recent advances in mass spectrometry technology to measure metabolites may solve this challenge. 
A caveat of this approach is that mass spectrometric analysis is not conventional in hospitals and 
would require days or weeks to receive results. Additionally, it may require relatively large tissue 
samples, and nucleotides rapidly decay during extraction. 
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Dr. Beverly Mitchell's group, a leader in the IMPDH research field, has reported that inhibition 
of IMPDH results in nucleolar stress responses, p53 activation, and the dichotomic change of 
subcellular localization of nucleolar proteins, such as nucleolin and nucleostemin [241]. Thus, the 
detection of p53 levels and its downstream targets, such as monitoring p21CIP1/WAF1, as well as 
subcellular localization of nucleostemin and nucleolin could be an indirect means to assess the 
efficacy of IMPDH inhibitors in the target tumors. Furthermore, our recent study showed that 
treatment with IMPDH inhibitor, MPA, led to significant nucleolar stress responses, p53 activation, 
and decreased nucleolar size in GBM, but not in primary cells [2]. Moreover, we demonstrated that 
IMPDH2 upregulation is required to increase GTP concentration that can serve as a reservoir of 
“feeder” GTP to sustain the needs of high activity of RNA Pol I and III for rRNA and tRNA synthesis, 
respectively [2]. To assess the effect of IMPDH inhibition, one would need simple conventional 
methods, such as Q-PCR or immunohistochemical staining of tumor samples, to indirectly determine 
IMPDH inhibitor penetrance into the tumor. With further verification, these biomarkers could be 
critical, powerful tools for future clinical trials, and also be useful in preclinical settings during the 
development and testing of novel IMPDH inhibitors in tumor mouse models. 

10. Conclusions 

Recent advances in our basic understanding of the role of IMPDH in normal physiology and 
cancer justify a reappraisal of the potential efficacy of IMPDH inhibitors.  Future studies could focus 
on developing modified IMPDH inhibitors with more diverse structures and different binding modes 
of enzyme inhibition to hopefully provide additional guidance for clinical trial design that would, 
ultimately, result in the use of IMPDH inhibitors for the treatment of cancer. The development of 
biomarkers should significantly and critically improve tumor selectivity and predict patient response 
to IMPDH inhibitors. In addition, with the recent advent of checkpoint inhibitors that rely upon the 
patient’s immune system to attack and destroy the tumor [242], the possibility of combining these 
approaches with IMPDH inhibitors that could ameliorate adverse-effects of the checkpoint inhibitor 
as well as modulating the tumor immune microenvironment are important areas to explore. Future 
research clarifying these points may revolutionize the use of IMPDH inhibitor as a highly potent anti-
tumor drug as has been suggested since the 1960s. 
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