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Abstract: Cancer-associated fibroblasts (CAFs) exert various effects upon biological behaviours of 
cancer. In this study, we examined the correlation of CAFs with the intra-tumoural immune system 
in the lung adenocarcinoma microenvironment. We studied 27 and 113 cases of lung 
adenocarcinoma tentatively as Cohorts 1 and 2, respectively. The patients in Cohort 1 received 
epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) for recurrent lung 
adenocarcinoma. α-smooth muscle actin (α-SMA), a surrogate marker for CAFs, was examined by 
immunohistochemistry. We then examined the effects of CAFs isolated from lung cancer tissues on 
programmed death ligand 1 (PD-L1) expression in lung adenocarcinoma cell lines. No significant 
associations were detected between α-SMA status and the ratios of CD8/CD4 and Foxp3/CD8 in 
Cohort 1. However, α-SMA status was significantly associated with PD-L1 status in both Cohorts 1 
and 2. Conditioned medium of CAFs significantly induced PD-L1 expression in lung 
adenocarcinoma cell lines, A549, PC-9, and H1975. Among the cytokines examined by antibody 
array, C-X-C motif chemokine ligand 2 (CXCL2) increased PD-L1 mRNA expression in these cell 
lines. CXCL2 is therefore considered to have a potential to induce PD-L1 expression in lung 
adenocarcinoma cells as a result of an interaction between carcinoma cells and CAFs. These findings 
did firstly demonstrate that CAFs indirectly influenced tumour immunity through increasing PD-
L1 expression in lung adenocarcinoma cells. 

Keywords: cancer associated fibroblasts; tumor microenvironment; α-smooth muscle actin; 
programmed death ligand 1; lung adenocarcinoma 

 

1. Introduction 

Lung adenocarcinoma cells have been well known to interact with various compartments of 
tissue microenvironment in cancer tissue, including immune cells, microvessels, and fibroblasts. 
Activated fibroblasts within cancer stroma are termed cancer-associated fibroblasts (CAFs) and have 
been known to be associated with cancer growth, invasion, migration, metastasis, and therapeutic 
resistance through secretion of various soluble factors, including cytokines, chemokines, growth 
factors, and exosomes [1–6]. CAFs have also been reported to influence tumour immunity in various 
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human malignancies [1,2,7–9]. In addition, lymphocytes play important roles in tumour immunity; 
for example, CD8+ cytotoxic T-cells damage tumour cells, whereas CD4+Foxp3+ regulatory T-cells 
suppress the function of these cells [10,11]. 

The analysis of the interaction between carcinoma cells and their tissue microenvironment 
components has attracted enormous attention. In particular, immune checkpoints, namely 
programmed death 1 (PD-1) and PD ligand 1 (PD-L1), have been known to play a pivotal role in the 
prevention of autoimmunity, but in cancer, they are utilized to evade the tumour immune response 
of the host. Several immune checkpoint inhibitors have been clinically approved for the treatment of 
different cancers, including non-small cell lung cancer (NSCLC). Anti-PD-1/PD-L1 inhibitors have 
been administered to patients with NSCLC in advanced stages, and the status of PD-L1 
immunoreactivity in these carcinoma cells has also been reported to be significantly associated not 
only with the therapeutic effects of anti-PD-1/PD-L1 inhibitors, but also with eventual clinical 
outcome of these patients [12–16]. PD-L1 in carcinoma cells has been reported to be induced by 
exposure to inflammatory cytokines, including IFN-γ, and activation of oncogenic pathways, such as 
PI3K, STAT3, MEK, and Akt-mTOR [17–21]. CAFs also secrete inflammatory cytokines and growth 
factors, which subsequently activate oncogenic pathways in carcinoma cells. Therefore, in this study, 
we hypothesized that CAFs could indirectly suppress tumour immunity via induction of PD-L1 
expression in carcinoma cells. 

We first examined the influence of CAFs on PD-L1 expression in carcinoma cells in lung 
adenocarcinoma tissue. We evaluated the correlation between immunoreactivity of α-smooth muscle 
actin (α-SMA), a well-known marker of CAFs, and subpopulations of tumour-infiltrating 
lymphocytes determined by CD3, CD4, CD8, and Foxp3, in 27 lung adenocarcinoma tissues. We then 
immunolocalized α-SMA in 113 lung adenocarcinoma cases and examined the effect of isolated CAFs 
from lung adenocarcinoma tissues on expression of PD-L1 in lung adenocarcinoma cell lines in vitro. 
Cytokines released from CAFs were detected using a cytokine array, and the effects of cytokines on 
PD-L1 expression in lung adenocarcinoma cell lines were also studied. 

2. Results 

2.1. α-SMA Status in Stromal Area of Lung Cancer Was Significantly Associated with PD-L1 Status in 
Carcinoma Cells and Adverse Clinical Outcome of the Patients 

α-SMA immunoreactivity was detected in the cytoplasm of fibroblast-like stromal cells in lung 
adenocarcinoma tissues (Figure 1a,b). The median value of the percentage of the α-SMA-positive area 
to the stromal area was 60% in Cohort 1. The patients were then tentatively classified into two groups 
according to the median value of intratumoural α-SMA status: High (≥60%), and low expression 
group (<60%) (Figure 1a,b).  
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Figure 1. Expression of α-smooth muscle actin (α-SMA) in lung adenocarcinoma tissue samples. (a) 
High expression example (≥60%). (b) Low expression example (<60%). (c), (e), (g) Programmed death 
ligand 1 (PD-L1), and (d), (f), (h) α-SMA immunoreactivity in serial tissue sections of mirror images 
of lung adenocarcinoma. High PD-L1 immunoreactivity was detected in adenocarcinoma cells 
adjacent to α-SMA-positive stroma. 

High expression of α-SMA was also significantly associated with advanced pathological stage 
(Table 1). In addition, high expression of α-SMA tended to be correlated with higher pN and PD-L1 
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positivity. However, α-SMA was by no means significantly associated with the effects of epidermal 
growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), nor with the status of intratumoural 
infiltrating lymphocytes in Cohort 1. Representative CD3, CD4, CD8, and Foxp3 immunoreactivity 
was illustrated in Figure 2a–d. There were also no significant associations between α-SMA status and 
the ratio of CD8/CD4 and Foxp3/CD8 (Table 1). The Kaplan–Meir analysis revealed that the five-year 
overall survival with high and low α-SMA groups was 31.3% and 63.6%, respectively (χ2 = 4.93, p-
value = 0.0467) in Cohort 1 (Figure 3a). The five-year overall survival with positive and negative PD-
L1 was 20.0% and 50.0%, respectively (χ2 = 5.08, p-value = 0.0242), in Cohort 1 (Figure 3b). 

Table 1. Association between α-SMA status and clinicopathological parameters in lung 
adenocarcinoma cases (Cohort 1). 

  Total α-SMA α-SMA p-Value 
   High Low  

Age median 64 63 64 0.9803 
(years) max 80 80 74  

 min 34 34 46  

Sex male 8 6 2  
 female 19 10 9  

Smoking smoker 6 5 1 0.3497 
 never 21 11 10  

Brinkman index 
median  0† 0† 0† 0.1646 

max 1200 1200 700  

min 0 0 0  

Size of tumor median 28 27 30.5 0.9069 
(mm) max 80 80 40  

 min 13 15 13  

EGFR exon 19 del 12 3 9 0.3172 
mutation exon 21 L858R 11 6 5  

 G719X, S768I 1 1 0  
 ex20 Ins 1 0 1  
 unknown 2 1 1  

Response to  CR 1 1 0 0.7354 
EGFR-TKI PR 17 10 7  

 SD 8 4 4  
 PD 1 1 0  

Ki-67 LI of carcinoma cells (%) 
median 12.3 13.1 10.9 0.5053 

max 58.8 58.8 32  

min 3.3 3.3 4.7  

pStage I 9 2 7 0.0263* 
 II 5 4 1  
 III 10 8 2  
 IV 3 2 1  

pT 1 13 7 6 0.6146 
 2 11 7 4  
 3 1 1 0  
 4 2 1 1  

pN 0 13 5 8 0.0514# 
 1 5 4 1  
 2 9 7 2  
 3 0 0 0  

cM 0 24 14 10 1.000 
 1 3 2 1  

PD-L1 positive 5 5 0 0.0598# 
 negative 22 11 11  

CD3 median 766 758 767 0.941 
 max 1656 1656 1022  
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 min 404 404 462  

CD4 median 697 693.5 697 0.2669 
 max 1486 1486 806  
 min 263 303 263  

CD8 median 416 432.5 399 0.7484 
 max 611 599 611  
 min 177 209 177  

Foxp3 median 518 110.5 111 0.9214 
 max 111 518 249  
 min 15 32 15  

Foxp3/CD8 median 0.3 0.28 0.31 0.941 
 max 1 1 0.89  
 min 0.03 0.12 0.03  

CD8/CD4 median 0.67 0.61 0.7 0.4443 
 max 1.3 1.03 1.3  

  min 0.26 0.33 0.26   
*p-value < 0.05, #0.05 ≤ p-value < 0.1, †The great majority of the patients were never-smokers in our 
present study. EGFR: epidermal growth factor receptor, Ki-67 LI: Ki-67 labeling index, PD-L1: 
programmed death ligand 1, CR: complete response, PR: partial response, SD: stable disease, PD: 
progressive disease. 

. 

Figure 2. Immunohistochemistry of immune cell markers, CD3 (a), CD4 (b), CD8 (c), and Foxp3 (d) 
in lung adenocarcinoma. 
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Figure 3. Correlation between overall survival and α-SMA ((a) Cohort 1, (c) Cohort 2) and PD-L1 ((b) 
Cohort 1, (d) Cohort 2) expression in lung adenocarcinoma cases. 

In Cohort 2, the median value of the Brinkman index was significantly higher in the high α-SMA 
group (Table 2). α-SMA status was also significantly associated with smoking history, pStage, and 
PD-L1 status of adenocarcinoma cells in Cohort 2 (Table 2). High α-SMA status was significantly 
associated with gender of the patients (male > female), smoking history (smoker > non-smoker), 
higher Brinkman index, advanced clinical stage, and PD-L1 immunoreactivity in Cohort 2 (Table 2). 
The Kaplan–Meir plots also did demonstrate that the five-year overall survival with high and low α-
SMA groups was 56.7% and 83.0%, respectively (χ2 = 8.84, p-value = 0.0029; Figure 3c). The five-year 
overall survival with positive and negative PD-L1 in carcinoma cells was 47.1% and 72.9%, 
respectively (χ2 = 6.51, p-value = 0.0107) in Cohort 2 (Figure 3d). Multivariate analysis demonstrated 
that the status of α-SMA was not necessarily an independent prognostic factor. 

Of particular interest, all PD-L1-positive cases corresponded to the high α-SMA group. 
Representative findings of α-SMA and PD-L1 immunohistochemistry in serial tissue sections with 
mirror images were illustrated in Figure 1c–h. High PD-L1 immunoreactivity was detected in 
adenocarcinoma cells adjacent to α-SMA-positive stroma. 

Table 2. Association between α-SMA status and clinicopathological parameters in 113 lung 
adenocarcinoma cases (cohort 2). 

  Total α-SMA α-SMA p-Value 
   High Low  

Age median 66 64.5 70 0.0872 
(years) max 82 80 82  

 min 30 30 46  

Sex male 58 37 21 0.0241* 
 female 55 23 32  

Smoking smoker 61 38 23 0.0391* 
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 never 52 22 30  

Brinkman index 
median  240 520 0† 0.0131* 

max 1920 1840 1920  

min 0 0 0  

Size of tumor median 25 24.5 27 0.2570 
 (mm) max 80 80 70  

 min 10 10 10  

pStage I 68 29 39 0.0022* 
 II 13 7 6  
 III 24 17 7  
 IV 8 7 1  

pT 1 65 34 31 0.7978 
 2 36 19 17  
 3 3 2 1  
 4 9 5 4  

pN 0 85 38 47 0.0015* 
 1 8 6 2  
 2 19 15 4  
 3 1 1 0  

cM 0 105 53 52 0.0648# 
 1 8 7 1  

PD-L1 positive 17 17 0 <0.0001* 
 negative 96 43 53  

*p-value < 0.05, #0.05 ≤ p-value < 0.1, †The great majority of the patients were never-smokers in our present study. 

2.2. Conditioned Medium of CAFs Significantly Increased PD-L1 Expression at Both mRNA and Protein 
Levels 

pFSC-1 and pFSC-2 were classified as CAFs because α-SMA was detected in their cytoplasm 
using immunocytochemistry (Supplementary Figure S1). Conditioned medium (CM) collected from 
pFSC-1 significantly increased PD-L1 mRNA levels in A549 and H1975 cells (Figure 4a,c), and pFSC-
2 conditioned medium also significantly increased PD-L1 mRNA levels in A549 and PC-9 cells 
(Figure 4b). PD-L1 immunoreactivities were increased by pFSC-1 conditioned medium in A549 and 
H1975, and by pFSC-2 in all cell lines examined (Figure 4d). Electropherograms and lane views of 
PD-L1 were also demonstrated in Supplementary Figure S2. It is well known that PD-L1 is affected 
by glycosylation [22]. Therefore, heterogeneous expression of PD-L1 protein around 45 kDa is 
detected by immunoassay (Supplementary Figure S2). Furthermore, in this study, more large sizes 
(approximately 50–70 kDa) of PD-L1 immunoreactivity were detected in lung cancer cell lines 
(Supplementary Figure S2). Although large sizes in PD-L1 immunoassay have been reported [23], 
their significance is unclear. Therefore, PD-L1 expression in approximately 45 kDa was evaluated in 
this study (Figure 4d). 
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Figure 4. Effect of conditioned medium (CM) derived from cancer-associated fibroblasts (CAFs) on 
PD-L1 expression in lung cancer cell lines. Effect of CM from pFSC-1 and -2 on PD-L1 mRNA level in 
A549 (a), PC-9 (b), and H1975 (c). Data were presented as means ± SD from three independent 
experiments. * p < 0.05 vs. control. (d) Protein level of PD-L1 treated with CM in A549, PC-9, and 
H1975. 

2.3. Profiles of Cytokines Secreted from CAFs Were Altered by Co-Culture with Adenocarcinoma Cells 

Results of cytokine array analysis did reveal that both IL-8 and osteoprotegerin (OPG) were 
markedly detected in conditioned medium collected from both pFSC-1 and pFSC-2. Growth related 
oncogene (GRO) -α/β/γ (C-X-C motif chemokine ligand: CXCL1/2/3) and IL-8 in conditioned medium 
were also increased, and OPG was decreased by the co-culture with A549 and PC-9 cells (Figure 5a), 
whereas GROα (CXCL1) was not influenced by co-culture. We then examined the effects of IL-8 and 
OPG on PD-L1 expression in lung adenocarcinoma cell lines. In this study, we particularly focused 
on CXCL2, a chemokine released from CAFs in lung adenocarcinoma cells. CXCL2 was also detected 
in CM of both pFSC-1 and -2 in cytokine array analysis. 
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Figure 5. Cytokine antibody array image and effect of cytokines on PD-L1 expression in lung cancer 
cell lines. (a) The array image showing osteoprotegerin (OPG), growth related oncogene (GRO) -α/β/γ 
(C-X-C motif chemokine ligand: CXCL1/2/3), and IL-8 in pFCS-1 (upper) and -2 (lower) CM 
with/without co-culture. Effect of CXCL2, IL-8, and OPG on PD-L1 mRNA level in A549 (b), PC-9 (c), 
and H1975 (d). (b) A549: CXCL2 100 ng/mL, IL-8 100 ng/mL, OPG 100 ng/mL; (c) PC-9 and (d) H1975: 
CXCL2 10 ng/mL, IL-8 10 ng/mL, OPG 50 ng/mL. (e) CXCL2 mRNA level in CAFs (pFSC-1 and pFSC-
2) and normal lung fibroblasts (OUS-11). Data were presented as means ± SD from three independent 
experiments. * p < 0.05 vs. control. # 0.05 ≤ p < 0.1 vs. control. 
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2.4. CXCL2 Increased PD-L1 mRNA in Adenocarcinoma Cells 

We studied the influence of CXCL2, IL-8, and OPG on PD-L1 mRNA level in A549, PC-9, and 
H1975. CXCL2 (100 ng/mL) significantly increased PD-L1 mRNA level in A549 (Figure 5b), and a 
similar trend was detected in PC-9 and H1975 cells with CXCL2 (10 ng/mL) administration (Figure 
5c,d). Both IL-8 and OPG did not influence PD-L1 mRNA levels in A549, PC-9, and H1975. 

We then examined CXCL2 mRNA level in CAFs and normal fibroblasts. In this examination, we 
employed normal lung fibroblasts, OUS-11. OUS-11 had no immunoreactivity of α-SMA 
(Supplementary Figure S1). CXCL2 mRNA level was significantly higher in CAFs, pFSC-1 and pFSC-
2, than in OUS-11 (Figure 5e). 

3. Discussion 

CAFs were reported to interact with carcinoma cells, and influence their biological behaviour in 
vitro. Several markers, including α-SMA, periostin, PDGFRα, PDGFRβ, podoplanin, and fibroblast 
activation protein (FAP), have been employed to characterize CAFs, although their roles in CAFs 
have remained unknown. Among these surrogate markers, α-SMA is the most commonly used CAF 
marker, and Horie et al. [3] reported that primary culture of CAFs isolated from non-small cell lung 
cancer (NSCLC) express more α-SMA than normal fibroblasts. Meta-analysis on 
immunohistochemical study of α-SMA in stromal areas of cancer tissue demonstrated that a higher 
status of α-SMA was significantly associated with poor overall survival [24]. Therefore, in this study, 
we employed α-SMA as a surrogate marker for CAFs in lung adenocarcinoma tissues.  

Two previous studies were reported on the correlation between α-SMA status in stromal area 
and clinicopathological characteristics of the patients with NSCLC. Chen et al. [25] reported that 
intratumoural α-SMA status was significantly associated with lower three-year survival in 78 NSCLC 
patients with clinical stages I to III. They also evaluated the percentage of positive α-SMA stained 
areas in cancer stromal area in 10 high-power fields randomly selected in each slide. However, 
another study reported that α-SMA did not influence prognosis of the patients with NSCLC, after 
examining 633 tissue-microarray specimens (0.6 mm core) [26]. In this study, we employed sectioned 
specimens from 113 lung adenocarcinoma cases. We demonstrated that the status of α-SMA in cancer 
stromal area was significantly associated with an advanced pathological stage and poor five-year 
survival rate of the patients with lung adenocarcinoma. Heterogeneity of distribution of CAFs in lung 
cancer tissues could result in a discrepancy of these interpretations about the roles of α-SMA-positive 
CAFs in a cancer tissue microenvironment. The results in our present study also suggested that CAFs 
in lung adenocarcinoma tissue could promote cancer progression. CAFs are also known to regulate 
biological behaviour of carcinoma cells, such as growth, invasion, metastasis, and therapeutic 
resistance. In this study, we confirmed that pFSC-1 and pFSC-2 promoted proliferation and migration 
of lung adenocarcinoma cells (Supplementary Figures S3 and S4). CAFs, which were α-SMA-positive 
stroma, may have contributed to growth and/or metastasis of lung adenocarcinoma of the patients in 
this study.  

We also focused on immune cells related to CAFs in lung adenocarcinoma tissue because CAFs 
can directly modulate activity of tumour immunity [1,2,7–9]. Contrary to our expectations, α-SMA-
positive CAFs in lung adenocarcinoma were by no means correlated with lymphocyte subtypes 
evaluated by CD3, CD4, CD8, and Foxp3 immunohistochemistry. Nazareth MR et al. reported that 
while some CAFs promoted activation of T-cells, other CAFs suppressed them [8]. Immune-
suppressive CAFs and immune-promoting CAFs may have been intermingled in a lung 
adenocarcinoma tissue in this study. Next, we focused on PD-L1 expression in the interaction 
between CAFs and carcinoma cells. The report about hepatocellular carcinoma demonstrated that IL-
6, a CAFs-derived factor, was also reported to play an important role in the functions of dendritic 
cells through STAT3 signalling [27]. We hypothesized that CAFs might influence tumour immunity 
through non-lymphocyte cells, including cancer cells. As a result, the α-SMA status in the cancer 
tissue microenvironment was significantly associated with PD-L1 status in lung adenocarcinoma 
cells. PD-L1 is well known to be induced by several cytokines, such as IFN-γ, TNF-α, IL-4, and IL-10 
[14,17,28]. Therefore, PD-L1 in lung carcinoma cells might be directly induced by CAFs-derived 
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cytokines in lung adenocarcinoma. Hence, we then examined the effects of soluble factors derived 
from primary culture of CAFs on PD-L1 expression in lung adenocarcinoma cells in vitro. Addition 
of conditioned medium collected from α-SMA-positive CAFs increased PD-L1 mRNA and protein in 
A549, PC-9, and H1975 in this study.  

We examined the cytokine profiles derived from primary culture of CAFs by using cytokine 
array, and then evaluated the effects of CXCL2, IL-8, and OPG on PD-L1 expression in A549, PC-9, 
and H1975. PD-L1 mRNA was significantly increased by treatment with CXCL2 alone. CXCL2 
belongs to the CXCL family of chemokines bearing the ELR+ motif, as well as CXCL1 and CXCL3 
[29,30]. In general, CXCL2 is well known to be produced by inflammatory cells, and binds to CXCR2 
to promote chemotaxis of neutrophils [29,30]. CXCL2 could also activate the STAT3 signalling 
pathway, which then regulates PD-L1 expression, in hepatocellular carcinoma cell lines [31]. 
Conditioned medium of primary cultured CAFs increased PD-L1 mRNA level in lung 
adenocarcinoma cell lines more than CXCL2 did. This difference might be attributed to the influence 
of other soluble factors present in conditioning medium of CAFs. Further examinations, such as long-
term treatment or combination treatment of growth factors, chemokines, cytokines, exosomes, and 
extracellular matrix, are required to clarify the mechanisms of PD-L1 induction by CAFs in lung 
adenocarcinoma cells. 

In this study, there were no differences between the results of cytokine array analysis of pFSC-1 
and pFSC-2 conditioned media. However, they did have different effects on PD-L1 expression in PC-
9, A549, and H1975 cells. Origins and functions of CAFs are well known as heterogeneous [2,4]; not 
all CAFs may have the same function as pFSC-1 or pFSC-2, and the influence of CAFs on PD-L1 
expression may differ from each subset of CAFs. Therefore, the intratumoural heterogeneity of CAFs 
could subsequently induce heterogeneous expression of PD-L1 in adenocarcinoma tissues. 
Environmental factors are also considered to be important in the regulation of PD-L1 expression. For 
instance, the expression of α-SMA was significantly related to smoking history in this study. Some 
reports also demonstrated that smoking increased expression of α-SMA in fibroblasts [32]. Smoking 
might also enhance the functions of α-SMA including cytokine secretion in cancer tissue. In this 
study, results did demonstrate that soluble factors in conditioned medium collected from CAFs 
certainly influenced PD-L1 expression in lung adenocarcinoma cells. The expression of PD-L1 in 
cancer tissue is known to be heterogeneous in most cases, and strongly influenced by cancer tissue 
microenvironment factors, such as hypoxia, and cytokines including type I and type II interferons 
(IFNs) [14,28,33,34]. The correlation between carcinoma cells and its tissue microenvironment 
components represents the complicated network, and the influence of CAFs on PD-L1 expression in 
carcinoma cells may represent just one fraction. Therefore, we must consider the influence of other 
components of cancer microenvironments on PD-L1 expression in cancer cells and the status of CAFs. 
Previous reports demonstrated that CAFs influence the effects of anti-PD-1/-PD-L1 inhibitors in 
mouse models. In pancreatic ductal adenocarcinoma, FAP-positive CAFs suppressed the effects of 
anti-PD-L1 treatment through CXCL12/CXCR4 signalling [35]. Liu et al. [36] also reported that IL-6 
secreted by CAFs suppressed anti-tumour immunity via impairing T-cell function, and inhibition of 
IL-6 enhanced the efficacy of anti-PD-L1 treatment in hepatocellular carcinoma mouse models. The 
results in this study indicated that CAFs might influence anti-PD-1/PD-L1 therapy, not only by 
suppressing tumour immunity, but rather by upregulating PD-L1 expression. 

The proposed PD-L1 expression patterns in the interaction between CAFs and lung 
adenocarcinoma cells are illustrated in Figure 6. In this study, CAFs, defined by α-SMA expression, 
did not relate to the infiltration of immune cells in lung adenocarcinoma cells. However, CAFs 
increased PD-L1 expression in lung adenocarcinoma cells through the secretion of soluble factors, 
such as CXCL2. Our results did indicate that CAFs could indirectly influence tumour immunity 
through increasing PD-L1 expression in lung adenocarcinoma cells. 
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Figure 6. Proposed PD-L1 expression in interaction of cancer-associated fibroblasts (CAFs) and lung 
adenocarcinoma (LADC) cells. PD-L1 expression is induced by soluble factors such as CXCL2 derived 
from CAFs in the LADC cell. Interaction of PD-L1 with programmed death 1 (PD-1) contributes to 
the immune escape and poor prognosis of tumour cells. 

4. Materials and Methods  

4.1. Patients 

In this study, 27 patients (Cohort 1), who received EGFR-TKI therapy for recurrent lung 
adenocarcinoma, were first studied as a screening to elucidate the possible association between CAFs 
and tumor immunity in lung adenocarcinoma tissue (Cohort 1). We then studied 113 lung 
adenocarcinoma cases, including these 27 cases (Cohort 2). These cases were all retrieved from 
Tohoku University Hospital and Miyagi Cancer Centre between 2000 and 2008. All of these patients 
did not receive chemotherapy or radiation therapy prior to surgery. Clinicopathological 
characteristics of these patients were summarized in Table 1; Table 2. The Brinkman index was 
defined as the number of cigarettes smoked per day times smoking years. The specimens had all been 
fixed with 10% formalin and embedded in paraffin. Informed consent was obtained from each patient 
regarding the use of clinical records and tissue samples. This study was performed in accordance 
with the Declaration of Helsinki. The protocol for this study was approved by the Ethics Committee 
at the Tohoku University School of Medicine (2018-1-613), and the Ethics Committee at Miyagi 
Cancer Centre (No. 34). 

4.2. Immunohistochemistry 

For immunohistochemistry, we used the antibodies against the following proteins: α-SMA 
(dilution: 1/3 000, Clone: 1A4, DAKO, Carpinteria, CA, USA), PD-L1 (Clone: SP263, Ventana Medical 
Systems, Tucson, AZ, USA), Ki-67 (dilution: 1/100, Clone: MIB-1, DAKO), CD3 (dilution: 1/500, Clone: 
F7.2.38, DAKO), CD4 (dilution: 1/1, Clone: 1F6, Nichirei bioscience, Tokyo, Japan), CD8 (dilution: 
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1/50, Clone: C8/144B, DAKO), Foxp3 (dilution: 1/100, Clone: 236A/E7, Abcam). We immunostained 
the sections with Histofine Kit (Nichirei bioscience, Tokyo, Japan) for α-SMA, Ki-67, CD3, CD4, CD8, 
and Foxp3. Antigen retrieval of Ki-67, CD3, CD8, and Foxp3 was performed by autoclaving the slides 
in citric acid for 5 min at 121 °C. Antigen retrieval of CD4 was performed by autoclaving the slides 
in target retrieval solution pH 9.0 (Nichirei) for 5 min at 121 °C. Antigen retrieval procedure was not 
employed for α-SMA. 

Primary antibodies, except for PD-L1, were incubated overnight at 4 °C. After incubation with 
secondary antibody, immune complexes were detected with 3, 3-diaminobenzidine (DAB), and 
counterstained with hematoxylin. α-SMA immunoreactivity was detected in the cytoplasm of 
stromal cells. We evaluated the percentage of the stromal area of the tumour where positive α-SMA 
was detected in stromal fibroblasts in each case, according to previous reports [24,26,37,38]. Ki-67 
labelling index (LI) was determined by counting 1000 tumour cells in the hot spots. Total numbers of 
positive lymphocytes for each marker (CD3, CD4, CD8, and Foxp3) were counted in four 
independent high-power microscopic fields (400×, 0.0625 mm2) [39]. 

Human PD-L1 antibody assay was optimized for use with Ventana OptiView DAB IHC 
Detection Kit (Ventana Medical Systems) on the BenchMark ULTRA platform autostainer (Ventana 
Medical Systems) [13]. A tumour was tentatively classified as PD-L1-positive if membrane staining 
was detected in ≥1% of the tumour cells [13,40]. Immunostaining of α-SMA and PD-L1 was 
performed on serial mirror tissue sections to examine their co-localization in the tumour. 

4.3. Cell Lines 

We used the lung adenocarcinoma cell lines A549 (EGFR wild-type), PC-9 (exon 19 deletion), 
and H1975 (L858R/T790M), obtained from American Type Culture Collection (Manassas, VA, USA). 
Primary CAFs, named pFSC-1 and pFSC-2, were isolated from human lung adenocarcinoma as 
described in previous studies [41]. Normal fibroblasts, OUS-11, were obtained from Japanese 
Collection of Research Bioresourse (Osaka, Japan). Cells were maintained under a humidified 
atmosphere of 5% CO2 at 37 °C in RPMI 1640 medium (Sigma Aldrich, St. Louis, MO, USA), 
containing 10% of fetal bovine serum (FBS; biosera, Boussens, France). 

4.4. Immunocytochemistry 

pFSC-1 and pFSC-2 were seeded on a Millicell EZ glass slide (Merck Millipore, Billerica, MA, 
USA), and incubated for 24 h. CAFs were fixed with 10% Formalin Neutral Buffer Solution (Wako 
pure chemical industries, Osaka, Japan). After blocking with rabbit serum, anti-α-SMA antibody was 
applied to the slide and incubated overnight at 4 °C. CAFs were visualized with DAB and stained 
with hematoxylin. 

4.5. Conditioned Medium 

The culture supernatants of pFSC-1 and pFSC-2 were collected as conditioned medium every 
48–72 h, filtrated through Minisart NML syringe 0.8 μm pore filters (Sartorius, Göttingen, Germany), 
and stored at −80 °C. A549, PC-9, and H1975 cells were seeded onto 6-well plates at a density of 4 × 
103 cells/2 mL per well. After culture in 80% conditioned medium for 6 days, total protein or total 
RNA was extracted. RPMI 1640 medium containing FBS was used for control. 

4.6. Quantitative RT-PCR 

Total RNA was extracted from adenocarcinoma cell lines using TRIzol (Life Technologies, 
Carlsbad, CA, USA). RNA concentration was determined by Nano Drop one (Thermo Fischer 
Scientific, MA, USA). cDNA was synthesized from total RNA (1000 ng) using QuantiTect reverse 
transcriptional kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. 
Quantitative RT-PCR was performed using Light cycler 96 (Roche). PD-L1 mRNA levels were 
normalized to RPL13A mRNA in the same sample. 
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The primer sequences were as follows: RPL13A (forward, 5’-CCT GGA GGA GAA GAG GAA 
AG-3’; reverse, 5’-TTG AGG ACC TCT GTG TAT TT-3’), PD-L1 (forward, 5’-CAA AGA ATT TTG 
GTT GTG GA-3’; reverse, 5’-AGC TTC TCC TCT CTC TTG GA-3’) [42], CXCL2 (forward, 5’-GGC 
AGA AAG CTT GTC TCA ACC C-3’; reverse, 5’-CTC CTT CAG GAA CAG CCA CCA A-3’) [43]. The 
primers were purchased from Nihon Gene Research Laboratories (Sendai, Japan). 

4.7. Capillary Electrophoresis Immunoassay 

Total cell protein was extracted using Mammalian Protein Extraction Reagent (Thermo Fischer 
Scientific), supplemented with 1% Halt Protease Inhibitor Cocktail (Pierce Biotechnology, Rockford, 
IL, USA). The supernatants were collected after centrifugation at 15,000 rpm at 4 °C for 5 min. Protein 
concentration was measured by Protein Assay Rapid Kit (Wako), according to the manufacturer’s 
instructions. Capillary electrophoresis immunoassay for detection of PD-L1 protein was employed 
by using Simple Western System Wes (ProteinSimple, California, USA). Protein samples and reagents 
(EZ Standard Pack 1, ProteinSimple) were loaded into the assay plate. The protein (ng/mL) was 
electrophoresed in capillary, which was filled with a stacking and a separation matrix (Jess/Wes 25-
Capillary Cartridge, ProteinSimple). The proteins separated by the photoreactive binding reaction 
were immobilized on the inner wall of the capillary. Primary antibodies were as follows: Anti-PD-L1 
XP monoclonal antibody (E1L3N, Cell Signaling Technologies, Danvers, MA, USA) at 1:100, or anti-
β-actin monoclonal antibody (Sigma–Aldrich) at 1:1000. The target proteins were immunodetected 
with HRP-labeled secondary antibody and a chemiluminescent substrate (ProteinSimple). The data 
were analyzed using Compass software (ProteinSimple).  

4.8. Co-Culture System 

The co-culture system was performed using a ThinCerts cell culture transparent membrane 
insert with 0.4 μm pores in 6-well plates (Greiner Bio-One, Kremsmünster, Austria). Both pFSC-1 and 
pFSC-2 were placed in the bottom chamber, with or without A549 cells, and PC-9 cells were placed 
in the upper chamber. After 72 h of co-culture, transwell chambers were removed, and the culture 
medium was replaced by FBS and phenol red-free medium. After 24 h, the conditioned media of 
fibroblasts with or without co-culture were collected. 

4.9. Cytokine Analysis 

We used Human Cytokine Antibody Array 5 (RayBiotech, Norcross, GA, USA) to identify 
cytokines secreted by fibroblasts. Cytokine antibody membranes were incubated for 5 h with 1 mL of 
fibroblast conditioned media with or without adenocarcinoma cell co-culture. Membranes were 
incubated overnight with biotin-conjugated anti-cytokine antibodies, and then developed with 
horseradish peroxidase–streptavidin and chemiluminescence. The images were visualized using 
Molecular Imager ChemiDOC XRS+ (Bio-Rad, Hercules, CA), and quantified by Image Lab Software 
(Bio-Rad). 

Recombinant human CXCL2, IL-8, and TNFRSF11B (osteoprotegerin, OPG) were purchased 
from BioLegend (San Diego, CA, USA). CXCL2, IL-8, and OPG were added into the medium. PD-L1 
mRNA and protein expression were examined as described. We preliminarily examined the optimal 
concentration of CXCL2 in each cell line, and found that 100 ng/mL CXCL2 significantly suppressed 
the viability of PC-9. Therefore, we employed 10 ng/mL CXCL2 for PD-L1 induction in both PC-9 and 
H1975 cells. Otherwise, in A549, 100 ng/mL CXCL2 did not affect cell survival. 

4.10. Statistical Analysis 

All statistical analyses were performed using JMP Pro 13.0.0 (SAS Institute, Japan, Tokyo). 
Statistical differences between the two groups of immunohistochemical analysis were evaluated by 
Wilcoxon signed-rank test, Fisher's exact test, Chi-squared test, or Spearman's rank correlation 
coefficient. Five-year overall survival curves were generated according to the Kaplan–Meier method, 
and the statistical significance was calculated using the log-rank test. The Cox proportional hazards 
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model was used for multivariate analysis. Results of in vitro study were demonstrated as mean ± SD. 
Statistical analyses of in vitro study were evaluated by t-test. Statistical significance was defined as p 
< 0.05 in this study. 

5. Conclusions 

The expression of α-SMA, a common marker of CAFs, in cancer stroma was associated with PD-
L1 expression in adenocarcinoma cells. CAFs increased PD-L1 expression in lung adenocarcinoma 
cells through the secretion of soluble factors, including CXCL2. Our results indicated that CAFs might 
influence tumour immunity through increasing PD-L1 expression in lung adenocarcinoma cells. 

Author Contributions: Conceptualization, C.I. and Y.M.; Data curation, C.I., R.S., S.H., J.A., and I.S., Formal 
analysis, C.I., R.S., and S.H.; Resources, J.A., I.S., and Y.O.; Supervision, Y.O. and H.S.; Project administration, 
H.S.; Writing—original draft, C.I. and Y.M.; Writing—review and editing, H.S. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1 

Funding: This research received no external funding 

Acknowledgments: C. I. is supported by a scholarship from the Takeda Science Foundation (Osaka, Japan). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Kalluri, R.; Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 2006, 6, 392–401. 
2. Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598. 
3. Horie, M.; Saito, A.; Mikami, Y.; Ohshima, M.; Morishita, Y.; Nakajima, J.; Kohyama, T.; Nagase, T. 

Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture 
model. Biochem. Biophys. Res. Commun. 2012, 423, 158–163. 

4. Mahale, J.; Smagurauskaite, G.; Brown, K.; Thomas, A.; Howells, L.M. The role of stromal fibroblasts in 
lung carcinogenesis: A target for chemoprevention? Int. J. Cancer 2016, 138, 30–44. 

5. Wang, W.; Li, Q.; Yamada, T.; Matsumoto, K.; Matsumoto, I.; Oda, M.; Watanabe, G.; Kayano, Y.; Nishioka, 
Y.; Sone, S.; et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth 
factor receptor tyrosine kinase inhibitors. Clin. Cancer Res. 2009, 15, 6630–6638. 

6. Yoshida, T.; Ishii, G.; Goto, K.; Neri, S.; Hashimoto, H.; Yoh, K.; Niho, S.; Umemura, S.; Matsumoto, S.; 
Ohmatsu, H.; et al. Podoplanin-positive cancer-associated fibroblasts in the tumor microenvironment 
induce primary resistance to EGFR-TKIs in lung adenocarcinoma with EGFR mutation. Clin. Cancer Res. 
2015, 21, 642–651. 

7. Harper, J.; Sainson, R.C.A. Regulation of the anti-tumour immune response by cancer-associated 
fibroblasts. Semin. Cancer Biol. 2014, 25, 69–77. 

8. Nazareth, M.R.; Broderick, L.; Simpson-Abelson, M.R.; Kelleher, R.J.; Yokota, S.J.; Bankert, R.B. 
Characterization of Human Lung Tumor-Associated Fibroblasts and Their Ability to Modulate the 
Activation of Tumor-Associated T Cells. J. Immunol. 2007, 178, 5552–5562. 

9. Liao, D.; Luo, Y.; Markowitz, D.; Xiang, R.; Reisfeld, R.A. Cancer associated fibroblasts promote tumor 
growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer 
model. PLoS ONE 2009, 4, e7965. 

10. Viguier, M.; Lemaître, F.; Verola, O.; Cho, M.S.; Gorochov, G.; Dubertret, L.; Bachelez, H.; Kourilsky, P.; 
Ferradini, L. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human 
metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol. 2004, 173, 
1444–1453. 

11. Ma, C.; Dong, X. Colorectal cancer-derived Foxp3+IL-17+ T cells suppress tumour-specific CD8+ T cells. 
Scand. J. Immunol. 2011, 74, 47–51. 

12. Shukuya, T.; Carbone, D.P. Predictive markers for the efficacy of anti-PD-1/PD-L1 antibodies in lung 
cancer. J. Thorac. Oncol. 2016, 11, 976–988. 

13. Yu, H.; Boyle, T.A.; Zhou, C.; Rimm, D.L.; Hirsch, F.R. PD-L1 expression in lung cancer. J. Thorac. Oncol. 
2016, 11, 964–975. 



Cancers 2019, 11, 1257 16 of 17 

 

14. Ji, M.; Liu, Y.; Li, Q.; Li, X.D.; Zhao, W.Q.; Zhang, H.; Zhang, X.; Jiang, J.T.; Wu, C.P. PD–1/PD–L1 pathway 
in non-small-cell lung cancer and its relation with EGFR mutation. J. Transl. Med. 2015, 13, 5. 

15. Igarashi, T.; Teramoto, K.; Ishida, M.; Hanaoka, J.; Daigo, Y. Scoring of PD-L1 expression intensity on 
pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open 2016, 1, 
e000083. 

16. Wu, S.; Shi, X.; Sun, J.; Liu, Y.; Luo, Y.; Liang, Z.; Wang, J.; Zeng, X. The significance of programmed cell 
death ligand 1 expression in resected lung adenocarcinoma. Oncotarget 2017, 8, 16421–16429. 

17. Dong, H.; Strome, S.E.; Salomao, D.R.; Tamura, H.; Hirano, F.; Flies, D.B.; Roche, P.C.; Lu, J.; Zhu, G.; 
Tamada, K.; et al. Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune 
evasion. Nat. Med. 2002, 8, 793–800. 

18. Lastwika, K.J.; Wilson, W.; Li, Q.K.; Norris, J.; Xu, H.; Ghazarian, S.R.; Kitagawa, H.; Kawabata, S.; Taube, 
J.M.; Yao, S.; et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-
small cell lung cancer. Cancer Res. 2016, 76, 227–238. 

19. Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, 
T.; Jensen, M.C.; et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and 
immunoresistance in glioma. Nat. Med. 2007, 13, 84–88. 

20. Marzec, M.; Zhang, Q.; Goradia, A.; Raghunath, P.N.; Liu, X.; Paessler, M.; Wang, H.Y.; Wysocka, M.; 
Cheng, M.; Ruggeri, B.A.; et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of 
immunosuppressive protein CD274 (PD-L1, B7-H1). Proc. Natl. Acad. Sci. USA 2008, 105, 20852–20857. 

21. Liu, J.; Hamrouni, A.; Wolowiec, D.; Coiteux, V.; Kuliczkowski, K.; Hetuin, D.; Saudemont, A.; Quesnel, B. 
Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after 
stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007, 
110, 296–304. 

22. Li, C.; Lim, S.; Xia, W.; Lee, H.; Chan, L.; Kuo, C.; Khoo, K.; Chang, S.; Cha, J.; Kim, T.; et al. Glycosylation 
and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat. Commun. 2016, 7, 1–11. 

23. Mezzadra, R.; Sun, C.; Jae, L.T.; Gomez-Eerland, R.; de Vries, E.; Wu, W.; Logtenberg, M.E.W.; Slagter, M.; 
Rozeman, E.A.; Hofland, I.; et al. Identification of CMTM6 and CMTM4 as PD-L1 protein regulators. Nature 
2017, 549, 106–110. 

24. Liu, L.; Liu, L.; Yao, H.H.; Zhu, Z.Q.; Ning, Z.L.; Huang, Q. Stromal myofibroblasts are associated with 
poor prognosis in solid cancers: A meta-analysis of published studies. PLoS ONE 2016, 11, 1–16. 

25. Chen, Y.; Zou, L.; Zhang, Y.; Chen, Y.; Xing, P.; Yang, W.; Li, F.; Ji, X.; Liu, F.; Lu, X. Transforming growth 
factor-β1 and α-smooth muscle actin in stromal fibroblasts are associated with a poor prognosis in patients 
with clinical stage I-IIIA nonsmall cell lung cancer after curative resection. Tumor. Biol. 2014, 35, 6707–6713. 

26. Kilvaer, T.K.; Khanehkenari, M.R.; Hellevik, T.; Al-Saad, S.; Paulsen, E.E.; Bremnes, R.M.; Busund, L.T.; 
Donnem, T.; Martinez, I.Z. Cancer associated fibroblasts in stage I-IIIA NSCLC: Prognostic impact and their 
correlations with tumor molecular markers. PLoS ONE 2015, 10, 1–15. 

27. Cheng, J.; Deng, Y.; Yi, H.; Wang, G.; Fu, B.; Chen, W.; Liu, W.; Tai, Y.; Peng, Y.; Zhang, Q. Hepatic 
carcinoma-associated fibroblasts induce IDO-producing regulatory dendritic cells through IL-6-mediated 
STAT3 activation. Oncogenesis 2016, 5, e198. 

28. He, J.; Hu, Y.; Hu, M.; Li, B. Development of PD-1/PD-L1 Pathway in Tumor Immune Microenvironment 
and Treatment for Non-Small Cell Lung Cancer. Sci. Rep. 2015, 5, 13110. 

29. Al-Alwan, L.A.; Chang, Y.; Mogas, A.; Halayko, A.J.; Baglole, C.J.; Martin, J.G.; Rousseau, S.; Eidelman, 
D.H.; Hamid, Q. Differential Roles of CXCL2 and CXCL3 and Their Receptors in Regulating Normal and 
Asthmatic Airway Smooth Muscle Cell Migration. J. Immunol. 2013, 191, 2731–2741. 

30. Rivas-Fuentes, S.; Salgado-Aguayo, A.; Belloso, S.P.; Rosete, P.G.; Alvarado-Vásquez, N.; Aquino-Jarquin, 
G. Role of chemokines in non-small cell lung cancer: Angiogenesis and inflammation. J. Cancer 2015, 6, 938–
952. 

31. Song, X.; Wang, Z.; Jin, Y.; Wang, Y.; Duan, W. Loss of miR-532-5p in vitro promotes cell proliferation and 
metastasis by influencing CXCL2 expression in HCC. Am. J. Transl. Res. 2015, 7, 2254–2261. 

32. Milara, J.; Serrano, A.; Peiró, T.; Artigues, E.; Gavaldà, A.; Miralpeix, M.; Morcillo, E.J.; Cortijo, J. Aclidinium 
inhibits cigarette smoke-induced lung fibroblast-to- myofibroblast transition. Eur. Respir. J. 2013, 41, 1264–
1274. 



Cancers 2019, 11, 1257 17 of 17 

 

33. Cañas, M.; Zuazo, M.; Arasanz, H.; Ibañez-Vea, M.; Lorenzo, L.; Fernandez-Hinojal, G.; Vera, R.; Smerdou, 
C.; Martisova, E.; Arozarena, I.; et al. PDL1 Signals through Conserved Sequence Motifs to Overcome 
Interferon-Mediated Cytotoxicity. Cell Rep. 2017, 20, 1818–1829. 

34. Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, 
L.; Hugo, W.; Wang, X.; et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 
Expression. Cell Rep. 2017, 19, 1189–1201. 

35. Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.B.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; 
Zhao, Q.; Caballero, O.L.; et al. Targeting CXCL12 from FAP-expressing carcinoma- associated fibroblasts 
synergizes with anti – PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 
20212–20217. 

36. Liu, H.; Shen, J.; Lu, K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer 
development in mouse model. Biochem. Biophys. Res. Commun. 2017, 486, 239–244. 

37. Tsujino, T.; Seshimo, I.; Yamamoto, H.; Chew, Y.N.; Ezumi, K.; Takemasa, I.; Ikeda, M.; Sekimoto, M.; 
Matsuura, N.; Monden, M. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin. 
Cancer Res. 2007, 13, 2082–2090. 

38. Yamashita, M.; Ogawa, T.; Zhang, X.; Hanamura, N.; Kashikura, Y.; Takamura, M.; Yoneda, M.; Shiraishi, 
T. Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle 
actin correlates with worse clinical outcome. Breast Cancer 2012, 19, 170–176. 

39. Miyashita, M.; Sasano, H.; Tamaki, K.; Chan, M.; Hirakawa, H.; Suzuki, A.; Tada, H.; Watanabe, G.; 
Nemoto, N.; Nakagawa, S.; et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes in triple-negative 
breast cancer: Its correlation with pathological complete response to neoadjuvant chemotherapy. Breast 
Cancer Res. Treat. 2014, 148, 525–534. 

40. Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; 
Ahn, M.J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-
small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. 

41. Miki, Y.; Suzuki, T.; Abe, K.; Suzuki, S.; Niikawa, H.; Iida, S.; Hata, S.; Akahira, J.I.; Mori, K.; Evans, D.B.; 
et al. Intratumoral localization of aromatase and interaction between stromal and parenchymal cells in the 
non-small cell lung carcinoma microenvironment. Cancer Res. 2010, 70, 6659–6669. 

42. Sasaki, H.; Suzuki, A.; Shitara, M.; Hikosaka, Y.; Okuda, K.; Moriyama, S.; Yano, M.; Fujii, Y. PD-L1 gene 
expression in Japanese lung cancer patients. Biomed. Rep. 2013, 1, 93–96. 

43. Molaeipour, Z.; Shamsasanjan, K.; Movassaghpour, A.A.; Akbarzadehlaleh, P.; Sabaghi, F.; Saleh, M. The 
Effect of Bone Marrow Mesenchymal Stem Cells on Vitamin D3 Induced Monocytic Differentiation of U937 
Cells. Adv. Pharm. Bull. 2016, 6, 23–29. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

 


