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Abstract: Reactive oxygen species (ROS) are important signaling molecules in cancer. The level of
ROS will determine physiological effects. While high levels of ROS can cause damage to tissues and
cell death, low levels of ROS can have a proliferative effect. ROS are produced by tumor cells but also
cellular components that make up the tumor microenvironment (TME). In this review, we discuss
the mechanisms by which ROS can affect the TME with particular emphasis on tumor-infiltrating
leukocytes. Greater insight into ROS biology in this setting may allow for therapeutic manipulation
of ROS levels in order to remodel the tumor microenvironment and increase anti-tumor activity.

Keywords: ROS; mitochondria; tumorigenesis; tumor microenvironment; stroma; tissue infiltrating
lymphocytes; metabolism

1. Introduction

Reactive oxygen species (ROS) include superoxide, hydrogen peroxide and hydroxyl radicals.
While ROS can be damaging to lipids, proteins and DNA, in recent years their role as important
intracellular and extracellular signaling molecules has become evident [1]. The mitochondria are
the major source of ROS within a cell and play an essential role in regulation of proliferative,
apoptotic and metabolic pathways [2–4]. It is established that the hallmarks of cancer include metabolic
reprogramming as well as a tumor promoting microenvironment [5]. At the interface of both of these
important biological events are ROS which are produced by cancer cells as well as cellular components
in the microenvironment [6–9]. Understanding how the crosstalk between both extracellular and
intracellular ROS not only within the tumor but also with regards to cells that make up the tumor
microenvironment (TME) will be critical to our understanding of the process of tumorigenesis. In this
review, we will discuss the role of ROS in tumorigenesis. We will also focus a significant portion of the
review on describing how ROS regulate the biological processes of cells within the TME including
cancer-associated fibroblasts (CAFs) and tumor-infiltrating immune (TII) cells.

2. Role of Reactive Oxygen Species (ROS) in Tumorigenesis

The majority of endogenous ROS produced in cells result from metabolic reactions occurring
within the mitochondria or peroxisome. However, there is a subset of ROS that are also produced
by nicotinamide adenine dinucleotide phosphate (NAPDH) oxidases (NOX) which are a family
of transmembrane proteins that transport electrons across biological membranes and catalyze the
conversion of oxygen into superoxide. Superoxide is then further reduced by superoxide dismutases

Cancers 2019, 11, 1191; doi:10.3390/cancers11081191 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-0094-3725
http://www.mdpi.com/2072-6694/11/8/1191?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11081191
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 1191 2 of 20

(SODs) to produce H2O2. ROS can also be produced from cyclooxygenases, lipoxygenases and
thymidine phosphorylase [10].

ROS play an important role in tumorigenesis and affect multiple biological processes such as cell
proliferation, genomic instability, inflammation, resistance to apoptosis and metabolic reprogramming.
Increased levels of ROS are observed in a number of cancer cell lines [11]. In a tumor cell, ROS are
primarily generated by the mitochondria. Mitochondria produce superoxide (O2•) from one-electron
reduction of oxygen through the mitochondrial electron transport chain (ETC) [12]. Within the
mitochondria, ROS are generated at a number of different sites, the most important being complexes
I, II and III [13,14]. Complex I and II generate O2• in the mitochondrial matrix while complex III
produces O2• in both the matrix and intermembrane space [15,16]. O2• generated in the mitochondrial
matrix is converted to H2O2 by superoxide dismutase protein 2 (SOD2) [17]. Complex III-generated
intermembrane space O2• can travel to the outer mitochondrial membrane and into the cytosol where
it is converted into H2O2 by superoxide dismutase protein 1 (SOD1) [18]. Given access to the cytosol,
it is thought that complex III-generated ROS are responsible for affecting cellular signaling [19].

As mentioned previously, ROS levels are often elevated in cancer, however, high levels of ROS
can have deleterious effects therefore, cells have evolved mechanisms in order to maintain a proper
balance of ROS. These mechanisms include peroxide scavenging systems (peroxidases) which control
H2O2 levels by reducing H2O2 to H2O [20]. Production of mitochondrial ROS are also regulated by the
availability of O2, the rate of electron flux through the ETC, the concentration of given electron carriers
and the mitochondrial membrane potential [12,21]. Finally, the localization of mitochondria within the
cell has an important effect on influencing cell signaling pathways as clustering of mitochondria to
discrete areas of a cell can preferentially affect adjacent signaling pathways [22,23]. Together these
mechanisms allow for balance of the effects of ROS which can be exploited by tumor cells in order to
drive cells preferentially towards a proliferative state.

Mitochondrial ROS can stimulate multiple signaling pathways. Perhaps the most well-known is
the requirement of mitochondrial ROS for the stabilization of hypoxia-inducible transcription factors
(HIFs) under hypoxia [24–27]. HIF stabilization leads to initiation of a broad transcriptional program
including regulation of genes important for angiogenesis [28]. In order for angiogenesis to occur
proliferation of endothelial cells is required [29]. To that end, HIF upregulates the expression of vascular
endothelial growth factor (VEGF). VEGF is a soluble growth factor that binds to VEGF receptors and
activates signaling pathways important to endothelial cell proliferation [30]. The mitogenic effects
of VEGF are mediated most commonly through the activation of the extracellular-signal-regulated
kinase/mitogen-activated protein kinase (ERK/MAPK) pathway which is a potent stimulator of cell
proliferation [31]. Mitochondrial ROS are also critical in the activation of T-cells [32]. Reduced levels of
complex III-generated mitochondrial ROS in mice leads to the inability for sustained T-cell activation
despite stimulation with CD3 or CD28 [32]. Furthermore, a study demonstrated that mitochondria
translocate to the immunological synapse in a T-cell line, and mitochondrial H2O2 is required for T-cell
receptor (TCR) signal transduction through MAPK signaling [33]. Together, this data suggests that
mitochondrial ROS augment TCR signal transduction after antigen stimulation required for T-cell
stimulation and proliferation. Together, mitochondrial ROS play an important role in stimulating
physiological cell proliferation and can be exploited by a tumor to promote survival and growth.

Tumors produce high levels of ROS [11]. Initially it was felt that high levels of ROS contributed to
tumorigenesis by oxidative damage to DNA leading to genomic instability [34]. However, studies
also demonstrated increased protein expression of cellular antioxidants in cancer cells [35]. Thus,
cancer cells have the ability to maintain elevated mitogenic signaling without incurring substantial
oxidative damage. Indeed, oncogenes and/or tumor suppressor loss in cancer cells lead to ROS
production. For example, a study in which oncogenic H-RasG12V was overexpressed in 3T3 fibroblasts
demonstrated increased production of ROS required for mitogenic signaling [36]. Furthermore, mouse
embryonic fibroblasts transformed by the loss of p53 tumor suppressor as well as expression of
oncogenes Akt, H-RasG12V or KrasG12D demonstrated that mitochondrial ROS are required for
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anchorage-independent growth in soft agar [6]. Mitochondrial DNA mutations in several genes
important for the function of the ETC are present in a number of human cancers [37]. These mutations
also lead to increased levels of mitochondrial ROS production [38–40]. Loss of mitochondrial
transcription factor A (TFAM) in a mouse model of K-ras driven lung cancer demonstrated reduced
tumor growth [6]. TFAM is necessary for mitochondrial DNA replication. When TFAM is absent
oxidative phosphorylation is impaired and hence levels of mitochondrial ROS are decreased [6].
Furthermore, this study demonstrated that mitochondrial ROS are required for anchorage independent
growth in numerous cancer cell types [6] Taken together, the production of ROS by tumor cells plays an
important role in driving tumorigenesis however, ROS production by other non-tumor infiltrating cells
as well as the overall oxidative state of the local TME has profound effects on tumor biology (Figure 1).
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Figure 1. The mitochondria are the major contributor to cellular reactive oxygen species (ROS) levels
while oxidative enzymes (e.g., NAPDH oxidases, cyclooxygenases, lipooxygenases and thymidine
phosphorylase) also contribute to cellular ROS pooles. Mitochondrial ROS have many effects on cellular
biology including, Mitogen-activated protein kinase (MAPK) (e.g., extracellular-signal-regulated kinase
(ERK), p38 MAPK, Jun N-terminal kinase (JNK)), induction of transcription factors (e.g., nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κβ), hypoxia-inducible transcription factors
(HIF), activator protein 1 (AP-1), nuclear respiratory factor (NRF), heat shock factor 1 (HSF-1)) and
deregulation of protein phosphatases (e.g., phosphatase and tensin homolog (PTEN)). This leads to
enhancement of angiogenesis in the case of HIF, survival, growth, altered metabolism and other cellular
processes through MAPKs, transcriptional factors and protein phosphatase and immune cell function
and regulation.

3. Cancer-Associated Fibroblasts, ROS and the Tumor Microenvironment (TME)

The TME includes not only tumor cells but tumor lymphatics, tumor vessels, extracellular
matrix, non-cancer stromal cells as well as chemical modulators (i.e., chemokines, cytokines, growth
factors) and microbial populations. The extracellular matrix (ECM) and stroma include interstitial
matrix as well as the basement membrane, and can act as a storage site for many growth factors
and chemokines that can stimulate tumorigenesis. Non-cancer stromal cells include endothelial cells,
pericytes, immune cells, activated adipocytes, mesenchymal stem cells (MSCs), normal fibroblasts
and CAFs. Normal fibroblasts are responsible for ECM turnover and tissue homeostasis. They are
fundamental in the processes of wound healing and senescence. Unlike normal fibroblasts, CAFs can
be found at the margins of tumors or infiltrating into a tumor. Activated fibroblasts that are found in
association with cancer cells are known as CAFs and play key roles in cancer initiation, progression and
metastasis [41,42]. CAFs are further subdivided into fibroblasts and myofibroblasts. Alpha-smooth
muscle actin (α-SMA)-positive myofibroblasts are noted to be the major population of CAFs present in
tumors [43].
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The major role of CAFs is to augment tumorigenesis [44]. Infiltrating CAFs are more proliferative
than normal fibroblasts and activate specific signaling pathways important for the promotion of tumor
growth [45–47]. CAFs residing at the margins of tumors but not within are characterized by their
ability to promote cancer progression in vivo [48]. These CAFs are known to secrete factors such as
CXCL12 which can go on to activate pro-tumorigenic pathways such as AKT in adjacent epithelial
cells [49]. CAFs are present in almost all solid tumors. In certain tumors such as breast, pancreatic and
prostate, CAFs can account for up to 80% of the tumor mass as they are responsible for the excessive
growth of fibrous or connective tissue (desmoplasia) [50]. A high percentage of CAFs within cancer
tissues is associated with poorer prognosis, increased infiltration of tumor-associated macrophages
and epithelial to mesenchymal transition (EMT) [50].

Desmoplasia is a marker of tumor progression and generates mechanical forces which can
limit the lymphatic and blood supply to a tumor through compression of vessels in turn creating a
hypoxic environment [51]. Furthermore, these mechanical forces can cause conversion of fibroblasts to
myofibroblasts [51]. As previously mentioned, hypoxia stimulates the production of mitochondrial
ROS and cancer cells produce higher levels of ROS than normal tissues which can influence CAF
function [9,52]. CAFs can derive from epithelial, endothelial, hematopoietic stem cells, pericytes or
adipocytes as well as resident fibroblasts present in stromal tissue [53–59]. A large proportion of CAFs
identified in aggressive adenocarcinomas express smooth-muscle α-actin (α-SMA) and, therefore,
are called myofibroblasts [60]. Myofibroblasts’ major function is in wound healing and repair and
in tumors these cells can act as drivers for deranged chronic wound healing. Several studies have
demonstrated that ROS can be a driver for myofibroblast differentiation. Several studies reported
the importance of ROS in the fibroblast to myofibroblast transition (Figure 2A). Transforming growth
factor beta 1 (TGF-β1) as well stromal cell-derived factor 1 (SDF-1) and others play a major role in
driving the transition from fibroblast to myofibroblast. It is well known that mitochondrial-ROS are
required for TGF-β1 activation. Indeed, when fibroblasts were exposed to a pharmacologic inhibitor of
mitochondrial-ROS, TGF-β1 expression levels were reduced [61]. Fibroblast to myofibroblast conversion
can also be induced with SDF-1 in an ROS-dependent manner [58,60]. Furthermore, fibroblasts exposed
to chronic oxidative stress can also differentiate into myofibroblasts [9,60]. Fibroblasts isolated
from mouse models of oxidative stress in which key antioxidant transcription factors were depleted
demonstrated a conversion to myofibroblasts which could be reversed with the long-term treatment
with exogenous antioxidants [60,62]. Additionally, decreased ROS levels due to upregulation of
antioxidant enzymes such as glutathione peroxidase 3 and thioredoxin reductase I within fibroblasts
from prostate cancer inhibits differentiation into myofibroblasts [63]. Taken together these observations
demonstrate that ROS can promote myofibroblast differentiation in human tumors.

ROS can also affect proliferation and migration of CAFs. As discussed previously, CAFs exist
as a heterogeneous population with different populations expressing certain markers differentially.
While α-SMA myofibroblasts represent the majority of CAFs there are other markers that have been
used to detect subtypes of fibroblasts [9]. However, it is unclear whether these subtypes truly represent
distinct sub-populations of fibroblasts. Studies have suggested that ROS can play a role in impacting
fibroblast subtype [9]. One subtype of fibroblast that may be affected by ROS are platelet-derived
growth factor beta (PDGF-β) fibroblasts. ROS play an important role in PDGF signaling through the
inhibition of phosphatases [64–67]. The activation of PDGF signaling stimulates fibroblast growth
and motility. Interestingly, a study demonstrated that upon PDGF stimulation of normal human
fibroblasts, NOX4 and DUOX4, two enzymes responsible for increasing levels of ROS within cells,
modulate cell cycle entry [68]. Together these studies indicate that in PDGF-β fibroblasts ROS could
play an integral role in affecting fibroblast proliferation and migration. Another fibroblast marker that
could potentially be affected by ROS is Caveolin-1 (CAV-1). Studies demonstrate that when fibroblasts
and tumor epithelial cells are co-cultured in the presence of oxidative stress, CAV-1 is degraded in
fibroblasts which can be prevented by the treatment of antioxidant and autophagy inhibitors [69–71].
Taken together, these studies suggest that ROS produced by fibroblasts play an important role in CAF
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activation and differentiation. However, ROS and other metabolic byproducts are also produced in
large quantities by tumor cells and could also play a role in CAF function. ROS produced by CAFs,
as mentioned previously, could also augment tumorigenesis.
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Figure 2. (A) Reactive oxygen species (ROS) generated by the mitochondria and/or exogenous sources
within a tumor cell affect tumor immunity to promote a more tumorigenic environment. Mitochondrial
ROS (mROS) can stimulate differentiation of cancer-associated fibroblasts (CAFs) and ROS produced
by the tumor cell can facilitate uptake of exosomes through caveolin-1 inhibition leading to metabolic
reprogramming of certain CAFs. ROS can also affect the function of tumor-infiltrating T-cells depending
on the level of mROS. Myeloid-derived suppressor cells (MDSCs) and tumor-associated Macrophages
(TAMs) also produce ROS that can affect the function of other immune cells and ROS can affect
regulatory T-cell function as well. (B) The amount of ROS corresponds to differing effects on biological
function. While cytostatic levels of ROS lead to maintenance of biological processes, cytotoxic levels
of ROS lead to cell death as well as immune deregulation. Tumor promotion through ROS occurs
when ROS reach super-physiological or cytostatic levels while avoiding levels conducive to cell death.
As mentioned previously, oxidative stress can arise from tumor cells.

H2O2 is produced from tumor epithelial cells and can diffuse into other tissues and cells. H2O2 is
also implicated in intracellular signaling pathway activation. Certain studies focused on understanding
how H2O2 affects the tumor microenvironment (TME) and stroma. In these studies, breast cancer cells
were co-cultured with CAFs to demonstrate the effect of tumor-generated H2O2 on CAFs. Interestingly,
tumor H2O2 led to a reduction in mitochondrial function, increase in glucose uptake and increase



Cancers 2019, 11, 1191 6 of 20

ROS in CAFs [70,72]. Furthermore, co-cultured cancer cells demonstrated increased mitochondrial
activity and decreased GLUT1 expression along with decreased glucose uptake [70]. This cross-talk
between tumor cells and CAFs could be abrogated with the addition of catalase [70]. Finally, fibroblasts
co-cultured with breast cancer cells displayed Caveolin-1 (CAV-1) downregulation and increased
expression of markers for myofibroblasts [70]. This suggests that tumor cells produce ROS which can
directly reprogram CAFs to potentially create a more pro-tumorigenic microenvironment.

Caveolins, such as CAV-1, are unique proteins which are found on multiple cell types and help
to form caveolae which are plasma membrane invaginations. CAV-1 expression is mediated by
self-digestion or autophagy [73,74]. Human CAFs will usually display reduced CAV-1 expression as
compared to normal fibroblasts. Reduced CAV-1 expression is associated with increased glycolysis
and reduced mitochondrial function and this decrease in CAV-1 expression is thought to be mediated
by tumor cell oxidative stress induced autophagy [8,74,75]. Fibroblast-mediated degradation of CAV1
can be abrogated with antioxidants and autophagy inhibitors [70,71]. CAV-1 expression has not only
been implicated in the induction of a metabolic switch but also in autophagy/mitophagy activity
and remodeling of the microenvironment [9]. Interestingly, CAV-1 expression in lung cancer cells is
differentially affected by different types of ROS. For example, hydroxyl radical up-regulates CAV-1
while O2• and H2O2 down-regulated CAV-1 expression. It should also be noted that degradation of
CAV-1 leads to increased exosomal uptake into cells [76].

Exosomes are a subtype of extracellular vesicles (EVs) deriving from intraluminal endosomal
vesicles. Exosomes are made up of a lipid bilayer and contain proteins, mRNAs, lipids, miRNAs
and free metabolites which are released into the cytosol of target cells after internalization [77].
Cancer-derived EVs are able to transform non-malignant cells in the tumor microenvironment in order
to promote tumorigenesis [78,79]. EVs, therefore, provide a mechanism for cellular crosstalk. Indeed,
studies show that exosomes have the ability to reprogram recipient cells and are able to modulate
proliferation, survival and immune effector status in recipient cells [80]. More recently, Zhao et al.,
demonstrated that exosomes isolated from prostate and pancreatic cancer patient-derived CAFs can
inhibit mitochondrial oxidative phosphorylation in cancer cells increasing glycolysis and reductive
carboxylation [81].

Exosomes are taken up into cells through different pathways and the process by which exosomes
are taken up into cells is controversial. Recently, a study demonstrated that exosomes derived from
glioblastoma (GBM) cells are internalized through non-classical, lipid-raft dependent endocytosis [76].
The authors then demonstrate that the lipid raft associated protein, CAV-1, negatively regulates the
uptake of exosomes [76]. Previously, it was mentioned that tumor cells induce oxidative stress which
leads to the autophagic degradation of CAV-1 [8,74]. Together, these studies suggest a pathway by which
tumor cells produce ROS which signal to fibroblasts and lead to the degradation of CAV-1 and, therefore,
increased exosomal uptake. The effect of increased exosomal uptake could then lead to increased
influx of metabolites and metabolic reprogramming of the fibroblast to a more pro-tumorigenic
CAF (i.e., myofibroblast) (Figure 2A). Indeed, Zhao et al. demonstrated that exosomes isolated from
pancreatic and prostate cancer CAFs contained high amounts of glutamine, lactate and acetate as
well as many other amino acids and metabolites suggesting a role for exosomes in anapleurosis and
lipogenesis [81].

Autophagy is a pathway by which cytoplasmic organelles or components are sequestered into
an autophagosome and delivered to lysosomes for degradation. Autophagy is essential for survival,
differentiation, development and metabolism and is involved in many disease states, such as cancer.
Autophagy can be stimulated by cellular stress including ROS [82,83]. ROS are able to regulate
autophagy both directly and indirectly [84–86]. ROS-induced autophagy has been demonstrated to
protect against oxidative damage suggesting an ROS-dependent negative feedback loop to regulate
oxidative stress within cells [87]. Defective autophagy is observed in multiple tumors which supports
a tumor suppressive role [88–90]. However, studies also show that autophagy has tumor-promoting
functions which implies autophagy function is context dependent in cancer [91,92]. Aside from cancer
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type, this context-dependent functioning likely applies to cells present in the TME as well. There is
now evidence that ROS can provide cross-talk between CAFs and tumor cells through autophagy that
can create a more pro-tumorigenic environment. A previous study performed in a xenograft model of
breast cancer demonstrated that HIF-1α-dependent activation of autophagy in stromal cells enhances
tumorigenicity [93]. Given the effect of mitochondrial ROS on HIF-1α, it can be surmised that ROS in
stromal cells may modulate tumorigenicity of cancer cells through induction of autophagy. Another
study explored CAFs isolated from ovarian cancer tissues as well as normal fibroblasts from benign
tissue and found that CAFs are resistant to oxidative stress and this process is mediated through
autophagy [94]. CAFs could act as central mediators of oxidative stress within the TME and help to
give tumor cells the ability to circumvent the cytotoxic effects of elevated TME ROS levels. Tumor cells
can also affect the cells of TME through autophagy and mitophagy, which is the selective degradation
of mitochondria by autophagy. Several studies demonstrated that tumor cells can induce increased
metabolism in CAFs which also induces autophagy and mitophagy allowing for the recycling of
important biomolecules and metabolic precursors [95,96]. It would be expected that the byproduct
of this would also be generation of ROS in CAFs which could also help reprogram them to a more
pro-tumorigenic fibroblast.

4. Tumor Immunity and ROS

As discussed previously, the TME compromises a large number of different cell types including
tumor-infiltrating leukocytes (TILs). TILs include myeloid-derived suppressor cells (MDSCs),
tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) as well as other immune cells.
MDSCs, TAMs and Tregs work concomitantly to suppress the immune response to a tumor. Studies
show that an immunosuppressive microenvironment allows for greater tumor invasion, metastasis
and resistance to treatments [97]. While ROS are known to be promoters of tumor progression one
way in which they may achieve this is through immune cell suppression (Figure 2A). In this section we
will focus mainly on ROS effects on tumor-infiltrating T-cells. T-cells are essential to the host immune
response to cancer. Tumor-infiltrating cytotoxic T-cells (i.e., CD8+ T-cells) play a pivotal role in the
anti-tumor immune response. However, during cancer progression the tumor microenvironment
becomes immunosuppressive and T-cell cytotoxicity is inhibited. As mentioned previously, ROS are
also associated with a more immunosuppressive tumor microenvironment. ROS have been implicated
in a variety of roles with regards to the activation and regulation of T-cells in the microenvironment.
High levels of ROS in the TME inhibit T-cell proliferation and anti-tumor function. Furthermore,
ROS produced by other cells within the tumor microenvironment lead to T-cell hyporesponsiveness in
cancer patients [98]. Alternatively, a low level of ROS is required for T-cell activation, proliferation and
function [99,100]. T-cell activation occurs through stimulation of the TCR and co-stimulatory receptors
which induce signaling pathways and transcription factors. Furthermore, TCR-dependent calcium
influx into CD4+ T-cells leads to the generation of mitochondrial ROS which are required for CD4+ T-cell
activation [32,101]. Both complex I and III of the ETC have been implicated as sources of mitochondrial
ROS essential for T-cell activation [32,102]. Tumor infiltrating T-cells display loss of mitochondrial
function which can be rescued by expression of PGC1α, a key player in mitochondrial biogenesis,
and subsequently restores antitumor activity [103]. Furthermore, a more recent study demonstrated
that in clear cell renal cell carcinoma tumors CD8 TILs were present but they were functionally and
metabolically impaired [104]. They were noted to generate large amounts of mitochondrial ROS
leading to downregulation of mitochondrial superoxide dismutase 2 (SOD2) [104]. This effect could
be rescued with MitoQ as well as MitoTEMPO, both mitochondrial ROS scavengers, as evidenced
by an increase in CD8 TIL activation [104]. Another study demonstrated that T cells modified with
a bicistronic expression vector chimeric Ag receptor (CAR) co-expressing catalase (CAT) exhibited
reduced intracellular oxidative stress which resulted in the increased ability of CAR-CAT T-cells to
lyse tumor cells in an antigen-specific manner [105]. Interestingly, these CAR-CAT T-cells were able to
function under extracellular oxidative stress unlike traditional CAR T-cells [105]. CAR T cells rely on
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the genetic transfer of tumor-specific TCRs and CARs into T cells from peripheral blood. Unfortunately,
in solid tumors CAR T-cells not only have to reach their targets but must also survive and function
within the unfavorable tumor microenvironment. The above study highlights the importance of
understanding ROS biology in order to affect biological consequences.

PD-1 is a surface receptor expressed mostly by activated T-cells and acts as a negative regulator
of the immune response. PD-1 binds to one of its two ligands (PD-L1 or PD-L2) which leads
to phosphorylation of its receptor and recruitment of Src homology region 2 domain-containing
phosphatase-2 (SHP-2) which leads to dephosphorylation of TCR activation molecules [106,107].
This leads to the “unmasking” of the tumor and activation of tumor-reactive cytotoxic T-lymphocytes
(T-CTLs). How PD-1 blockade results in abrogation of tumor tolerance remains largely unknown.
However, recently a paper was published suggesting a role for ROS and mitochondrial activation
in PD-1 blockade induction of T cell-dependent antitumor activity [108]. In this study, the authors
found that T-CTLs isolated from mice treated with PD-L1 blockade have increased mitochondrial
mass, membrane potential, superoxide and cellular ROS indicating these cells have higher rates of
mitochondrial metabolism [108]. Furthermore, the authors found that treatment of these cells with
a ROS generator (tert-butyl hydroperoxide) or a mitochondrial respiratory chain uncoupler (FCCP)
further synergized the effect of PD-1 blockade on tumor growth inhibition [108]. This suggests that
modulating mitochondrial activity and mitochondrial ROS in immune cells such as T-CTLs could have
profound effects on response to PD-1 blockade. Perhaps non-responders to PD-1 inhibitors have lower
levels of mitochondrial activation and hence ROS, which allows for suboptimal activation of T-CTLs.

Another study demonstrated that sensitivity to PD-1 blockade in mouse tumor cell lines depended
on the cells’ ability to consume oxygen and hypoxia [109]. The authors found that when they treated cells
with metformin oxygen consumption was inhibited in vitro and in vivo which resulted in intratumoral
hypoxia [109]. When mice were treated with the combination of metformin and PD-1 blockade
improved intratumoral T-cell function and tumor clearance was observed [109]. This suggests that
lower levels of ROS and, therefore, a less hypoxic tumor environment allows for increased efficacy of
PD-1 blockade immunotherapy. It is conceivable then that lower levels of global ROS and hypoxia
in the tumor microenvironment coupled with increased intracellular mitochondrial ROS in specific
tumor-infiltrating cells may produce the most efficacious response to PD-1 blockade.

The dichotomy of the studies described highlights the importance of understanding how
mitochondrial ROS can be modulated to different levels to affect biological outcomes (Figure 2A). The yin
and yang of ROS is potentially a therapeutic target within the realm of immuno-oncology, as different
levels of ROS capitulate profoundly different immunologic programs (Figure 2B). More recently,
immunotherapy targeting PD-1/PD-L1 blockade has changed the landscape of cancer treatment and
significantly increased the survival rate in cancer patients. Currently, this treatment is approved for
patients with melanoma, non-small cell lung cancer (NSCLC), kidney cancer, Hodgkin lymphoma and
head and neck cancer. However, it should be noted that while durable responses are significant in many
patients treated with PD-1/PD-L1 blockade approximately 30–50% of patients remain unresponsive
or less responsive to PD-1/PD-L1 blockade [110–112]. Understanding how to improve response to
PD-1/PD-L1 blockade could have a significant effect on survival in patients.

Regulatory T-cells (Tregs) are also present in the TME and provide another source of
immunosuppression, decreasing tumor reactive cytotoxic T-cell immunity. Studies suggest that the
balance between immunosuppressive Tregs and cytotoxic T-cells may be metabolically regulated [113–116].
As discussed, ROS and oxidative stress in the tumor microenvironment help drive tumor immunity
through effects on tumor-infiltrating immune cells. A recent paper showed that increased ROS and
oxidative stress in the tumor environment led to more potent immunosuppression by Tregs [117].
The authors found that apoptotic Tregs were actually more efficient at suppressing T-cell activation
in vitro and in vivo [117]. Furthermore, these apoptotic Tregs abolished the therapeutic efficacy of
PD-L1 blockade in tumor-bearing mouse models [117]. This was thought to be mediated through
the release of large amounts of ATP and adenosine which are immunosuppressive [117]. This raises
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the therapeutic possibility of targeting ROS in the tumor microenvironment in order to reduce ROS
levels in turn inhibiting the immunosuppressive activity of Tregs. On this point, a recent study
demonstrated that reduced levels of mitochondrial ROS led to decreased Treg differentiation [118].
Kunisada et al. demonstrated that metformin reduced the number of tumor-infiltrating Tregs by
inhibiting differentiation of naïve CD4+ T-cells into Tregs through forkhead box P3 (Foxp3) protein [118].
Furthermore, the authors demonstrated that metformin induced metabolic reprogramming of Tregs to
a more glycolytic state [118]. Metformin is a complex I inhibitor and thus reduces the pool of Complex
I generated mitochondrial ROS. It is likely that the decrease in mitochondrial ROS in metformin treated
T-regs also has an effect on altering transcriptional programs important for metabolic reprogramming.
Additionally, a recent study by Weinberg et al. found that complex III of the mitochondrial ETC is
required for Treg suppressive activity [119]. Through mouse experiments, the authors demonstrate that
the loss of Rieske iron-sulfur protein (RISP), an essential subunit of mitochondrial complex III, led to loss
of Treg suppressive function. ROS generated at complex III are important signaling transducers [3,120].
Specific mitochondrial targeted antioxidants exist [6,121] and it would be interesting to see if those
drugs mirror the effect of RISP knock out on Tregs. Based on the above studies, it is possible that by
decreasing the levels of mitochondrial ROS with metformin or mitochondrial targeted antioxidants,
Tregs become less immunosuppressive, allowing for increased cytotoxic T-cell tumoricidal effect.

Taken together, this again suggests that the level of ROS within a specific cell type has important
consequences for the function of that cell. As discussed, high levels of ROS in CTLs may have
an anti-tumoricidal effect while low levels of ROS in Tregs seem to be associated with decreased
immunosuppression. Furthermore, similar levels of ROS may also have contradicting effects in varying
cell types. As shown above, while in CD8 TILs from renal cell carcinoma, high levels of ROS led
to impairment and lack of anti-tumor response, high levels of ROS in TILs from mice with colon
carcinoma treated with anti-PD-1 blockade were associated with increased tumoricidal effects. Greater
research into how ROS within tumor infiltrating immune cells as well as extracellular ROS involvement
in modulating tumor immunity will be needed to further characterize how differing levels, locations
and types of ROS are affecting tumor immunity.

There is also evidence that other TILs such as MDSC and TAMs are regulated by ROS. MDSCs are
one of the major immunosuppressive cell types within the tumor microenvironment [122]. These cells
induce immunosuppression through the inhibition of T-cells. More recently, a study demonstrated
that tumor-induced MDSCs could suppress T cell proliferation helping to promote colorectal cancer
cell growth through the production of ROS [123]. In another study, MDSC’s immunosuppressive
effects on T-cells could be completely abrogated with the use of ROS inhibitors [124]. It should be
noted that ROS suppress T-cell immune responses by inhibiting recognition between the T-cell receptor
(TCR) and the MHC-peptide complex. This was highlighted in a study which demonstrated that
co-culturing MDSCs with T-cells in the presence of catalase, a ROS inhibitor, impaired MDSC-mediated
T-cell proliferation [125]. Finally, it is important to understand that while high levels of ROS are
immunosuppressive, low levels of ROS are likely important for T-cell activation [126]. TAMs are
another immunologic class of cells that are present in the tumor microenvironment. TAMs are thought
to be critical mediators of inflammation and tumorigenesis. ROS are implicated in macrophage
activation and signaling. Furthermore, a study demonstrated that macrophage-derived ROS induce
Tregs [127]. This suggests that ROS derived from macrophages can have an immunosuppressive
effect. Another study demonstrated that ROS are required to promote a more invasive phenotype in
TAMs isolated from melanomas and this effect was mediated through ROS-dependent tumor necrosis
factor α secretion [128]. It is also important to note that the authors of this study found that TAMs
from melanomas expressed elevations in multiple mitochondrial biogenesis and respiratory chain
genes indicating mitochondrial ROS as one of the main sources of oxidative stress within TAMs [128].
These studies highlight the role of ROS not only as inducers of oxidative stress but also as mediators of
immune regulation within the tumor microenvironment, important in promoting tumorigenesis.
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5. The Microbiome and ROS

Another element that comprises the TME is the microbiome. Over the past few years much research
has revolved around the relationship between host microbiota and how the disruption in homeostasis
of microbial communities (dysbiosis) affects pathologic conditions such as cancer. It is well known that
host microbiota can promote carcinogenesis through induction of pro-inflammatory toxins, alterations in
signaling pathways or through impairment of antitumor immune functions [129–132]. Another way host
microbiota can potentially induce a tumorigenic state is through production of ROS [133]. For example,
Enterococcus faecalis, a commensal strain of bacteria, can produce large amounts of extracellular
superoxide that is converted to H2O2 which can damage eukaryotic cell DNA [134]. Pathogenic
Bacteroides fragilis produces its toxin, which upregulates bacterial polyamine catabolism pathways,
generating ROS that can cause DNA damage and lead to tumor formation in the colon [135]. Further
studies have demonstrated that certain species of bacteria utilize bile acids for their respiration producing
DNA-damaging ROS by-products that can induce gastrointestinal cancers [136,137]. Alternatively,
injured mucosa relies upon redox signaling and ROS for repair. Microbiota produce and excrete
formylated peptides which activate colonic epithelial formyl peptide receptors inducing localized
ROS generation that activates signaling pathways important for epithelial wound healing [138].
Taken together this illustrates the dichotomous role of ROS in the microenvironment: as damaging
agents as well as growth and healing promoters. In order to understand how ROS fully affect the TME,
more research will need to be undertaken to explore the specific role bacterial species-specific ROS
have upon tumor, immune and stromal cell function.

While much data supports a role for microbiota derived ROS in tumorigenesis within the TME,
studies have associated changes in host mitochondrial metabolism with changes in host microbiota [139].
A recent study by Yardeni et al. demonstrated that host mitochondria influence gut microbiome
diversity through ROS [140]. By examining the gut microbiota of mice with various mutations in
genes that alter mitochondrial function the authors were able to show that mitochondrial genetic
variations altered the composition of the gut microbiota. Further analysis of mitochondrial DNA
variants associated with an altered gut microbiome suggested that diversity correlated with host
ROS production. Furthermore, they were able to demonstrate that modulation of ROS levels within
mice led to altered gut microbiota. The authors find that decreased mitochondrial ROS leads to a
higher diversity of species within the gut microbiota. Recently, a study demonstrated melanoma
patients who respond to immunotherapy, have increased gut microbiota diversity [141]. Taken together,
this suggests that modulation of mitochondrial ROS could be used to enhance a cancer patient’s
sensitivity to immunotherapy.

6. Therapeutic Implications of ROS Targeting

As reviewed, ROS lies at a crossroads potentially linking the tumor and immune microenvironment.
Therefore, ROS are attractive therapeutic targets as a modality to manipulate the tumor and
microenvironment cross-talk and improve cancer outcomes. Recently, targeting of mitochondrial
complex I, important for mitochondrial ROS generation, has gained clinical traction. Over 10 years
ago, metformin, widely used in the treatment of type II diabetes mellitus, demonstrated reduced
risk of cancer in diabetic patients [142]. Further studies, exploring metformin’s mechanism of
action demonstrated the ability of metformin to inhibit complex I in vitro [143–145]. A further
study demonstrated that targeting mitochondrial complex I with metformin led to inhibition of
complex I, reduction of complex I generated ROS and reduced tumorigenesis in xenograft mouse
models [146]. Impart, this led to a multitude of clinical studies which to date have produced
disappointing results. Currently, there are multiple clinical trials in progress or actively recruiting
centered around the use of metformin in the treatment of cancer. These new trials largely involve
use of metformin in combination with immunotherapy (NCT03311308, NCT03874000, NCT03994744),
chemotherapy (NCT02122185, NCT01310231, NCT03238495, NCT02122185, NCT03243851) doxycycline
(NCT02874430), and intermittent fasting (NCT03709147) in specific sub-populations of cancer patients.
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There is also significant evidence to show that metformin may influence tumor progression by
modulating the TME [147]. Through regulation of complex I ROS and mitochondrial metabolism,
metformin has the ability to skew the phenotype of TME cell populations. Further studies could
potentially address combining metformin with specific cytokine inhibitors, such as IL-6, IL-17, or FOXP3
along with PD-1/PD-L1 to more effectively remodel the TME. Of note, metformin is a weak complex I
inhibitor and other clinical studies are currently underway using stronger, more specific mitochondrial
ROS inhibitors. In a Phase I study, ME-344, an isoflavone-derived complex I mitochondrial inhibitor,
is being evaluated in early stage HER2-negative breast cancer patients in combination with bevacizumab,
an anti-vascular endothelial growth factors A (VEGF-A) inhibitor, assessing whether combination
of ME-344 and bevacizumab can offset the metabolic changes that occur with anti-VEGF treatment
(NCT02806817). These metabolic changes with anti-angiogenic therapies are linked to drug resistance.
It is well known that chemotherapy induces ROS generation and that over time tumors become
resistant to chemotherapy. Using metformin in combination with second line treatments or at specific
time-points during front-line treatment may potentially abrogate or prolong the development of drug
resistance. Finally, other clinical studies are focused on finding targeted approaches to blocking not
only complex I but complex III of the ETC as well, which is thought to be the major generator of
mitochondrial ROS important for induction of cellular signaling pathways. One such study is being
performed in patients with chronic myelogenous leukemia (CML) using the antibiotic, Tigecycline,
which impairs mitochondrial DNA translation and subsequently inhibits formation of complex I, III,
IV and V of the ETC (NCT02883036). In the future, understanding and repurposing drugs that have
specific effects on mitochondrial ROS generation could potentially lead to combination therapies that
improve outcomes in cancer patients.

Another potential target for therapeutic intervention is the TCA cycle. Cancers have dysregulated
metabolism and it is now well appreciated that mitochondrial metabolism is required for a tumor’s
growth. Recent studies have focused on targeting specific TCA cycle enzymes. One such drug is
CPI-613 which is a lipoate analog. Lipoate is a co-factor for both pyruvate dehydrogenase and the
alpha-ketoglutarate-dehydrogenase complex both required for rate-limiting steps in the TCA cycle.
Inhibition of these enzymes causes mitochondrial dysregulation. As expected, this impairment leads
to induction of mitochondrial ROS [148]. This induction of mitochondrial ROS by CPI-613 has the
potential to tip the redox balance within a tumor cell towards cytotoxicity (Figure 2B). CPI-613 would
also be expected to have effects on immune cells present in the TME. For example, immunosuppressive
immune cells such as M2 macrophages, Tregs and MDSCs depend on oxidative phosphorylation and
mitochondrial metabolism. CPI-613 can potentially target these pro-tumor cell types and tip the redox
balance in favor of cellular dysfunction or toxicity. Already there is exciting Phase I data in metastatic
pancreatic cancer patients suggesting that CPI-613 in combination with standard of care chemotherapy
significantly improves overall response rates and potentially progression free survival [149]. Currently,
there are several clinical trials exploring CPI-613 in combination with chemotherapy in a number of
different tumor subtypes (NCT02168140, NCT02232152, NCT03699319, NCT02484391). In the future,
combining CPI-613 with immunotherapy could be a potential area of research as well as understanding
how CPI-613 could be utilized in patients who have developed drug resistance.

Finally, another attractive therapeutic target is the antioxidant machinery. Recently, RTA-408,
also known as omaveloxolone, has been studied in melanoma. RTA-408 is a semisynthetic triterpenoid
known to induce nuclear factor erythroid 2-related factor 2 (Nrf2) which is a major cellular regulator
of protection against oxidative or electrophilic stress [150–152]. Through this mechanism, RTA-408
suppresses reactive oxygen and nitrogen species which has been demonstrated in tumor xenografts [153].
This effect of RTA-408 has also been shown in MDSCs [153]. At higher concentrations RTA-408 also
selectively inhibits tumor growth through nuclear factor kappa-B kinase subunit [153]. Together,
this drug can potentially target tumor and the immunosuppressive TME concurrently. Currently,
there is a clinical Phase I/II study underway combining RTA-408 with immunotherapy in patients
with melanoma.
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Altogether, targeting ROS within the tumor and TME has the potential to improve outcomes
to current treatments. While it is unlikely that targeting ROS alone will derive therapeutic benefit,
as evidenced by single agent metformin trials, in combination with cytotoxic or immune-regulating
agents the potential exists to significantly improve response and survival. Understanding how to
modulate the sensitive redox balance within and between tumor and different TME-infiltrating immune
cells will potentially lead to more efficacious treatment. In the future, cell-specific ROS modulators
may hold the key to optimizing potential treatments utilizing ROS as a target.

7. Conclusions

ROS play an important role in maintaining physiological homeostasis within healthy cells.
In tumor cells, the exploitation of pathways that lead to ROS production which result in a pro-growth,
pro-tumorigenic environment occurs. It is now known that not only tumor cells but the TME including
non-cancer stromal cells such as CAFs as well as tumor-infiltrating immune cells play important roles
in the cross-talk between tumor and environment in order to drive tumorigenesis. It is becoming
increasingly clear that metabolic reprogramming and subsequent ROS generation are essential to
this crosstalk. The differential effects of varying levels of ROS on biological outcomes within the
cells that encompass a tumor and its microenvironment are becoming increasingly important to our
understanding of tumor initiation, growth and progression. Understanding how to exploit ROS in
order to modulate cell-specific biological functions will not only help with the possible creation of new
anticancer treatments but may also allow for increased efficacy of those treatments already in existence.
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