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Abstract: The WNT/β-catenin signaling pathway controls stem and progenitor cell proliferation, 
survival and differentiation in epithelial tissues. Aberrant stimulation of this pathway is therefore 
frequently observed in cancers from epithelial origin. For instance, colorectal and hepatic cancers 
display activating mutations in the CTNNB1 gene encoding β-catenin, or inactivating APC and 
AXIN gene mutations. However, these mutations are uncommon in breast and pancreatic cancers 
despite nuclear β-catenin localization, indicative of pathway activation. Notably, the low-density 
lipoprotein receptor-related protein 6 (LRP6), an indispensable co-receptor for WNT, is frequently 
overexpressed in colorectal, liver, breast and pancreatic adenocarcinomas in association with 
increased WNT/β -catenin signaling. Moreover, LRP6 is hyperphosphorylated in KRAS-mutated 
cells and in patient-derived colorectal tumours. Polymorphisms in the LRP6 gene are also associated 
with different susceptibility to developing specific types of lung, bladder and colorectal cancers. 
Additionally, recent observations suggest that LRP6 dysfunction may be involved in carcinogenesis. 
Indeed, reducing LRP6 expression and/or activity inhibits cancer cell proliferation and delays 
tumour growth in vivo. This review summarizes current knowledge regarding the biological 
function and regulation of LRP6 in the development of epithelial cancers—especially colorectal, 
liver, breast and pancreatic cancers. 

Keywords: low-density lipoprotein receptor-related protein 6; LRP6; carcinoma; WNT signaling; β-
catenin 

 

1. Introduction 

Cell proliferation and differentiation are finely regulated during epithelial tissue development 
and renewal. One of the most important signaling pathways involved in this regulation is the 
ubiquitous WNT/β-catenin pathway due to its crucial role in adult stem cell regulation [1]. 
Accordingly, abnormal WNT/β-catenin signaling pathway activation is therefore involved in the 
pathogenesis of various human diseases, particularly cancer. 

β-catenin protein, encoded by CTNNB1, acts as the main signal transducer. In the absence of 
WNT factors, β-catenin cytoplasmic concentrations are kept low because of active degradation 
through the proteasome (Figure 1A). Indeed, in the cytoplasm, β-catenin is associated with a 
“destruction complex” that includes casein kinase 1 (CK1α), glycogen synthase kinase 3 (GSK3), 
AXIN and adenomatous polyposis coli (APC) proteins. Within this complex, β-catenin is 
phosphorylated by CK1α at serine 45. This event leads to subsequent phosphorylations on residues 
41, 37 and 33 by GSK3, which mark β-catenin for ubiquitin-mediated degradation in the proteasome 
[2,3]. WNT ligands bind to the seven-pass transmembrane receptor Frizzled (FZD) and the single-
pass low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6) (Figure 1B). The WNT–FZD–
LRP5/6 trimeric complex recruits the scaffold protein Dishevelled (DVL) which itself polymerizes to 
bind AXIN [4]. This structure promotes LRP6 aggregation, leading to the formation of LRP6 
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signalosomes [5]. LRP5/6 is then phosphorylated by both CK1γ and GSK3, releasing free β-catenin in 
the cytoplasm. LRP6 phosphorylations allow the recruitment of more AXIN and GSK3, acting as an 
inhibitor of this kinase, amplifying WNT signal activation and allowing sustained activation of the 
pathway [6]. β-catenin then accumulates in the cytoplasm and translocates in the nucleus, where β-
catenin binds to T-cell factor (TCF) or lymphoid enhancer-binding protein factor (LEF). The fully 
active transcription factor induces the transcription of genes involved in the control of cell cycle, 
survival and differentiation. 

Mutations in WNT/β-catenin pathway coding genes such as CTNNB1, AXIN and APC are found 
in colorectal and hepatic cancers, as described below, and are known to drive tumorigenesis. 
However, overexpression of these genes is not reported in all carcinomas, suggesting the involvement 
of other key components of this pathway in carcinogenesis. In this signaling cascade, coreceptors 
LRP5/6 are instrumental for downstream signal transduction. Indeed, the expression of non-
phosphorylatable LRP5/6 mutants abrogates β-catenin-TCF/LEF transcriptional activity [7]. Herein, 
we focus on the specific roles of LRP6 in the control of the WNT/β-catenin pathway and in the 
regulation of tissue homeostasis and carcinoma development. 
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Figure 1. Overview of canonical WNT signaling. (A) OFF State. The absence of WNT ligands and the 
presence of antagonists such as DKK family members are associated with the inactive state of the 
pathway. The β-catenin destruction complex, formed by the scaffolding proteins AXIN and APC, and 
the kinases CK1α and GSK3, promotes the β-catenin phosphorylation, triggering its ubiquitination 
by the E3 ubiquitin ligase β-TrCP and its proteosomal degradation. (B) ON State. R-spondin (RSPO) 
and WNT ligands activate the pathway. RSPO binds both the ring finger proteins RNF43/ZNRF3 and 
the LGR receptor to form a ternary complex which is rapidly endocytosed. WNT glycoproteins are 
then able to bind Frizzled and LRP5/6 coreceptors, forming the WNT–FZD–LRP5/6 trimeric complex 
which recruits the scaffold protein Dishevelled (DVL) which itself polymerizes to bind AXIN. This 
promotes the formation of LRP6 signalosomes in which LRP6 is phosphorylated by CK1 and GSK3 
kinases, releasing β-catenin, which accumulates and translocates into the nucleus to form an active 
transcription complex with TCF/LEF proteins. 

2. LRP6 Structure, Regulation and Role in Tissue Homeostasis 

2.1. Structure 

LRP5 and LRP6 proteins are 70% identical [4]. These receptors consist of an extracellular domain 
with four YWTD (Tyr–Trp–Thr–Asp)-type β-propeller motifs (P1–P4), four EGF-like domains (E1–
E4) and three LDLR type A domains (L1–L3) close to the transmembrane (Figure 2A) [8]. One EGF-
like domain following each YWTD motif form together the functional module for ligand recognition 
which are part of two functional units, namely, P1E1P2E2 and P3E3P4E4. While the P1E1P2E2 unit 
binds specifically WNT1, WNT2, WNT2b, WNT6 and WNT9b, P3E3P4E4 binds WNT3 and WNT3a 
[4,8–10]. Interestingly, LRP6 dimerization mediated by LDLR domains is required for WNT3a 
activation of β-catenin signaling [11]. Additionally, LRP6 mutant lacking the extracellular domain 
(named LRP6ΔN mutant) is a constitutively active form of LRP6 that increases β-catenin-TCF/LEF 
transcriptional activity. This suggests that the LRP6 extracellular domain exerts a negative control on 
β-catenin-dependent transcriptional activity, probably due to folding rearrangement (Figure 2B) [12]. 
In contrast, deletion of the cytoplasmic domain of LRP6 (named LRP6ΔC mutant) induces a 
dominant-negative effect, abrogating β-catenin-dependent transcriptional activity [13]. 

 
Figure 2. LRP6 structure. (A) Schematic representation of human LRP6 domains: βp, YWTD β-
propeller domains; CD, cytoplasmic domain; E, EGF-like domains; L, LDLR type A repeats; S, signal 
peptide; TM, transmembrane domain. The five PPP(S/T)P phosphorylation motifs are shown in red. 
(B) LRP6 ectodomain in its resting state. In absence of ligands, LRP6 undergoes a large 
bending/unbending motion, preventing homodimer and signalosome formation [14]. 

2.2. Post-Translational Maturation and Regulation 

LRP6 maturation involves several post-translational modifications to ensure correct folding. 
Palmitoylation of Cys-1394 and Cys-1399 residues is essential for LRP6 exit from the endoplasmic 
reticulum (ER). Indeed, palmitoylation-deficient LRP6 mutants are retained in the ER due to Lys-
1403 mono-ubiquitination, resulting in defective WNT/β-catenin pathway activation [15]. 
Conversely, Lys-1403 mono-ubiquitination is needed for correct folding, allowing LRP6 to interact 
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with a chaperone-acting ubiquitin-binding protein, therefore providing time to correctly fold [16]. If 
misfolding occurs, LRP6 is poly-ubiquitinated on other lysines and then targeted for ER-associated 
degradation (ERAD) [16]. 

Like many membrane-anchored proteins, LRP6 folds inefficiently. LRP6’s folding and 
membrane targeting require the assistance of chaperones and enzymes. For example, the mesoderm 
development LRP chaperone (MESD) is a specialized chaperone preventing intermolecular disulfide 
bond formation in the extracellular domain which induces LRP6 aggregation in the ER [17]. 
Moreover, the membrane targeting of LRP6 is dependent on the cell-surface glycoprotein CD44 
binding to F-actin via Ezrin, suggesting the involvement of actin polymerization in the transport of 
vesicles [18]. Consequently, CD44 silencing induces abnormal LRP6 folding and ER retention [19]. 

On the cell surface, the presence of large LRP5/6-containing complexes suggests that the 
monomeric mode of an FZD-LRP6 coreceptor complex is not privileged. In fact, FZD receptors (FZDs) 
and LRP5/6 undergo multiple polymerizations on the cell surface upon WNT ligand binding, to form 
oligomers. WNT ligands selectively bind different states of LRP5/6-FZD receptor oligomerization 
[20]. For instance, WNT1 subfamily ligands (WNT1, WNT2, WNT2b, WNT6 and WNT9b) 
preferentially bind receptor complexes with predominant LRP5/6 abundance, while WNT3 
subfamily ligands (WNT3 and WNT3a) bind to predominant FZD-containing complexes. Dickkopf-
related protein 1 (DKK1) is a secreted protein that antagonizes canonical WNT signaling by 
competitive binding to the P3E3P4E4 domain of the LRP6 coreceptor. This leads to LRP6 extracellular 
domain compaction, resulting in the inhibition of both receptor oligomerization and signaling 
activation [10,14,21]. Conversely, loss of APC—a negative regulator of WNT signaling—induces the 
formation of large LRP5/6 signalosomes in a ligand-independent manner [20]. 

Several groups have reported a crucial role for the five proline-rich PPP(S/T)P motifs, containing 
serine or threonine residues (Ser1490, Thr1530, Thr1572, Ser1590, Ser1607) in LRP6, in the activation 
of downstream signaling (Figure 2A) [6]. Phosphorylation of these residues by CK1 and GSK3 kinases 
leads to β-catenin-dependent pathway activation by releasing β-catenin from the destruction 
complex, and stabilizing β-catenin. When a dominant-negative mutant of CK1γ is expressed, LRP6 
phosphorylation is blocked but signalosomes still form, suggesting that LRP6 phosphorylation is a 
consequence and not the cause of LRP6 aggregation [5]. Mutations of serines or threonines into 
alanine in the proline-rich motifs also inhibit subsequent binding of AXIN and GSK3 observed during 
the amplification phase. Therefore, these mutations inhibit sustained activation of the pathway after 
WNT binding [22–24]. In addition to CK1γ and GSK3, LRP6 can be phosphorylated in the proline-
rich PPP(S/T)P motifs by mitogen-activated protein kinases ERK, p38 and JNK, resulting in WNT/β-
catenin pathway activation [25–27]. Finally, direct interaction between the tight junction 
transmembrane protein BVES/POPDC1 and the LRP6 transmembrane domain leads to LRP6 
dephosphorylation by the PP2A phosphatase, thus inducing a negative feedback regulation of WNT 
signaling pathway stimulation [28]. Therefore, LRP6 may also represent a point of convergence 
between the WNT pathway and other signaling pathways. 

2.3. Endocytosis 

Endocytosis is required for sustained WNT/β-catenin signal activation. Indeed, endocytosis of 
the LRP5/6-FZD receptor complex occurs quickly after WNT binding [29]. Interestingly, single amino 
acid substitutions of LDLR repeat residues inhibit LRP6 internalization and WNT signaling activity. 
It has been suggested that clathrin- and caveolin-dependent pathways mediate receptor complex 
endocytosis, depending on the cellular context and the WNT subtype [30,31]. By down-regulating 
transmembrane receptors, clathrin-mediated endocytosis is frequently involved in signal termination 
[32]. However, it was recently reported that APC inactivation can induce ligand-independent LRP6 
signalosome formation via clathrin-mediated endocytosis [33]. This suggests that, without WNT 
ligands, APC inhibits receptor activation via the clathrin pathway. 

Caveolin-dependent internalization occurs mostly at lipid rafts, a platform for receptor-
mediated signaling, which facilitates the sequestration of receptors and signaling molecules within 
caveolae [34]. In fact, the cytoplasmic tail of LRP6 exhibits two tyrosine-based motifs (YXXY and 
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YXXF) that can constitute an endocytic signal [35]. Mutation of these tyrosines impairs LRP6 
endocytosis and induces LRP6 association with caveolin in lipid rafts. It has been proposed that in 
the absence of WNT signal, LRP6 is distributed between lipid raft and non-lipid-raft domains. Upon 
binding of WNT glycoproteins, LRP6 and FZD coreceptors are translocated to lipid rafts and 
aggregate in LRP6 signalosomes [5]. LRP6 is then phosphorylated and internalized by caveolin-
dependent mechanisms, an event required for downstream β-catenin pathway activation. Therefore, 
disruption of the tyrosine-based motifs promotes LRP6 caveolin-mediated endocytosis at the expanse 
of clathrin-mediated endocytosis [35]. Notably, by phosphorylating these tyrosine residues, SRC and 
FER kinases reduce LRP6 cell surface distribution and inhibit the WNT/β-catenin pathway after 
WNT3a stimulation. Thus, LRP6 tyrosine phosphorylation acts as a negative feedback to avoid 
uncontrolled activation of the WNT pathway [36]. 

2.4. Tissue Homeostasis 

2.4.1. Embryonic Development 

Mouse models lacking Lrp6 have been developed in order to determine the role of LRP6 during 
development. Global Lrp6 deletion in mice induces a severe phenotype with developmental defects 
in eye, limb and neural tube [37,38]. Moreover, mice die at birth, indicating a crucial role for LRP6 in 
embryogenesis, organ formation and function. Notably, the phenotype of Lrp6 knockout mice is less 
severe than the phenotype observed in Ctnnb1 knockout mice, which die during gastrulation, and the 
phenotype observed in Wnt3a, Wnt1 and Wnt7a knockout mice, which also exhibit early embryonic 
lethality [37,39]. 

2.4.2. Intestinal Epithelial Development and Homeostasis 

The WNT/β-catenin pathway is critical for intestinal epithelial homeostasis and development. 
Mice overexpressing DKK1, a WNT pathway inhibitor, exhibit reduced numbers of crypts and villi, 
decreased villus size [40], as well as proliferation and differentiation defects—especially of secretory 
cell types including Paneth cells, goblet cells and enteroendocrine cells. This indicates that active 
WNT signaling controls intestinal epithelial cell proliferation, differentiation and renewal. In this 
regard, both LRP5 and LRP6 are expressed in epithelial cells at the bottom of adult intestinal crypts, 
where proliferation and differentiation are tightly regulated [41]. Notably, while conditional LRP5 or 
LRP6 deletion in intestinal epithelial cells does not alter intestinal architecture during late embryonic 
stages, conditional deletion of both LRP5 and LRP6 significantly perturbs the crypt–villus 
architecture, with decreased cell proliferation, reduced enteroendocrine cell numbers and altered 
enterocyte distribution along the crypt–villus axis [42]. These data suggest that LRP5 and LRP6 play 
compensatory roles during embryonic intestinal development. Interestingly, however, LRP5/6 and 
WNT/β-catenin are nonessential for the development of pseudostratified epithelium (E13.5, E14.5), 
the stage before the formation of columnar epithelium in typical villi [43]. 

3. LRP6 and Carcinoma Development 

Given the importance of the WNT/β-catenin pathway in development, proliferation and 
differentiation, disruption of this pathway leads to the development of many diseases, including 
cancer. Deregulation of the pathway occurs at different levels, and mutations in genes encoding 
components of the destruction complex are central to tumor formation [44]. Additionally, some 
polymorphisms identified in the LRP6 gene have been associated with different susceptibility to the 
development of cancers (Table 1). 
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Table 1. LRP6 functional variants and expression status in distinct cancers. Some single-nucleotide polymorphisms (SNPs) and mutations in the LRP6 gene have 
been associated with increased or decreased risk of cancer development. 

Variants and 
Expression Status Cancer Risk and Prognosis References 

LRP6 rs6488507 Non-small-cell lung cancer (NSCLC) Increases the risk of NSCLC in tobacco smokers [45]  
LRP6 rs10845498 Lung squamous cell carcinoma (SCC) Associated with a reduced risk of SCC [45]  
LRP6 rs10743980 Bladder cancer Associated with a decreased risk of bladder cancer [46] 

LRP6 rs141458215 
(p.T867A) 
p.N789S 
p.W239L 

Colorectal cancer (CRC) Novel candidate risk factor for early onset of CRC [47]  

Overexpression Hepatocellular carcinoma (HCC) 
Associated with malignancy, poor prognosis and 

chemoresistance 
[48–50] 

Overexpression Breast cancer  Defines a new class of breast cancer subtype [51]  
Overexpression 

Increased activity 
Pancreatic ductal adenocarcinoma (PDAC) KRAS-dependant 

pancreatic cancer  
Associated with tumour progression [52] 

Overexpression 
Increased activity 

Colorectal cancer (CRC) Associated with malignancy and poor prognosis [27,53,54]  
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The following sections provide an overview of current knowledge on the role and regulation of 
LRP6 in the development of epithelial cancers, including colorectal, liver, breast and pancreatic (as 
summarized in Figure 3). 

 
Figure 3. LRP6 and WNT/β-catenin pathway alterations in epithelial cancers. (A) In colorectal cancer 
(CRC), LRP6 overexpression is observed in 61% of malignant tissues isolated from patients. (i) 
Mutations in the E3 ubiquitin-protein ligase RNF43, (ii) downregulation of the antagonist DKK1 and 
(iii) overactivation of the RAS/MAPK pathway result in the recruitment of degradation complex 
components at the membrane and WNT/β-catenin pathway overactivation. (B) In hepatocellular 
carcinomas (HCCs), LRP6 is overexpressed in 45%–75% of HCC tumours. Downregulation of miR-
126-3p, miR-202 and single-nucleotide polymorphism of miR-1269 result in increased LRP6 mRNA 
stability and protein levels. The long non-coding RNA FOX2-ASI, upregulated in HCC, targets and 
downregulates DKK1 mRNA (LRP6 inhibitor), thus increasing LRP6 membrane levels. (C) In breast 
cancers (BCs), LRP6 overexpression is observed in 20%–36% of carcinomas, and β-catenin nuclear 
accumulation is reported in 40%–60% of cases. (D) In pancreatic ductal adenocarcinoma (PDAC), (i) 
mutations of RNF43 are observed in 5%–10% of PDAC patients, (ii) down-regulation of miR-454 and 
(iii) upregulation of LINC01133—a long non-coding RNA which induces DKK1 promoter methylation 
(decreasing DKK1 expression)—all explain increased LRP6 expression and subsequent increased β-
catenin-dependent signaling. 

3.1. Colorectal Cancer 

3.1.1. Molecular Biomarkers 

With more than 1.8 million new cases and 881,000 deaths in 2018, colorectal cancers (CRCs) 
represent the third most diagnosed cancer worldwide and the second leading cause of death by 
cancer [55]. CRC incidence is higher in developed countries, and is increasing in transition countries. 



Cancers 2019, 11, 1162 8 of 23 

 

CRC is a heterogenous disease with distinct CRC subtypes identified and associated with unique 
clinical and molecular features [56]. Most sporadic CRCs arise in a multistep process, from mucosal 
hyperplasia to adenomas and carcinomas. Of these cancers, 70%–80% develop via conventional 
adenomatous polyps initiated by mutations activating the WNT/β-catenin pathway, commonly in 
the APC gene [57]. Mutually exclusive to APC, other common mutations of WNT pathway 
components include CTNNB1, AXIN2, SOX9 and RNF43 [58]. However, dysregulation of β-catenin 
signaling is not sufficient to generate the CRC phenotype. Chromosomal instability and additional 
somatic mutations in KRAS, BRAF, PIK3CA and/or inactivation of the TP53, SMAD4 and FBXW7 
tumor suppressor genes collaborate to promote the progression of APC-mutant adenomatous lesions 
to CRC. Serrated adenocarcinomas, accounting for 20%–30% of CRCs, follow an alternative pathway 
independent of APC mutations, in which serrated polyps replace the traditional adenoma as the CRC 
precursor lesion [59]. This pathway involves early BRAF mutations, excess CpG island methylation 
and DNA microsatellite instability (MSI). Interestingly, increased WNT pathway activation is 
frequently observed in BRAF-mutated tumours due to loss-of-function mutations in RNF43 [60]—an 
E3 ubiquitin ligase which mediates ubiquitination and degradation of the WNT receptor complex 
(Figure 1). 

3.1.2. Deregulation of LRP6 Expression and Function 

Using whole-genome sequencing, three functional variants of LRP6 have been identified as 
novel candidate risk factors of early-onset CRC patients (Table 1) [47]. Besides that, in a systematic 
review of 11 publications, using sequence data from 863 familial CRC cases and 1604 individuals 
without CRC, Broderick et al. (2017) found no significant enrichment of LRP6 mutations in CRC 
[61,62]. Nevertheless, LRP6 is overexpressed in many CRC cell lines in comparison to normal 
epithelial cells, and 61% of malignant tissues isolated from sporadic CRC patients harbor higher LRP6 
levels (Table 1) [53]. This increased LRP6 expression in CRC may result from hypermethylation of 
the Necdin promoter—a transcriptional repressor of the LRP6 gene [63]. Aside from these 
observations, reduced expression of the LRP6 antagonist DKK1 has also been observed in CRC 
patients, and is inversely correlated with tumour grade and metastatic potential [64–66]. 

LRP6 phosphorylation is also increased in human colorectal tumours in comparison to healthy 
adjacent normal tissues (Table 1) [27,54]. This increased LRP6 phosphorylation correlates with 
tumour malignancy and staging as well as with poor prognosis of CRC, suggesting an important 
contribution of LRP6 activation in CRC progression and disease outcome [54]. In this regard, it has 
been shown that by inhibiting LRP6 expression, miR-195 down-regulates β-catenin signaling and 
transcription of target genes such as RUNX2 and VEGFa, which in turn decrease CRC metastasis [67]. 
Additionally, the lncRNA-MALAT1, which is highly expressed in recurrent CRC, reduces the levels 
of miR-195, abrogating its inhibitory effect on LRP6 expression. Hence, MALAT1 was recently 
proposed to be a biomarker for predicting the recurrence and metastasis of CRC patients [67]. 

3.1.3. Targeting LRP6 in CRC Models 

Not surprisingly, LRP6 overexpression in CRC cells induces WNT/β-catenin activation, actin 
and microtubule remodeling and cell migration [54]. Conversely, LRP6 silencing—even in CRC cells 
with APC mutations—inhibits constitutive WNT pathway activation, indicating that LRP6 at least 
partially mediates the positive effect of APC inactivation on the WNT pathway [33]. These results 
were recently challenged by Chen and He (2019), who did not detect any modulation of WNT 
signaling activation and β-catenin levels in cell lines in which APC and LRP6 and/or LRP5 were 
knocked out by CRISPR/Cas9 genome editing [68]. However, single-cell analyses performed in 
isogenic human colonic epithelial cell lines confirmed that total and nuclear levels of β-catenin were 
increased upon LRP6 silencing, hence confirming an important role for LRP6 in WNT signaling of 
APC-mutated cells [69]. In this respect, LRP6 monoclonal antibodies targeting the WNT3 binding site 
significantly reduce proliferation and growth of tumorigenic ApcMin/+ organoids (Table 2) [33]. 
Furthermore, a bispecific antibody (GSK3178022) to LRP6 that is capable of blocking stimulation by 
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a range of WNT and R-spondin (RSPO) ligands in vitro potently delayed tumor growth in a patient-
derived RSPO fusion model of CRC (Table 2) [70]. More recently, single-domain antibody fragments 
(VHH) against the WNT3-binding site have been shown to block Rnf43 mutant intestinal organoid 
growth and survival, by depleting stem-like tumor cells (Table 2) [71]. Overall, these studies clearly 
indicate that LRP6 may represent a promising therapeutic target for CRC, in particular for WNT-
hypersensitive tumours. 

KRAS is the most commonly mutated oncogene in CRC. KRAS is mutated on codons 12, 13, 61, 
117 or 146 in about 30–60% of patients with adenocarcinomas of the colon or rectum [72,73]. Our 
group has demonstrated in cellulo that the nuclear transcriptional activity of β-catenin is enhanced 
upon sustained oncogenic stimulation of normal intestinal epithelial cells (IECs) by KRAS (G12D) or 
its downstream effectors BRAF (V600E) and MEK1 (S218/222D) [27]. Importantly, the expression of 
a dominant-negative TCF4 mutant which inhibits β-catenin/TCF4 transactivation severely attenuated 
the IEC transformation induced by oncogenic MEK1 and reduced tumorigenic potential in mice [27]. 
These data suggest that KRAS/MAPK signaling uses the β-catenin pathway to induce IEC 
transformation. This is consistent with the recent observation that WNT signaling components were 
significantly enriched in KRAS-dependent CRC cells compared to KRAS-independent cells, even 
though comparable APC mutations occurred in both [74]. Notably, we recently observed that LRP6 
was phosphorylated on serine-1490 and threonine-1572 in an MEK-dependent manner, in IEC 
transformed by oncogenic KRAS or BRAF, thus providing a mechanism integrating KRAS/MAPK 
and canonical WNT/β-catenin signaling during intestinal transformation (Figure 3A and Table 1) [27]. 

3.2. Liver Cancer 

3.2.1. Molecular Biomarkers 

Liver cancer incidence is higher in the least-developed countries. Environmental risk factors for 
liver cancer include viral infections, alcohol intake, obesity and type 2 diabetes [55]. Hepatocellular 
carcinoma (HCC) represents 75–85% of liver cancers, with 50–83% of these cancers characterized by 
abnormal accumulation and distribution of β-catenin [75]. By contrast to CRC, HCC rarely exhibits 
APC mutations. However, CTNNB1 or AXIN1 mutations are frequently observed respectively in 20% 
and 55–100% of HCCs (100% of poorly differentiated HCCs) [75–80]. Thus, aberrant WNT/β-catenin 
pathway activation is likely involved in HCC tumorigenesis. 

3.2.2. Deregulation of LRP6 Expression and Function 

Although no mutation has been reported in LRP6, 45–75% of HCC tumour samples harbor 
increased LRP6 expression in comparison to normal liver tissue. This increased LRP6 expression is 
associated with malignancy, poor prognosis and chemoresistance (Table 1) [48–50]. Accordingly, 
ectopic expression of a constitutively activated form of LRP6 in HCC cells promotes proliferation, 
invasion and migration, and increases tumour formation in immunodeficient mice [48]. Aside from 
these observations, it has recently been reported that high expression of LncRNA FOXD2-AS1, which 
targets the LRP6 inhibitor DKK1 mRNA, predicts poor prognosis in HCC patients. Mechanistically, 
by downregulating DKK1 expression, FOXD2-AS1 promotes the activation of WNT/β-catenin in 
HCC cell lines and enhances their tumorigenic properties (Figure 3B) [81]. Interestingly, LRP6 
expression is also regulated by various miRNAs in HCC. MiR-202 and miR-126-3p expression is 
decreased in HCC tumour tissues, inversely correlating with LRP6 expression [82,83]. MiR-202 or 
miR-126-3p overexpression in HCC cells suppresses LRP6 expression, and dramatically inhibits HCC 
cell proliferative, angiogenic and invasive properties (Figure 2B) [82,83]. Moreover, by targeting 
LRP6, miR-1269a inhibits proliferation while inducing apoptosis of human HCC cells. Interestingly, 
a single nucleotide variant in miR-1269a, associated with increased susceptibility to HCC, was 
recently identified [84]. 

Hepatitis B (HB) viral infection is one of the major etiological factors for HCC, with chronic 
infection occurring in 50% of HCCs [85]. The HBV-expressed HBx protein is necessary not only for 
HBV infection but also for HCC development [86]. Intriguingly, a C-terminal truncated Hbx protein 
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(HBx∆C) is found in 46–80% of HBV-infected HCCs [87,88]. A recent study reported that HBx∆C 
increased the expression of the lipid raft-associated protein caveolin-1, resulting in the activation of 
the WNT/β-catenin pathway [50]. More specifically, caveolin-1 acts by enhancing LRP6 protein 
stability, leading to the activation of the WNT pathway. Given the high incidence of HBV in HCC 
development, targeting LRP6 could be an efficient therapeutic strategy to limit tumour development 
in this context. 

3.3. Breast Cancer 

3.3.1. Molecular Biomarkers 

Breast cancers are a leading cause of cancer deaths, with a higher incidence in industrialized 
countries. Three main subtypes have been described, namely, luminal estrogen receptor (ER)-
positive, HER2-enriched and triple negative breast carcinomas (TNBCs) that do not express ER, PR 
and HER2 [89]. Consequently, TNBC patients are unresponsive to targeted therapies, and treatment 
is limited to conventional chemotherapy. Therefore, there is an urgent need for new therapeutic 
targets specifically for these patients. Notably, nuclear β-catenin levels are increased in 40–60% of 
breast cancers, notably in TNBC subtypes associated with poor prognosis [90]. Interestingly, mice 
expressing an active form of β-catenin in the mammary gland develop basal-like tumours, suggesting 
a role for the WNT signaling pathway in breast tumour development. However, in contrast to what 
is observed in HCC or CRC, mutations of genes encoding components of the WNT/β-catenin 
pathway are rarely found in breast cancer [91,92]. Interestingly, expression of LRP6, but not LRP5, 
has been shown to define a new class of breast cancer subtypes, as LRP6 is overexpressed in 20–36% 
of breast carcinomas (Figure 3C and Table 1) [51]. 

3.3.2. Targeting the Expression and Function of LRP6 

LRP6 silencing in breast cancer cell lines impairs proliferation, anchorage-independent cell 
growth and tumorigenesis in xenograft assays. In addition, LRP6 is able to initiate mammary 
tumorigenesis, as seen with MMTV-LRP6 mice that develop mammary gland hyperplasia [93]. 
Notably, exogenous administration of a MESD peptide in a MMTV-WNT1 tumour mouse model 
suppressed tumor growth in vivo, likely through peptide binding to mature LRP6 at the cell surface 
and interference with ligand binding [51]. As discussed previously, LRP5/6-FZD receptor complexes 
are found in lipid rafts enriched with cholesterol and sphingolipids. Therefore, cholesterol depletion 
with methyl-β-cyclodextrins disrupts lipid rafts and decreases both LRP6 and β-catenin expression 
in TNBC-derived cells [94]. Finally, natural compounds isolated from plants (e.g., prodigiosin, 
silibinin, rottlerin, salinomycin and gigantol) all inhibit WNT/β-catenin activity and growth in TNBC 
cells by suppressing LRP6 expression and phosphorylation (Table 2) [95–99]. Moreover, niclosamide, 
a teniacide of the antihelminthic family, induces LRP6 degradation in breast cancer cell lines, 
resulting in increased cell apoptosis and decreased cell proliferation (Table 2) [100]. This emphasizes 
the possibility that LRP6 can represent a potential therapeutic target for breast cancers. 

3.4. Pancreatic Ductal Adenocarcinoma 

3.4.1. Molecular Biomarkers 

Pancreatic cancer is among the most devastating cancers, with a five-year survival rate less than 
10% [55,101]. Pancreatic cancer incidence is explained by many risk factors, including smoking, 
alcohol intake, family history and genetic susceptibility with germline mutations in BRCA1, BRCA2 
and mismatch repair genes [101,102]. Pancreatic ductal adenocarcinoma (PDAC), the most common 
and aggressive form of pancreatic cancer, is mainly associated with the presence of oncogenic 
KRASG12V mutation [103,104]. Some studies highlight the promoting role of the WNT/β-catenin 
signaling pathway in KRAS-dependent PDAC initiation and progression [105,106]. Interestingly, 65% 
of PDAC tumor samples display increased β-catenin protein levels, which are associated with 
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decreased serine 75/threonine 41 phosphorylation and β-catenin stabilization, but not with CTNNB1 
gene mutation [107]. Notably, most patient tumors exhibit enhanced β-catenin levels without 
modification of phosphorylation state, suggesting that other mechanisms are involved. That said, 
genomic analysis has revealed that 5–10% of PDAC patients harbor mutations in the RNF43 gene 
[108–111]. Notably, these pancreatic tumours are highly dependent on WNT signaling (Figure 3D 
[112,113]. 

3.4.2. Deregulation of LRP6 Expression and Function 

LRP6 expression and activity are tightly regulated in PDAC. Increased LRP6 expression and 
phosphorylation associated with β-catenin nuclear accumulation have been observed in human-
derived PDAC as well as murine KRAS-dependent pancreatic cancers (KPCs) [52]. More specifically, 
the microRNA miR-454, which targets LRP6 mRNA, is downregulated in PDAC (Figure 3D) and 
therefore its overexpression in pancreatic cancer cells impairs proliferation, angiogenic activity and 
metastatic potential [114,115]. Expression profiles of miRNA expressed in pancreatic cancers have 
correlated reduced miR-29c expression with poor prognosis [116]. Using TargetScan, LRP6, as well 
as FRAT2, FZD4 and FZD5, were identified as potential miR-29c targets. Not surprisingly, 
overexpression of miR-29c inhibits PDAC cell tumorigenicity and invasion, likely by direct inhibition 
of these WNT signaling proteins. On the other hand, LRP6 activity is also controlled by LINC01133, 
a long non-coding RNA upregulated in pancreatic cancers. Indeed, LINC01133 decreases DKK1 
expression by inducing DKK1 promoter methylation (Figure 3D) [117]. Therefore, LINCO1133 
overexpression in pancreatic cancer cell lines increases β-catenin transcriptional activity and 
promotes proliferative, tumoral and invasive properties. 

3.4.3. Targeting the Expression and Function of LRP6 

Interestingly, the vitamin D receptor gene has been recently identified as a determinant of survival 
in patients with pancreatic cancer [118]. In this regard, a negative correlation between patient’s 
vitamin D serum levels and pancreatic cancer has been observed, with vitamin D insufficiency 
associated with pancreatic cancer progression [118,119]. Notably, the vitamin D analogue calcipotriol, 
which displays anticancer properties in advanced pancreatic tumours, likely acts by reducing LRP6 
protein levels (Table 2) [120,121]. In fact, treatment of pancreatic cancer cells with calcipotriol induces 
the expression of low-density lipoprotein receptor adaptor protein 1 (LDLRAP1), which interacts 
with tyrosine motifs of the LRP6 cytoplasmic tail, thereby inducing LRP6 clathrin-dependent 
endocytosis and subsequent lysosome-dependent degradation. Hence, by targeting LRP6 expression, 
vitamin D analogs act as therapeutic WNT inhibitors to inhibit PDAC tumor growth. In line with 
that, LRP6 silencing in human pancreatic cancer cell lines inhibits β-catenin/TCF transcriptional 
activity and cell proliferation [52]. 

3.5. Other Epithelial Cancers 

Some evidence also suggests a role for LRP6 in the development of other epithelial cancers, 
including prostate, gastric, bladder, non-small-cell lung (NSCL) and papillary thyroid cancers. For 
instance, androgen-dependent LRP6 expression is necessary for prostate cancer cell growth [122]. As 
observed in breast cancer cells, silibinin, rottlerin, salinomycin and niclosamide were demonstrated 
to inhibit WNT/β-catenin activity and pancreatic cancer cell growth by suppressing LRP6 expression 
or phosphorylation (Table 2) [95–97,100]. Interestingly, treatment with recombinant MESD protein, a 
LRP5/6 chaperone protein able to bind to mature LRP5 and LRP6 on the cell surface, decreases LRP6 
phosphorylation in prostate cancer cells, inhibiting their proliferation and tumorigenic potential 
(Table 2) [123,124]. On the other hand, infection of gastric epithelial cells with Helicobacter pylori or 
Mycoplasma hyorhinis induced rapid phosphorylation of LRP6 and downstream activation of Wnt/β -
catenin signaling [125,126]. Additionally, curcumin and pantoprazole (a proton pump inhibitor) have 
demonstrated promising inhibitory effects on the growth of gastric adenocarcinoma (Table 2) 
[127,128]. In papillary thyroid carcinoma, miR126 and miR381-3p expression inhibits cell 
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proliferation, migration/invasion and reduces tumour growth by decreasing LRP6 expression 
[129,130]. Regarding bladder cancer, ectopic expression of LRP6 in T24 cells promotes viability and 
invasion, while knockdown of LRP6 induces cell apoptosis [131]. Interestingly, the single-nucleotide 
polymorphism of LRP6 rs10743980 was recently associated with a decreased risk of developing 
bladder cancer [46]. Likewise, in a cohort of 500 non-small-cell lung cancer (NSCLC) patients, LRP6 
rs10845498 was associated with a reduced risk of NSCLC and LRP6 rs6488507 with increased risk of 
NSCLC in tobacco smokers (Table 1) [45]. Further studies are however needed to elucidate the 
functional impact of LRP6 expression and activity in NSCLC. 
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Table 2. List of therapeutic reagents targeting LRP6 in various cancers. Different antibodies, small molecules and peptides have been shown to exert anticancer 
properties by directly or indirectly inhibiting LRP6 function. 

Therapeutic 
Reagents 

Categories Targeting Mechanism Cellular Effects Cancer Type References 

BpAb A7/B2 Bispecific Antibody 
Competition for WNT binding on 

LRP6 
Blocks both Wnt1- and Wnt3a-mediated β-catenin signaling 

and xenograft tumour growth 
Breast cancer [9] 

mAb7E5 Antibody 
Competition for WNT binding on 

LRP6 

Decreases nuclear β-catenin localisation and activity; 
Reduces proliferation and growth of tumorigenic Apc-

mutated organoids 
Colorectal cancer [33] 

GSK3178022 Bispecific Antibody 
Competition for WNTs binding on 

LRP6 
Decreases TCF/LEF transcriptional activity; Reduces tumor 

growth of patient-derived colorectal xenografts (PDX)  
Colorectal cancer [70] 

YW211.31.57  Antibody Competition for WNT3 binding Decreases TCF/LEF transcriptional activity  Breast cancer [132] 

YW210.09 Antibody Competition for WNT1 binding 
Decreases TCF/LEF transcriptional activity; Inhibits MMTV-

Wnt1 xenograft tumour growth 
Breast cancer [132] 

VHH 
Single antibody 

fragment 
Competition for WNT3-binding on 

LRP6 
Abrogates cellular response to WNT3a, but not to WNT1 

Blocks Rnf43/Znrf3 mutant intestinal organoid growth  
Colorectal cancer [71]  

Calcipotriol 
Small molecule  

Vitamin D analog 
Induces LDLRAP1 expression which 

interacts with LRP6 
Induces clathrin-dependent endocytosis and lysosome-

dependent LRP6 degradation  
Pancreatic cancer [121]  

Curcumin Small molecule 
Decreases LRP6 expression and 

phosphorylation 
Increases cell apoptosis; Reduces cell proliferation, colony 

formation and invasion; Decreases tumour growth 
Gastric 

adenocarcinoma 
[127] 

Pantoprazole 
Small molecule (proton 

pump inhibitor) 
Decreases LRP6 phosphorylation 

Decreases cancer cell growth and invasion properties; 
Increases cancer cell apoptosis 

Gastric 
adenocarcinoma 

[128] 

Prodigiosin Small molecule Decreases LRP6 phosphorylation 
Decreases cancer cell viability, proliferation, migration and 
invasion properties; Increases cell apoptosis; Reduces breast 

xenograft tumour growth 
Breast cancer [99] 

MESD Peptide LRP6 binding Tumour growth reduction in MMTV-WNT1 model  Breast cancer [51]  

MESD Peptide LRP6 binding 
Decreases LRP6 phosphorylation and reduces cancer cell 
proliferation; Reduces prostate xenograft tumour growth  

Prostate cancer [123,124] 

Silibinin, Rottlerin, 
Gigantol 

Small molecules 
Reduce LRP6 expression and 

phosphorylation  
 Growth inhibition of cancer cell lines 

Prostate and Breast 
cancer 

[95,97,98] 

Salinomycin Small molecule Reduces LRP6 expression Inhibition of cancer cell proliferation 
Breast cancer, Chronic 
lymphocytic leukemia 

[96,133] 

Niclosamide  
Small molecule 

(Antihelminthic) 

Reduces LRP6 expression and 
phosphorylation Induces LRP6 

degradation 

Induction of cancer cell apoptosis Inhibition of cancer cell 
proliferation 

Prostate cancer, Breast 
cancer, Ovarian cancer 

[100,134] 

Reduces LRP6 expression and 
phosphorylation 

Induction of cancer cell apoptosis Inhibition of cell 
proliferation, migration and angiogenesis 

Retinoblastoma [135]  
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4. LRP6: A Candidate for Targeted Therapy? 

Until now, the clinical trials that were conducted to inhibit the Wnt/β-catenin pathway mostly 
involved the use of porcupine inhibitors to block WNT secretion or the use of adenoviruses to 
overexpress DKK3, an antagonist of LRP5/6 (Table 3). Inhibitors of porcupine have demonstrated 
promising results in phase I clinical trials, inducing tumor regression in BRAF-mutant CRC, TNBC 
and pancreatic cancer patients (Table 3) [136–138]. However, given the crucial role of WNT signaling 
in the regulation of tissue homeostasis, global WNT inhibition may result in adverse or toxic effects. 
Interestingly, LRP6 alterations belong to inclusion criteria in clinical trials using inhibitors of 
porcupine in various cancers, highlighting the presumed critical role of LRP6 in cancer development 
[139]. Indeed, as mentioned in this review, upregulated LRP6 function in tumours is frequently 
associated with cell malignancy, poor prognosis and/or chemoresistance. Therefore, LRP6 protein 
clearly represents a pertinent actionable target for cancer therapy. In this regard, modified antibodies 
specifically targeting the extracellular domain of LRP6 were previously generated, and some of them 
seem very promising [9,33,70,71,132]. For instance, LRP6 monoclonal antibodies targeting the WNT3 
binding site potently reduced the proliferation and growth of Apc-mutant intestinal tumoroids [33]. 
Nonetheless, the LPR6 extracellular domain is divided into two functional entities, P1E1P2E2 and 
P3E3P4E4, which respectively bind WNT1 and WNT3 glycoproteins. Therefore, the use of an 
antibody targeting the WNT3 binding site of LRP6 can sensitize cells to WNT1 ligands and vice versa, 
probably due to antibody-mediated LRP6 dimerization. Consequently, it becomes necessary to 
develop specific domain antibodies to selectively inhibit LRP6 activation by certain classes of WNTs 
while leaving the binding of other WNT ligands unchanged, limiting potential side effects. In this 
respect, Fenderico et al. (2019) recently used CIS display technology to identify single-domain 
antibody fragments (VHH) that bind the P3E3P4E4 region (WNT3-binding site). By inhibiting cellular 
responses to WNT3a but not those to WNT1, these anti-LRP5/6 VHHs efficiently block Rnf43 mutant 
intestinal organoid growth and survival [71]. Thus, targeting specific regions of LRP6 ectodomain, 
especially the P3E3P4E4 region, may represent a promising strategy to reduce β-catenin-dependent 
signaling in tumours, without altering other WNT functions. 
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Table 3. Clinical trials targeting effectors of WNT/β-catenin pathway. Given the importance of the WNT/β-catenin pathway in cancer development, effectors of this 
pathway such as porcupine and LRP6 are specifically targeted in Phase 1 and 2 clinical trials in various cancers. Ad: adenovirus, DKK3: Dickkopf-related protein 3, 
RAF: rapidly accelerated fibrosarcoma, PD-1: Programmed cell death 1, EGFR: epidermal growth factor receptor. 

Intervention Target Condition or Disease Sponsor Phase 
Submitted 

Date Status Identifier 

Drug: LGK974 (Other names: 
WNT974, porcupine inhibitor) 

Biological: PDR001 (PD-1 
monoclonal antibody) 

Porcupine PD-1 

Pancreatic Cancer, BRAF Mutant 
CRC, Melanoma, Breast cancer 

(TNBC), Squamous Cell Cancers: 
head, neck, cervical, esophageal, lung 

Novartis 
Pharmaceuticals 

Phase 1 4 May, 2011 Recruiting NCT01351103 

Drug: WNT974 (porcupine 
inhibitor) Drug: LGX818 (RAF 

inhibitor) Biological: 
cetuximab (EGFR antibody) 

Porcupine RAF 
EGFR 

Metastatic BRAF Mutant CRC 
Array 

BioPharma 
Phase 1 
Phase 2  

6 October, 
2014 

Completed NCT02278133 

Drug: WNT974 (porcupine 
inhibitor)  

Porcupine 
Head and Neck Squamous Cell 

Cancer 

University of 
Michigan Rogel 
Cancer Center 

Phase 2 
5 January, 

2016 
Withdrawn  NCT02649530 

Biological: Ad-REIC/Dkk-3 
(↑DKK3 expression) 

Complex 
receptor (LRP6) 

Prostate cancer 
Momotaro-

Gene  
Phase 1 

3 September, 
2010 

Withdrawn 
(Suspended) 

NCT01197209 

Drug: Ad5-SGE-REIC/Dkk3 
(↑DKK3 expression) 

Complex 
receptor (LRP6) 

Prostate cancer 
Momotaro-

Gene  
Phase 1 
Phase 2 

21 August, 
2013 

Active, not 
recruiting 

NCT01931046 

Drug: niclosamide 
(Antihelminthic) 

Complex 
receptor (LRP6) 

Colon cancer M. Morse MD  Phase 1 
10 February, 

2016 
Recruiting NCT02687009 



Cancers 2019, 11, 1162 17 of 23 

 

5. Conclusions 

From these previous studies, it is clear that LRP6 is a key player in the activation of the WNT/β-
catenin signaling pathway and, consequently, in the regulation of tissue homeostasis under 
physiological and pathological conditions. However, β-catenin-independent roles of WNT/LRP6 
signaling have recently been reported [140]. How exactly these β-catenin-independent WNT/LRP6 
signaling pathways contribute to tumour development remains to be determined. Furthermore, LRP6 
is phosphorylated by mitogen-activated protein kinases such as ERK1/2, which transduce signals 
from the cell surface to the nucleus, thus affecting cell proliferation, differentiation and survival [25]. 
Notably, increased phosphorylation of LRP6 was observed in KRAS-transformed intestinal epithelial 
cells [27]. Hence, it will be relevant to determine whether inhibiting LRP6 function interferes with 
tumoral properties of human KRAS-mutated cancer cells. This would be a very important finding 
since KRAS is mutated in 80% of human PDAC, 40–50% of CRC and 30–50% of lung carcinomas and 
is very difficult to target. In the future, it will be necessary to fully characterize LRP6 activators and 
downstream effectors under specific cellular contexts. The elucidation of the LRP6 interactome may 
be one additional step to further understand LRP6 functions in cancer development. 
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