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Abstract: Apolipoprotein A-I (ApoA-I), the major protein component of high-density lipoproteins
(HDL) is a multifunctional protein, involved in cholesterol traffic and inflammatory and immune
response regulation. Many studies revealing alterations of ApoA-I during the development and
progression of various types of cancer suggest that serum ApoA-I levels may represent a useful
biomarker contributing to better estimation of cancer risk, early cancer diagnosis, follow up,
and prognosis stratification of cancer patients. In addition, recent in vitro and animal studies
disclose a more direct, tumor suppressive role of ApoA-I in cancer pathogenesis, which involves
anti-inflammatory and immune-modulatory mechanisms. Herein, we review recent epidemiologic,
clinicopathologic, and mechanistic studies investigating the role of ApoA-I in cancer biology, which
suggest that enhancing the tumor suppressive activity of ApoA-I may contribute to better cancer
prevention and treatment.
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1. Introduction

Apolipoprotein A-I (ApoA-I), the major protein component of high density lipoprotein (HDL),
widely known for regulating cholesterol trafficking and for protecting against cardiovascular disease
(CVD), may also modulate inflammatory and immune responses [1]. Recent studies suggest that
organismal metabolic changes that include shifts in the levels and the quality of ApoA-I, may facilitate
cancer initiation and progression [2,3]. Herein, we present and review the findings of various
epidemiologic, clinicopathologic, and mechanistic studies implicating ApoA-I in cancer, with emphasis
on its connection with inflammatory and immune-modulating effects.

The ApoA1 gene is regarded to have the same evolutionary origin with the genes of apolipoproteins
A-II, A-IV, C-I, C-III, and E, by virtue of duplication and diversification of a basic genetic motif encoding
an 11/22 amino acid sequence with a characteristic α-amphipathic helix signature [4–7]. Homologous
ApoA-I-encoding genes have been described in mammals, birds, and teleost fish [8].

The regulation of human ApoA1 gene expression is complex and is controlled at multiple levels.
The transcription of human ApoA1 largely depends on two hormone response elements (HREs)
proximal to the transcription start site that bind members of the hormone nuclear receptor superfamily.
Among them, peroxisome proliferator-activated receptor-γ (PPARγ) appears to have a prominent role
in ApoA1 transactivation by interacting with HREs as heterodimer with RXRα. Other transcription
factors implicated in the regulation of ApoA1 promoter include the hepatocyte nuclear factor 4 (HNF4),
Liver Receptor Homologue 1 (LRH1) and the ApoA-I Regulatory Protein 1 (ARP1/NR2F2) which
activate and repress the ApoA1 promoter, respectively [9]. HNF4 operates together with Sp1 in the
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communication of ApoA1 promoter with enhancer sequences that facilitate the recruitment of the basal
transcriptional machinery.

ApoA-I expression is also controlled by a long noncoding RNA, ApoA1-AS, which is transcribed in
the apolipoprotein gene cluster on chromosome 11q23.3 and modulates suppressive epigenetic marks
leading to ApoA1 transcriptional repression [10]. Interestingly, the liver, small intestine, and colon
where ApoA-I is predominantly detected, show approximately 100-fold higher expression levels of
ApoA1 mRNA compared to ApoA1-AS, whereas the ApoA1/ApoA1-AS ratios are less than one in most
other tissues [10]. Post-transcriptional mechanisms may also contribute to the regulation of ApoA-I
expression in certain conditions. Thus, an enrichment of polysomal fractions with ApoA1 mRNAs
explains the increase in ApoA-I synthesis observed in high fat-fed mice in the absence of an effect on
transcription [11].

Following translation and intracellular removal of a N-terminal signal peptide, ApoA-I is secreted
as a lipid-poor/free mature protein of 243 amino acids and a molecular weight of approximately
28kDa [6]. Its structure contains ten consecutive helical regions, critical for the biophysical properties
of the protein to spontaneously solubilize lipids in aqueous environment [6]. Based, exactly, on the
properties of these amphipathic helical motifs, various peptides, without sharing any sequence
homology, have been synthesized, known as ApoA-I mimetics, because of their ability to simulate
ApoA-I functionality [12–14]. In physiological conditions, the bulk of ApoA-I constitutes approximately
70% of the protein component of HDL, which are microemulsions composed of a nonpolar lipid core,
a surface polar lipid monolayer and up to 95 different proteins [15,16].

HDL are heterogeneous and dynamic structures exchanging lipids with cells and other lipoproteins,
classified to different subcategories with pre-β1 HDL corresponding to lipid-poor ApoA-I [17,18].
ApoA-I is essential for the assembly of HDL. ApoA-I stabilizes the ATP-binding cassette transporter 1
(ABCA1), a member of the ABC superfamily, at the cell membrane of hepatocytes and enterocytes,
enabling it to mediate the efflux of cellular phospholipids and free cholesterol to nascent discoid
HDL particles harboring two to four molecules of ApoA-I, leading to the biogenesis of HDL particles.
A similar lipid efflux by ABCA1 in cells of peripheral tissues initiates the reverse cholesterol transport
(RCT) [17,19] (Figure 1). Also, ApoA-I activates lecithin cholesterol acyl transferase (LCAT), leading to
the maturation of HDL particles [20]. Interaction of lipidated ApoA-I in discoid or more mature HDL
particles with another transporter of the ABC family, ATP-binding cassette subfamily G member 1
(ABCG1), contributes further to the RCT [21]. HDL particles undergo additional remodeling through
interaction with the cholesteryl ester transfer protein (CETP) [22]. Finally, binding of HDL particles to
the scavenger receptor class B type 1 (SR-BI), transfers cholesterol down a cholesterol gradient [23,24].
As a result, cholesterol mobilized at peripheral tissues can enter the liver and is catabolized and
excreted to the bile [24–26]. ApoA-I itself is mainly catabolized in the liver [27,28] (Figure 1).

Besides promoting RCT, ApoA-I inhibits apoptosis and pro-oxidative and proinflammatory
processes in endothelial cells, induces vasodilation, inhibits the activation of platelets, and contributes
to innate immunity. Some of these functions are relevant to inflammatory and malignant processes
and are discussed below.
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Figure 1. ApoA-I in relation to high-density lipoprotein (HDL) biogenesis and reverse cholesterol 
transport (RCT). About 75% of the ApoA-I protein is produced by hepatocytes and the remaining 25% 
by epithelial cells of the small intestine. It has been shown that some ApoA-I is also produced by the 
most proximal part of the mouse colon, in line with the reported ApoA-I expression in human fetal 
colon. ApoA-I is mainly catabolized in the liver. In addition, ApoA-I protein unassociated with lipids 
can be filtered in renal glomeruli, recognized by cubulin, a protein synthesized by distal renal tubular 
cells, internalized and degraded by renal epithelial cells. Binding of ApoA-I to ABCA1 at the cell 
membrane of hepatocytes and enterocytes mediates the production of nascent HDL particles. A 
similar efflux of lipids by ABCA1 and ABCG1 directly in various cells, or indirectly in macrophages 
(Mφ) of peripheral tissues, contributes to the RCT. LCAT, which catalyzes the esterification of free 
cholesterol and interaction through CETP transferring cholesterol esters to very low density 
lipoproteins (VLDL) and low density lipoproteins (LDL) and the phospholipid transfer protein 
(PLTP) transferring phospholipids from VLDL lipoproteins to HDL, leads to maturation and 
remodeling of HDL particles. Binding of HDL particles to SR-BI, expressed in hepatocytes, transfers 
cholesterol esters and other lipids, so that excess cholesterol can be accepted by the liver, catabolized, 
and excreted via the bile to the intestine. Also, binding of HDL remnants produced after the action of 
endothelial lipase, or lipid-poor ApoA-I to the beta chain of ATP F1 synthase, expressed at the cell 
membrane of hepatocytes and other cells (called, also, ecto-F1F0-ATPase that is similar to the F1F0 
inner mitochondrial membrane protein complex) promotes cell internalization of HDL particles 
bound to SR-BI. Abbreviations for various receptors and enzymes are explained in the main text. 

2. ApoA-I, Immunity, and Inflammation 

Throughout its evolutionary course, ApoA-I/HDL contributes to the humoral part of innate 
immunity [29]. It has antiviral activity associated with prevention of viral penetration, facilitation of 
complement-mediating bacterial killing, and protection against trypanosome brucei, a protozoal 
parasite [30–32]. ApoA-I protects from sepsis by binding to and neutralizing lipopolysaccharide 
(LPS) and lipoteichoic acid (LTA), components of the Gram-negative and Gram-positive bacterial cell 
wall, respectively [33,34]. Clearance of LPS through binding of HDL-LPS to SR-BI results in lower 
activation of the Toll-like receptor 4 (TLR4), the corresponding pathogen-associated molecular 
pattern (PAMP) recognition receptor, and in decreased production of tumor necrosis factor (TNF), 
interleukin 1β (IL-1β) and interleukin 6 (IL-6) by the proinflammatory cells that mediate sepsis 
pathology [29,35,36]. In line with these experimental findings, reduced serum ApoA-I levels in sepsis 
patients are associated with poor prognosis [37,38]. Also, ApoA-I was found to increase the levels of 

Figure 1. ApoA-I in relation to high-density lipoprotein (HDL) biogenesis and reverse cholesterol
transport (RCT). About 75% of the ApoA-I protein is produced by hepatocytes and the remaining
25% by epithelial cells of the small intestine. It has been shown that some ApoA-I is also produced
by the most proximal part of the mouse colon, in line with the reported ApoA-I expression in human
fetal colon. ApoA-I is mainly catabolized in the liver. In addition, ApoA-I protein unassociated with
lipids can be filtered in renal glomeruli, recognized by cubulin, a protein synthesized by distal renal
tubular cells, internalized and degraded by renal epithelial cells. Binding of ApoA-I to ABCA1 at
the cell membrane of hepatocytes and enterocytes mediates the production of nascent HDL particles.
A similar efflux of lipids by ABCA1 and ABCG1 directly in various cells, or indirectly in macrophages
(Mϕ) of peripheral tissues, contributes to the RCT. LCAT, which catalyzes the esterification of free
cholesterol and interaction through CETP transferring cholesterol esters to very low density lipoproteins
(VLDL) and low density lipoproteins (LDL) and the phospholipid transfer protein (PLTP) transferring
phospholipids from VLDL lipoproteins to HDL, leads to maturation and remodeling of HDL particles.
Binding of HDL particles to SR-BI, expressed in hepatocytes, transfers cholesterol esters and other
lipids, so that excess cholesterol can be accepted by the liver, catabolized, and excreted via the bile to the
intestine. Also, binding of HDL remnants produced after the action of endothelial lipase, or lipid-poor
ApoA-I to the beta chain of ATP F1 synthase, expressed at the cell membrane of hepatocytes and other
cells (called, also, ecto-F1F0-ATPase that is similar to the F1F0 inner mitochondrial membrane protein
complex) promotes cell internalization of HDL particles bound to SR-BI. Abbreviations for various
receptors and enzymes are explained in the main text.

2. ApoA-I, Immunity, and Inflammation

Throughout its evolutionary course, ApoA-I/HDL contributes to the humoral part of innate
immunity [29]. It has antiviral activity associated with prevention of viral penetration, facilitation
of complement-mediating bacterial killing, and protection against trypanosome brucei, a protozoal
parasite [30–32]. ApoA-I protects from sepsis by binding to and neutralizing lipopolysaccharide (LPS)
and lipoteichoic acid (LTA), components of the Gram-negative and Gram-positive bacterial cell wall,
respectively [33,34]. Clearance of LPS through binding of HDL-LPS to SR-BI results in lower activation
of the Toll-like receptor 4 (TLR4), the corresponding pathogen-associated molecular pattern (PAMP)
recognition receptor, and in decreased production of tumor necrosis factor (TNF), interleukin 1β (IL-1β)
and interleukin 6 (IL-6) by the proinflammatory cells that mediate sepsis pathology [29,35,36]. In line
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with these experimental findings, reduced serum ApoA-I levels in sepsis patients are associated with
poor prognosis [37,38]. Also, ApoA-I was found to increase the levels of pentraxin 3 (PTX3), an acute
phase protein, which recognizes PAMPs in viruses, bacteria, and fungi [39,40].

Inflammatory cytokines such as TNF and IL-1β repress the production of ApoA-I from hepatocytes
and increase the expression of serum amyloid A (SAA), which becomes the major protein component
of HDL in this context [41–43]. Consequently, lipid-poor ApoA-I is rapidly catabolized in the liver
and the kidney. These findings could be meaningful if ApoA-I, in addition to its proimmune features,
had anti-inflammatory potential. In this way, removal of ApoA-I could intensify the inflammatory
response, resulting in a more robust effect. On the other hand, decreased levels of ApoA-I could
contribute to destructive chronic inflammation characterizing many autoinflammatory and autoimmune
diseases. Indeed, a plethora of studies have shown that ApoA-I exhibits anti-inflammatory features
by various mechanisms [1]. In the context of the humoral arm of innate immunity, it has been
shown that ApoA-I inhibit the formation of the terminal attack complex of the complement, C5b-9,
by interfering with C9 polymerization and incorporation into the membrane and contributes to
complement clearance [44]. Also, ApoA-I-mediated increase of PTX3 levels could contribute to a better
healing, given that PTX3 can promote efficient tissue repair [45].

In a seminal study, it was shown that mice deficient for the receptors Abca1 and Abcg1
display marked leukocytosis and a transplantable myeloproliferative disease, which can be
suppressed by transgenic overexpression of ApoA-I [46]. These findings suggest an inhibitory
role of ApoA-I in cellular components of the immune system which has been postulated to relate
to the lipid-modulating function of ApoA-I. One potential mechanism involves modulation of
cholesterol-enriched lipid raft microdomains that function as docking sites for several receptors,
coreceptors, and costimulatory molecules in neutrophils, monocytes/macrophages, dendritic cells
(DC), and B and T lymphocytes [47–49]. ApoA-I, via ABCA1, reduces the abundance of lipid rafts and
lowers the levels of CD11b expression leading to downregulation of neutrophil activation, migration,
and adhesion [50]. A similar mechanism has been proposed for downregulation of TLR signaling in
macrophages and major histocompatibility (MHC) class II molecule expression in antigen presenting
cells with consequent attenuation of adaptive immune responses [51]. Inhibition of dendritic cell
maturation and differentiation by ApoA-I is associated with elevated secretion of prostaglandin E2
(PGE2) and IL-10 and downregulation of IL-12 and IFN-γ [52]. Similarly, inhibition of dendritic cell
maturation and downregulation of Th1 and Th17 cell reactivity by ApoA-I/HDL leads to attenuation
of arthritis in an antigen-induced murine arthritis model [53].

In contrast, a recent study provided evidence that the ability of ApoA-I/HDL to suppress the
TLR-mediated secretion of proinflammatory cytokines IL-6 and TNF in monocytes was dependent
on transcriptional events mediated by the induction of activating transcription factor 3 (ATF3) and
independent of TLR signaling and cholesterol modulation in lipid rafts, implying “outside-in” signaling
events induced by ApoA-I/HDL that remain obscure [54]. Another anti-inflammatory mechanism
was recently proposed. It was observed that ApoA-I/HDL decreased the expression of inflammasome
components, including NLR family pyrin domain containing 3 (NLRP3) and IL-1β, as well as caspase 1
activation in human macrophages [55]. In addition, by using a murine model of atherosclerosis, it was
shown that myeloid Abca1/g1 deficiency enhanced caspase-1 activation in monocytes, macrophages,
and neutrophils, resulting in enhanced atherogenesis that was suppressed by Nlrp3 or Caspase-1/11
deficiency [56,57]. Also, the link between ApoA-I/HDL and inflammasome activation in dendritic
cells and has been recently reported in a systemic lupus erythematosus-like murine model [58]. These
findings suggested that accumulation of cholesterol in macrophages, or dendritic cells acting as a
“danger signal”, could activate the inflammasome leading to chronic inflammation, something that can
be opposed by ApoA-I/HDL.

Additional effects on specific cellular compartments of the immune system by ApoA-I have been
discovered. Thus, administration of ApoA-I suppressed inflammation in autoimmune-prone mice
lacking both LDL-receptor and ApoA-I, an effect that was associated with expansion of regulatory
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T cells (Treg) and a decrease of effector/effector memory T cells [59]. Another study showed that
ApoA-I and ABCA1 play a pivotal role in the extracellular release of isopentenyl pyrophosphate
and the consequent activation of Vγ9Vδ2 T cells, a specialized type of lymphocytes that recognize
phosphor-antigens in a TCR-dependent but MCH-independent manner [60].

Deregulated immunity against microorganisms and pathogenic chronic inflammation can be
viewed as different aspects of the same process. A recent study showed that mice deficient in ApoA-I
exhibit exaggerated colitis, while administration of an ApoA-I mimetic peptide attenuated gut
inflammation, which was associated with decreased secretion of IL-6 by epithelial enterocytes in
response to LPS, abundant in the gut lumen [61]. In agreement with these findings, another study
reported that the intensified chemically-induced colitis observed in the setting of selective deletion of
transcription factor EB (Tfeb) in the murine intestinal epithelium was associated with reduced ApoA-I
expression [62]. It has been suggested that part of the anti-inflammatory properties of ApoA-I/HDL
may be due to its contribution to innate immunity mechanisms including its ability to neutralize
bacterial products [61]. Given that chronic inflammatory conditions may predispose to various types
of malignancy, the anti-inflammatory effects of ApoA-I may impinge on cancer-related processes as
discussed below in Section 6.

It must be added that the anti-inflammatory properties of ApoA-I depend not only on the levels
of the protein but also on its functionality [63–65]. Many epigenetic alterations of ApoA-I, including
oxidative modifications, observed in chronic inflammation may erase its anti-inflammatory features or
even transform it to a proinflammatory agent [66].

3. A Potential Protective Role of ApoA-I against Cancer: Evidence by Association

Accumulating evidence suggests that regulation of the ApoA-I/HDL axis is derailed in cancer.
Our mining of transcriptome microarray data registered in the Oncomine database (https://www.
oncomine.org) and of recently published RNAseq data [67] uncovers reduced ApoA1 mRNA levels
in hepatocellular carcinoma (HCC) compared to normal liver tissue, the main source of ApoA-I.
The transcriptional repression of ApoA1 in HCC remains mechanistically unexplored but it is in line
with the reported reduction in protein levels of ApoA-I in both cancerous liver tissue [68] and in the
serum of HCC patients [69,70]. HDL itself is also reduced in HCC [71]. Collectively, the reduction
in ApoA1 transcription, intracellular and secreted ApoA-I, and circulating HDL levels in HCC hint
to a putative tumor suppressor role of this pathway. Indeed, numerous studies have discovered
associations between the levels of serum ApoA-I/HDL and various parameters of the natural history of
many types of cancer (summarily presented in Table 1).

The Alpha-Tocopherol, Beta-Carotene (ATBC) cancer prevention study showed inverse association
between HDL-associated cholesterol (HDL-c) levels and the risk for the development of lung, liver,
and hematologic malignancies [72]. The Women’s Health Study investigating the cancer risk in female
health workers, found that lower levels of HDL were associated with higher risk for the development
of lung and colorectal cancer [73]. The Malmo Diet and Cancer Study revealed an inverse association
between the risk for the development of colorectal, lung, and breast cancer and the levels of HDL-c
and ApoA-I [74]. The correlation between lower levels of HDL/ApoA-I and higher risk for colorectal
cancer was also reported in a Korean cross-sectional study, while premalignant lesions of colorectal
cancer (colon adenomas) were shown to be associated with lower HDL levels in a cohort of patients
examined by colonoscopy [75,76]. Similar associations have been reported for prostate cancer by a
Swedish cohort study and for Hodgkin and non-Hodgkin lymphoma by the Cancer Research Network
lymphoma study [77,78]. The latter found that the more pronounced drop in HDL levels was observed
3–4 years prior to lymphoma diagnosis [77].

https://www.oncomine.org
https://www.oncomine.org
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Table 1. Clinicopathologic associations of Apo A-I in cancer.

Organ Type of
Cancer

Association of ApoA-I Levels with:

ReferencesRisk for the
Development

of Cancer

Cancer at
Primary

Diagnosis

Cancer
Progression/
Metastasis

Cancer
Prognosis

head & neck
squamous cell cancer + [79]

nasopharyngeal
carcinoma − − [80–82]

lung non-small cell carcinoma − − − (+) − [74,83–87]

esophagus squamous cell carcinoma − − [88,89]

stomach gastric cancer − (+) [90,91]

colon adenocarcinoma − − − (+) − [76,92–97]

liver hepatocellular carcinoma − − −
[69,70,98–102]
[69,70,98–102]

gallbladder adenocarcinoma − [103]

pancreas adenocarcinoma − [104,105]

breast adenocarcinoma − (+) − − − [106–116]

ovary ovarian carcinoma − − [117–122]

uterus endometrial carcinoma − [123–125]

cervix cervical squamous cell
carcinoma − − [126,127]

prostate adenocarcinoma − − [78,128,129]

bladder transitional cell
carcinoma, − (+) − − [130–133]

kidney renal cell carcinoma − [134,135]

hematopoietic/
lymphoid

system
leukemia/lymphoma − − − [77,136,137]

neural tumors
neuroblastoma − − [138]

retinoblastoma + [139]

− indicates reported inverse association of Apo A-I levels with the specific parameter; + indicates positive association
of Apo A-I levels with the specific parameter, reported in a minority of studies or in an isolated study.

In line with these risk association studies, reduced serum levels of HDL/ApoA-I have been
reported in cancer patients at first diagnosis, indicating that HDL/ApoA-I may be a potential biomarker
for early cancer detection. A study analyzing serum lipid profiles of patients diagnosed with any
type of solid tumor and healthy controls showed decreased HDL/ApoA-I levels, specifically, in the
cancer group [140]. Similarly, relatively decreased levels of HDL/ApoA-I have been reported in
many cancers of the gastrointestinal tract including adenocarcinomas of the stomach, the colon,
the pancreas, and hepatocellular carcinoma (HCC) [70,76,83,92–94,98,104,105]. A serum proteomic
analysis of patients with chronic liver disease associated with hepatitis C virus (HCV) infection showed
that the development of HCC was associated with lower levels of ApoA-I [69]. Also, relatively reduced
serum HDL/ApoA-I levels have been found in patients with lung and breast adenocarcinoma, early
stage ovarian and cervical cancer, and acute lymphoblastic leukemia [84,106,117–120,126,136].

The levels of HDL/ApoA-I have also been associated with the progression of the neoplastic
disease and the response to therapy. Reduced serum ApoA-I levels correlate with the progression
of lung, liver, breast, kidney, endometrial, and cervical cancer, associated with the appearance of
metastases [99,107,123–125,127,137,141]. A postoperative serum proteomics analysis of high-risk
breast cancer patients also showed that low expression of ApoA-I was associated with metastatic
relapse [107,134]. Other studies reported that ApoA-I serum levels were significantly decreased in
HCC patients with recurrent disease, as compared to patients in remission, and patients with acute
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lymphoblastic leukemia who achieved remission after receiving chemotherapy displayed significant
increases in ApoA-I levels [100,137].

An overall association of HDL/ApoA-I levels with the prognosis of cancer patients treated
with surgery, chemotherapy, radiotherapy, or immunotherapy has been concluded in a recent
meta-analysis [142]. Indeed, an association with prognosis has been reported in patients with
nasopharyngeal carcinoma, non-small cell lung carcinoma, invasive breast ductal adenocarcinoma,
esophageal squamous cell carcinoma, colorectal adenocarcinoma, HCC, renal cell carcinoma,
and transitional cell carcinoma of the bladder [80–82,85,86,88,89,95,101,102,108,109,135,143]. Likewise,
ApoA-I has been proposed as a putative prognostic biomarker in neuroblastoma patients, since
ApoA-I serum levels were found significantly lower in patients with high risk tumors [138].
Interestingly, post-treatment ApoA-I levels also seem to confer prognostic significance. A retrospective
study of colorectal cancer patients treated with surgery and adjuvant chemotherapy showed that
relatively increased levels of HDL-c and ApoA-I, one month after the completion of chemotherapy,
were associated with better prognosis [144]. ApoA-I levels have been especially evaluated in response to
chemosensitivity. Higher serum ApoA-I were found to be associated to better response to chemotherapy
in patients with colorectal cancer, while higher ApoA-I levels secreted in the interstitial fluid of breast
tumors were associated with more chemosensitive tumors [145,146]. In another study, ApoA-I levels
were found to predict response to IMA901, the first therapeutic vaccine used in a randomized phase
2 trial for the treatment of patients with advanced renal cell carcinoma. Specifically, high levels of
ApoA-I were associated with better overall survival [147].

Possible associations of ApoA-I genetic variations with cancer parameters have also been noted.
A positive association was found between the ApoA-I (−75) A allele and breast cancer risk, and between
the ApoA-I (+83) T allele and the development of lymph node metastasis [110]. Another study showed
that breast cancer patients carrying an ApoA-I-rs670 A allele showed a less favorable phenotype at
presentation, with absence of hormone receptor expression and lymph node metastases in comparison
to G/G carriers. Moreover, rs670 A/A carrying patients had more frequent recurrences and inferior
survival in comparison to patients with no A alleles [111].

Although the majority of studies have shown an inverse association of ApoA-I levels with the
development and progression of various cancers, positive correlations have been reported. For example,
ApoA-I levels are upregulated in the serum of patients with early stage gastric adenocarcinoma,
recurrent head and neck squamous cell carcinoma and retinoblastoma and in the urine of patients with
transitional cell carcinoma of the bladder, while a nested case-control study reported that HDL-c/ApoA-I
levels were positively associated with the risk for the development of breast cancer [79,90,112,113,130,
131,139]. Also, pro-ApoA-I levels were found upregulated in the serum of lung cancer patients with
brain metastases and overexpressed at transcriptional level in metastases of colon adenocarcinoma to
the liver suggesting that, in these particular situations, ApoA-I levels could be used as a biomarker for
the extension of the disease to the brain and the liver, respectively [87,96,148]. It is unclear whether the
positive correlation between ApoA-I levels and cancer parameters reported in a minority of studies
are specific reflecting, in these particular situations, tumor promoting processes, associated with
increased cholesterol uptake of malignant cells through the HDL/SR-BI pathway, as proposed by some
studies [149–151].

Even though the bulk of data suggest that increased levels of ApoA-I/HDL could be protective
against cancer development and progression, the reported ApoA-I/HDL alterations could be a
consequence and not a cause of the carcinogenesis process. In such a case, ApoA-I could still be a
useful biomarker for early cancer detection, or for better management stratification and follow up of
cancer patients. However, a causative role would imply that interventions aiming at increasing the
levels and functionality of ApoA-I could contribute to better cancer prevention and therapy.
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4. ApoA-I Exhibits Tumor Suppressive Activity: Evidence from In Vitro Studies

A number of in vitro studies suggest that ApoA-I affects the proliferative, survival, and migratory
behavior of various carcinoma cells, largely through cell-autonomous mechanisms (summarily
presented in Table 2).

Table 2. In vitro studies of ApoA-I in cancer.

Type of Cancer In Vitro System Apo A-I Manipulation Biologic Effect and
Associated Mechanisms Ref.

ovarian carcinoma
(OC)

murine ovarian cell line ID8
treatment with human ApoA-I or
ApoA-I mimetics (L-5F and L-4F)

↓ viability and
proliferation [152]

↓ LPA-induced viability

murine ovarian cell line ID8 treatment with the ApoA-I mimetic
D-4F

↓ viability and
proliferation

[153]↓ oxidative stress
↑MnSOD expression and

activity

cis-platinum–resistant human
ovarian cell lines (OVCAR5, SKOV3,

OV2008, and A2780)

treatment with the ApoA-I mimetic
L-4F

↓ viability and
invasiveness [154]
↓ AKT activation

cis-platinum-resistant human
ovarian cell lines (SKOV3, OV2008)

treatment with the ApoA-I mimetic
L-5F

↓ LPA-induced cell
viability and VEGF

production
[155]

human ovarian cancer cell lines
(OV2008, CAOV-3 and SKOV3)

treatment with the ApoA-I mimetics
L-4F and L-5F

↑ proteasome-dependent
protein degradation of HIF

1α
[156]

↓ ROS production

hepatocellular
carcinoma (HCC)

human HCC cell lines (MHCC97H
and Huh7)

treatment with recombinant ApoA-I

↓ proliferation (cell cycle
arrest)

[100]↑ apoptosis
↓MMP2/9

↓ VEGF inhibition of the
MAPK signaling pathway

colon
adenocarcinoma

(CA)

human CA cell lines (DLD-1 and
Caco-2) overexpressing ABCA1

transgenic overexpression of
ApoA-I, treatment with

recombinant ApoA-I or apabetalone
(a BET inhibitor, inducer of ApoA-I

production)

↓ cell proliferation,
migration and invasion

[157]

modulation of ABCA1
expression through COX-2

downregulation
compensation for

ABCA1-dependent
excessive export of

cholesterol

murine CA cell line, CT26 treatment with the ApoA-I mimetic
L-4F

↓ viability and
proliferation

[158]↓ cyclin D1 and cyclin A
protein levels

↓ LPA-induced viability

breast
adenocarcinoma

(BA)
human CA cell line, MCF-7 treatment with the ApoA-I mimetic

D-4F
↓ oxLDL-induced

proliferation [159]

pancreatic
adenocarcinoma

(PA)
murine PA cell line P7 treatment with the ApoA-I mimetic

L-4F none [160]

↑ indicates increase, while ↓ indicates decrease; ABCA1: ATP-binding cassette transporter 1; COX-2: Cyclooxygenase
2; HIF-1α: Hypoxia induced factor 1α; LPA: lysophosphatidic acid; MAPK: Mitogen-activated protein kinases;
MMP2/9: Matrix metalloproteinases 2 and 9; MnSOD: Manganese superoxide dismutase; oxLDL: Oxidized
low-density lipoprotein; ROS: Reactive oxygen species; VEGF: Vascular endothelial growth factor.
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HCC cells treated with recombinant ApoA-I undergo G0/1 cell cycle arrest and apoptosis associated
with downregulation of mitogen-activated protein kinases 1 and 3 (MAPK1, MAPK3), known for
their antiapoptotic function, and upregulation of proapoptotic genes including caspase 5 (casp5),
tumor necrosis factor receptor superfamily 10B (TNFRSF10B), and apoptosis protease activating
factor 1 (APAF-1) [100]. ApoA-I also induced downregulation of vascular growth factor (VEGF) and
matrix metalloproteinases 2 and 9 (MMP2, MMP9) genes, suggesting that ApoA-I may decrease the
angiogenetic potential and the ability of HCC cells to remodel extracellular matrix, inhibiting in this
way their metastatic potential [100].

A recent study showed that human colon adenocarcinoma (CA) cells stably transfected with
ABCA1, exhibit increased proliferative, invasive and migratory behavior, which could be inhibited
by simultaneous, transgenic overexpression of ApoA-I, or by exogenous treatment with human
recombinant ApoA-I [157]. This inhibition was associated with downregulation of cyclooxygenase
2 (COX-2), a known promoter of colon adenocarcinoma involved in proinflammatory processes.
In the same study, apabetalone, a small molecule BET-inhibitor, used in experimental therapeutics of
atherosclerosis and known to induce production of ApoA-I, reduced the ABCA1-driven proliferative
and invasive behavior of CA cells [157]. Another study showed that treatment of CA cells with the
ApoA-I-mimetic peptide L-4F induced G0/1 cell cycle arrest, associated with decreased expression
levels of cyclins D1 and A and decreased cell viability [158]. Also, it reduced the survival of CA cells
stimulated by lysophosphatidic acid (LPA), a potent bioactive phospholipid, known to decrease its free
concentration in the cell culture media [158].

In ovarian carcinoma (OC) cells, treatment with ApoA-I-mimetic peptides D-4F or L-4F was
also found to impact proliferation, survival, and migratory behavior associated with reduced lipid
peroxidation and hydrogen hyperoxide levels, and to decrease VEGF production and expression of the
hypoxia induced factor-1α (HIF-1α) transcription factor [152,153,155,156]. Moreover, administration
of ApoA-I or various ApoA-I mimetic peptides increases the sensitivity of human OC cells to cisplatin,
a classical chemotherapeutic agent, associated with decreased activation of AKT [154]. Also, the ApoA-I
mimetic D-4F was shown to reduce the proliferative response of human breast adenocarcinoma cells,
stimulated by oxidized low-density lipoprotein (oxLDL) [159].

5. The Tumor Suppressive Function of ApoA-I: Evidence from Animal Studies

Accumulating evidence suggests that ApoA-I inhibits the growth of tumors and the metastatic
progression of the disease in various animal cancer models (summarily presented in Table 3).

In a melanoma model, mice deficient for ApoA-I showed increased tumor burden and reduced
survival. Conversely, transgenic overexpression of human ApoA-I or exogenous administration of
ApoA-I protein reduced malignant burden, decreased metastases and increased mouse survival [161].
Melanomas in transgenic mice expressing high levels of ApoA-I showed decreased angiogenesis,
reduced expression of MMP9, a matrix-degrading enzyme contributing to the invasive behavior of
tumor cells, and reduced levels of survivin, an important antiapoptotic molecule.
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Table 3. Animal studies of ApoA-I in cancer.

Type of Cancer Animal Model Apo A-I Manipulation Biologic Effect and
Associated Alterations Ref.

melanoma and
non-small lung

carcinoma

syngeneic murine melanoma
(B16F10L), human melanoma (A375)
and Lewis lung (murine) carcinoma

cells engrafted subcutaneously or
injected intravenously in a metastatic

cancer mouse model

human ApoA-I transgenic
overexpression or injection of

human ApoA-I

↓ tumor growth and
metastasis

[161]

↑ survival
↓ tumor angiogenesis

↓MMP-9
↓ surviving modulation of

the tumor immune
microenvironment:

↓M2 Mϕ
↑M2 Mϕ
↓MDSCs
↑ TILs

ApoA-I KO the opposite effects

ovarian carcinoma
syngeneic murine ovarian carcinoma
cells (ID-8) engrafted subcutaneously
or injected intraperitoneally in mice

transgenic overexpression of
human ApoA-I, or treatment with

ApoA-I mimetic peptides (L-5F,
L-4F, D-4F)

[152]↓ tumor growth
↑ survival

ovarian carcinoma
syngeneic murine ovarian carcinoma
cells (ID-8) engrafted subcutaneously

in mice

treatment with ApoA-I mimetic
peptides (L-5F, L-4F, D-4F)

↓ tumor growth

[152,
153,
155,
156]

↓ LPA serum levels
↓ tumor angiogenesis
↓ VEGF (L-5F)

↓ HIF-1α expression (L-4F)
↑MnSOD (D-4F)

↓ oxidized phospholipids

colon
adenocarcinoma

AOM/DSS-induced murine colorectal
adenocarcinomas

ApoA-I haploinsufficiency Apo
A-I(+/−)

↑ tumor growth and altered
tumor distribution

(proximal extension)
[61]↓ survival

↑ inflammation
↑ tumor cell proliferation
↑ IL-6, pSTAT3, NF-kB

signaling

colon
adenocarcinoma

syngeneic murine colon
adenocarcinoma cells CT26 engrafted

subcutaneously in mice treatment with the ApoA-I
mimetic peptide L-4F

↓ tumor growth

[158]
↓ LPA serum levels

a murine model for familial
adenomatous polyposis (APC−/+)

↓ number and size of colon
polyps

colon
adenocarcinoma

and non-small lung
carcinoma

syngeneic murine colon
adenocarcinoma (CT26) and Lewis

lung carcinoma cells injected
intravenously in a metastatic lung

mouse carcinoma model

treatment with a concentrate of
transgenic tomatoes expressing
the ApoA-I mimetic peptide 6F

↓ number of tumors in the
lung

[162]↓ Notch signaling
↓ oxidized phospholipids

↑ osteopontin
↓MDSCs in lung and

intestine tissues

colon and ovarian
adenocarcinoma

syngeneic murine ovarian carcinoma
cells (ID-8) engrafted

intraperitoneally and colon
adenocarcinoma cells (CT26) injected

intravenously in a metastatic lung
carcinoma mouse model

treatment with a concentrate of
transgenic tomatoes expressing
the ApoA-I mimetic peptide 6F

[163]
↓ tumor growth in the

abdomen
↓ number of tumors in the

lung

pancreatic
adenocarcinoma

syngeneic murine pancreatic
adenocarcinoma cells line P7

orthotopically engrafted in mice

treatment with the ApoA-I
mimetic peptide L-4F

↓ tumor growth in the
abdomen [160]

↓M2 Mϕ in tumors

breast
adenocarcinoma

mammary tumour virus-polyoma
middle T-antigen transgenic (PyMT)

mice

treatment with the ApoA-I
mimetic peptide D-4F

↑ latency of tumor
appearance

[159]
↓ tumor growth

↓ oxidized LDL plasma
levels

transgenic overexpression of
human ApoA-I in PyMT mice none

↑ indicates increase, while ↓ indicates decrease; AOM: azoxymethane; DSS: dextran sodium sulfate; HIFα: Hypoxia
induced factor-1α; LPA: Lysophosphatidic acid; MnSOD: Manganese superoxide dismutase; MMP-9: Matrix
metalloproteinases 9; Mϕ: macrophages; NF-kB: Nuclear factor kappa-light-chain-enhancer of activated B cells;
TIL: tumor infiltrating lymphocytes; MDSC: myeloid-derived suppressor cells; pSTAT3: phosphorylated signal
transducer and activator of transcription 3; PyMT: mammary tumour virus-polyoma middle T-antigen transgenic;
VEGF: Vascular endothelial growth factor.
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In line with the reported in vitro effects of ApoA-I mimetic peptides in OC, transgenic
overexpression of human ApoA-I in a murine model of OC, or exogenous administration of D4-F, L5-F,
and L4-F decreased tumor burden and increased survival [152]. The levels of LPA, VEGF, and HIF-1α
in mice treated with ApoA-I mimetic peptides were found significantly reduced relative to control
animals [152,155,156,163]. Another study showed that the inhibitory effects of the ApoA-I mimetic
peptide D4-F was dependent on the upregulation of the antioxidant enzyme manganese superoxide
dismutase (MnSOD), as silencing of the gene in the engrafted cells by a MnSOD-specific shRNA
abolished the D4-F-tumor suppressing effects, suggesting that the antioxidant activity downstream of
ApoA-I may be essential for its tumor suppressor properties in OC [153].

Patients with inflammatory bowel disease have increased risk for the development of CA [164].
In both humans with ulcerative colitis and mouse models of colitis-associated carcinogenesis,
CA develops predominantly in the distal part of the large intestine. Intriguingly, ApoA-I−/− and
ApoA-I+/− mice develop more numerous and larger tumors that display extension to the proximal
part of the colon [61]. These differences were accompanied by a higher tumor cell proliferation rate in
the ApoA-I+/− group and by elevated expression levels of activated STAT3 [61], a transcription factor
involved in inflammatory and tumor-promoting processes [165]. In another study, treatment with the
ApoA-I mimetic peptide L-4F significantly reduced the size and number of polyps in Adenomatosis
Polyposis Coli (APC)−/+ mice, a mouse model for human familial adenomatous polyposis [158].
Interestingly, the administration of ApoA-I mimetic peptides or the overexpression of ApoA-I not only
reduced primary tumor burden but also metastasis of CA cells in the lung [161,162].

The tumor suppressive activity of ApoA-I has also been demonstrated in an orthotopically
implanted mouse model of pancreatic adenocarcinoma and in a breast cancer mouse model, the latter
being associated with reduction in plasma oxLDL [159,160]. Interestingly, dysfunctional, oxidized
ApoA-I/HDL has been reported to promote breast cancer metastasis in mice [166]. Other animal studies
have reported inverse association of serum ApoA-I levels with the progression of lung and gastric
cancer in the mouse [167–170].

6. Anti-Inflammatory and Immune-Modulating Mechanisms Are Involved in the Tumor
Suppressive Activity of ApoA-I

Collectively, the aforementioned in vitro and animal studies provide convincing evidence that
ApoA-I affects many of the originally proposed hallmarks of cancer [171], including sustained
proliferative signaling, resistance to cell death, angiogenesis, and activation of invasion and metastasis
(Figure 2).

Accumulating findings suggest that ApoA-I also targets one of the more recently proposed
hallmarks of cancer, that of tumor promoting inflammation. Chronic inflammation, caused by dysbiosis,
plays a pivotal role in cancer promotion in the liver and colon [172,173], tissues known to produce
ApoA-I, and inflammatory mechanisms emanating from TLR4 stimulation on cancer cells contribute
to malignant growth in this context [172,174]. The concept that the anti-inflammatory properties
of ApoA-I participate in the protection against colon cancer is highlighted by the fact that ApoA-I
ameliorates colitis-promoted colon carcinogenesis in parallel with the attenuation of TLR4-mediated
activation of key inflammatory regulators, including NF-KB, STAT3, and IL-6 [61]. This is further
supported by studies demonstrating reduction of various oxidized lipids and enzymes involved in
inflammation, such as COX-2, by ApoA-I in models of colon or ovarian cancer [156,157].

Given the role of ApoA-I/HDL in RCT (see Section 1), deregulation of this pathway may have
systemic effects on lipid and cholesterol accumulation which, in turn, may impact on immune cell
homeostasis and inflammatory reactions that are linked to malignancy [175,176]. Moreover, modulation
of the integrity of cholesterol-enriched microdomains in the plasma membrane, which function as
docking sites for several receptors, may alter the activation of signaling pathways in many cells of the
immune system [47]. Additionally, ligation of HDL particles to specific ApoA-I receptors (ABCA1,
ABCG1 etc.) promoting the RCT may result in broader “outside-in” signaling events which have
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been reported to enable macrophages to convey anti-inflammatory effects [177]. It is also possible that
ApoA-I, internalized by the responsive cells may further modify signaling mechanisms.
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As the modulation of the inflammatory tumor microenvironment is exploited by cancer cells
to buffer the attack of the immune system, the effects of ApoA-I on cancer inflammatory and
immuno-editing processes seem interconnected [178,179]. Indeed, the ability of ApoA-I to inhibit
melanoma growth is attenuated, although not abolished, in mice lacking the humoral and the cellular
components of specific immunity [161]. Immuno-phenotyping of tumors developed in ApoA-I
transgenic mice showed a reduction in myeloid derived suppressor cells (MDSCs), a heterogeneous
immature myeloid cell population of granulocytic or monocytic origin capable of inhibiting the immune
response, but an increase in tumor infiltrating cytotoxic T cells (TIL) and CD11b+ macrophages [161,180].
The latter is of particular interest as ApoA-I has been implicated in the conversion of tumor associated
macrophages (TAM) from M2 to M1 phenotype that associates with enhanced antitumor properties [161].
Along these lines, administration of the ApoA-I mimetic peptide L4-F resulted in decreased recruitment
of M2 macrophages to the tumors [160]. However, the exact mechanisms involved in the regulation of
MDSC and M1/2 phenotype by ApoA-I remain elusive.

One mechanism by which ApoA-I mimetic peptides impact on antitumor immunity entails an
increase in the levels of specific oxidized lipids to activate Notch signaling in the intestine which,
in turn, leads to higher numbers of patrolling monocytes in lamina propria. This treatment also reduces
25-hydroxycholesterol with concomitant decrease in osteopontin expression in enterocytes and lower
numbers of MDSCs in lamina propria [162].

The notion that the tumor suppressive properties of ApoA-I are connected to the modulation of
anticancer immunity is further supported by recent animal studies that investigated the effects of the
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ApoA-I receptors, Abcg1 and Abca1, on cancer growth in connection with parameters of anticancer
immunity [181,182]. It was shown that myeloid specific deficiency of Abcg1 or Abca1 was associated
with decreased tumor growth, increased polarization of TAMs towards M1 phenotype, and decreased
numbers of specific MDSCs subsets in the tumors [181,182].

7. Tools for Therapeutic Targeting of ApoA-I

The tools for therapeutic targeting of ApoA-I originated from an effort to discover strategies
exploiting the atheroprotective properties of HDL [183]. Some of these strategies aim to indirectly
augment the ApoA-I and HDL-c levels by inhibiting endothelial lipase and CETP or to augment RCT
by activating LCAT or the liver X receptors (LXRs), members of the nuclear receptor superfamily that
orchestrate the activation of many genes promoting RCT and intestinal HDL production [183–187].
None of these approaches have been thoroughly tested in cancer studies.

However, strategies aiming in directly augmenting ApoA-I, or mimicking ApoA-I functionality
have already been used successfully in preclinical cancer studies (Tables 2 and 3). The first of these
approaches can be accomplished by intravenous administration of autologous delipidated HDL,
purified native ApoA-I, or recombinant ApoA-I Milano protein, a mutated “hyperfunctional” ApoA-I
variant discovered in a cohort of Italian patients, in complexes with phosphatidylcholine [188,189].
Although administration of such reconstituted HDL has shown antitumor activity in various preclinical
models, it is a laborious and expensive strategy, difficult for a broad application in cancer patients.

Another approach utilizes ApoA-I mimetic peptides, synthesized on the basis of α-amphipathic
helical repeating structure of ApoA-I, aiming to mimic the function of ApoA-I [190]. Many of them
are 18 amino acids long and modified in various ways for augmenting stability and lipid-binding
properties. Some of them including peptides composed of D-amino acids, being resistant to protease
degradation, can be given orally, and have been expressed transgenically in tomatoes, in an effort to
increase their practical utility [191]. Their action in small intestine tissues has been shown to be critical
for their anti-atherogenic value in animal models [192]. These agents can produce HDL-like particles
that promote cholesterol efflux and have shown antiatherogenic, antioxidant, anti-inflammatory, and
antitumor activity in preclinical models [190,193]. Their function is not exactly equivalent to ApoA-I,
since some are designed to better mimic one or another function of ApoA-I. For example, some of them
have far superior ability, in comparison to ApoA-I, to neutralize pathogenic lipids such as LPA [190,192].
This may explain the discrepancy in the findings regarding alterations of LPA levels among various
cancer studies using ApoA-I mimetics and ApoA-I [152,161] as well as differences in the antitumor
activity [159].

Although ApoA-I mimetics have shown promising therapeutic potential in various preclinical
models, recent clinical trials in the context of CVD have failed to demonstrate clear clinical benefit [194].
However, all clinical trials so far have been performed in the setting of acute coronary syndrome
regarding patients with advanced disease in need for aggressive intervention. It is possible that future,
carefully designed clinical trials, investigating a longer period of administration time in combination
with established chemotherapeutic or immunotherapeutic agents, could be more informative for the
therapeutic potential of ApoA-I mimetics in cancer.

8. Open Questions for Future Research

In vitro and in vivo experimental studies have shown that the tumor suppressive activity of
ApoA-I targets cell-autonomous and cell-nonautonomous survival mechanisms (Figure 2). Which
mechanism is pivotal for the antitumor activity of ApoA-I has not been fully elucidated. The prevailing
view is that the anti-inflammatory action of ApoA-I is important for the enhanced antitumor immunity.
Recent studies have shown that chronic inflammation is an essential mechanism contributing to the
attenuation of innate and specific immunity against cancer [195]. Although there is evidence that
ApoA-I may modify the anticancer immune response, detailed investigation of the effects of ApoA-I
on immune checkpoints (for example programmed death ligand-1, PD-L1) in cancer cells or the cells of
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tumor microenvironment and on anticancer immunity has not been performed [161]. The effects of
ApoA-I on the outcome of cancer immunotherapy also remains to be elucidated.

Whilst the anti-inflammatory action of ApoA-I has attracted most attention, additional hallmarks
of cancer may be influenced by ApoA-I. Findings showing that ApoA-I can affect the expression levels
of transcription factors, such as HIF-1α, suggest that ApoA-I may have profound effects on metabolic
pathways in cancer cells [156,196]. However, detailed alterations in energetic metabolism of cancer
cells, including lipid metabolism, after treatment with ApoA-I or ApoA-I mimetic peptides have
not been explored. The antioxidative function of ApoA-I has been demonstrated in various cancer
models [153,156]. Although it is known that increased oxidation stress may contribute to DNA damage
and increased mutational burden, the effects of ApoA-I on DNA damage response mechanisms have
not been explored. ApoA-I itself is subject to oxidative damage and carbonylation which have been
linked to apolipoprotein dysfunction and a pathogenic role in Alzheimer disease [197]. Whether these
modifications may also have a role in immunity, inflammation and cancer remain obscure.

Most efforts to clarify the mechanism of the anti-inflammatory and antitumor activity of ApoA-I
have focused on the interaction of ApoA-I with the receptors ABCA1, ABCG1, and SR-BI. For example,
it has been shown that mice deficient in ABCG1 and ABCA1, when fed a “western”-type diet, display
reduced growth of tumors derived from subcutaneously engrafted melanoma or bladder carcinoma
cells, while other studies have attempted to associate ABCA1 with epithelial mesenchymal transition
in breast cancer [181,182,198,199]. Although deficiency of ABCA1 or ABCG1 transporters does not
always mirror the ApoA-I effect, at first glance, it seems counterintuitive that deficiency of ABCA1 and
excess of ApoA-I, which affect RCT in opposite directions, both may contribute to tumor suppression.
However, it is possible that some of the anti-inflammatory and antitumor activities of ApoA-I may
be mediated by other receptors. For example, the beta-chain of ATP F1 synthase was discovered
to represent a high affinity receptor of lipid poor ApoA-I at the cell membrane (known also as
ecto-F1F0-ATPase; Figure 1) [25]. Binding of ApoA-I to this receptor was found to stimulate the
hydrolysis of extracellular ATP to ADP and phosphate, implying that ApoA-I may affect signaling
emanating from cell membrane P2 purinergic receptors, many of which have been shown to modify
inflammatory and immune responses and tumor growth [26,200]. Although one of these receptors,
P2Y13, was shown to mediate the signal from ecto-F1F0-ATPase to SR-BI for promoting HDL cell
internalization, ecto-F1F0-ATPase-mediated effects of ApoA-I on P2 purinergic receptor signaling
important for immune responses and cancer biology have not been investigated.

ApoA-I levels have been shown to be affected by chemotherapy. Examination of serum lipid
profiles in breast cancer patients revealed a significant reduction of ApoA-I and HDL levels upon
completion of chemotherapy [141,201]. ApoA-I protein levels were reduced by doxorubicin, while
they remained unaffected by cyclophosphamide and paclitaxel treatment, in agreement with in vitro
experimental findings [201]. Postchemotherapy infections are an important complication of cancer
patients, and the ability of ApoA-I to neutralize bacterial products represents an important aspect
of innate immunity [202]. However, the impact of ApoA-I on the incidence and outcome of
postchemotherapy bacterial infections has not been investigated in epidemiologic or preclinical studies.

9. Conclusions

In conclusion, combined epidemiologic, clinicopathologic, and preclinical experimental research
has shown that ApoA-I could represent not only a useful cancer biomarker, but a biochemical variable
of the organism that could be modified for more effective cancer prevention and treatment. The exact
mechanisms involved in the antitumor activity of ApoA-I and the evaluation of its antitumor therapeutic
potential merits further investigations.
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