Supplementary materials

Training

Validation

Figure 1. The full range of the Box Plots.

Table S1

Table 1A: Training cohort

Lung cancer subtypes						Age (yr)
	Adenocarcinoma (n)	Squamous (n)	Non Squamous (n)	Small cell (n)	Metastasis (n)	Mean \pm SD
Female ($\mathrm{n}=18$)	13	5	-	-	-	47 ± 2
Male ($\mathrm{n}=13$)	9	3	-	1	-	56 ± 2
Total ($\mathrm{n}=31$)	22	8	-	1	-	52 ± 2

** Majority of patient at advanced stage 3+
Table 1B: Validation cohort
Table 1B: Validation cohort

	Lung cancer subtypes	Age (yr)				
	Adenocarcinoma (n)	Squamous (n)	Non Squamous (n)	Small cell (n)	Metastasis (n)	Mean \pm SD
Female $(\mathrm{n}=9)$	2	1	2	2	54 ± 3	
Male $(\mathrm{n}=17)$	2	5	3	-	56 ± 3	
Total $(\mathrm{n}=26)$	5	6	5	2	56 ± 2	

** Majority of patient at advanced stage 3+

Table 1C: Summary table of normal vs Lung cancer

	Tranining			Validation		
	Lung Cancer (n)	Normal (n)	Pvalue	Lung Cancer (n)	Normal (n)	Pvalue
Samples	31	15		26	15	
Age:	Mean \pm SD	Mean \pm SD		Mean \pm SD	Mean \pm SD	
Mean (Range) (yr)	50.7(27-75)	43.7 (27-56)	0.06	55.7 (27-70)	43.7 (27-56)	0.000213
Sex:						
Male	13	6	0.75	17	6	0.12
Female	18	9		9	9	

Table S2

Targeted metabolites	Mcubolics Classifraion	Palien Clasiication	Cotorn	Nunberof samples	Number or missing samples	min valic of reclublice	max value of mexubolic	Mdian	Mean
Valine	Amino Acids and Biogenic Amines	Normal	Training	15	0	198	376	263	267.0667
Patrescine	Polyaminc Metabolites	Nomal	Training	15	0	0.104	0.269	0.154	0.1637
Mchioninc	Polyamine Melabolites	Nomal	Truining	15	0	17.7	35.9	25.8	26.5133
Arginine	Polyaminc Mctabolites	Nomal	Training	15	0	72.4	234	120	1377933
Omilhinc	Polyamine Melabolites	Nomal	Traing	15	0	56.6	142	72.5	79.14
Spemidine	Polyaminc Mctabolites	Normal	Training	15	0	0.256	13.1	0.335	2.7091
C10. 2	Acylcarailios	Nomal	Training	15	0	0.0297	0.076	0.1493	0.1489
C18. 2	Acylcarnitines	Normal	Training	15	0	0.0238	0.0853	0.0567	0.0522
	Glyccrophospholipids	Nomal	Training	15	0	12.1476	29.259	20.1631	19.521
PC.as.C32.2	Glycerophospholipids	Nomal	Traing	15	0	1.5099	4.5478	3.0779	2.9107
PC a a C36.0	Glycrerophospholipids	Normal	Training	15	0	1.008	3.1557	1.7134	1.803
PC.ac. C33.0	Glycerophospholipids	Nomal	Training	15	0	0.4003	1.157	0.6427	0.6749
Valine	Amino Acids and Biogncic Amines	Lung Cancer	Training	31	0	135	369	193	208
Putressinc	Polyamine Metabolites	L.ung Cancer	Training	31	0	0.115	1.13	0.2475	0.3099
Mectioninc	Polyamine Metabolites	Lung Cancor	Training	31	0	11.6	63.6	22.25	24.0633
Argininc	Polyamine Metabolites	L.ung Cancer	Training	31	0	37.7	262	95.6	112.2867
Omithine	Polyamine Metabolites	Lung Cancor	Trining	31	0	47.1	167	69.35	76.13
Spemidinc	Polyaminc Metabolites	Lumg Cancer	Training	31	0	0.333	9.9	0.335	2.14
$\mathrm{ClO}_{10} 2$	Acylearaitios	L.ung Cancor	Training	31	0	0.0255	0.0889	0.1376	0.139
C18.2	Acylcarnitities	Lugg Cancer	Training	31	,	0.0208	0.1127	0.0398	0.0438
lysoPC.aC18. 2	Glycerophospholipids	L.umg Cancer	Training	31	0	3.815	28.7725	14.1162	13.3528
PC.aac 32.2	Glycerophospholipids	Lung Cancor	Training	31	0	0.2588	4.3734	1.4442	1.78149
PC.aa. C 36.0	Glycerophospholipids	Lumg Cancer	Training	31	0	0.3143	3.6154	1.8023	2.0029
PCat.C36.0	Glycerophospholipids	Lung Cancer	Training	31		0.4613	1.5473	0.8711	0.9148
Valine	Amino Acids and Biogenic Amints	Normal	Validation	15	0	233	442	280	294.5333
Argininc	Polyamine Metabolites	Nomal	Validataion	15	0	75.1	237	116	139.88
Oruithine	Polyamine Metabolites	Nomal	Validation	15	0	27	90	47.3	50.7533
Methionine	Polyaminc Metabolites	Nomal	Validation	15		27.5	63.1	38.4	39.92
Sxemididinc	Polyamine Metabolites	Nomal	Validation	15	0	0.164	0.319	0.208	0.2118
Spemine	Polyaminc Metabolites	Nomal	Validation	15	0	0.23	0.332	0.263	0.2655
Diacecylyp	Acylcarnitiocs	Nomal	Validation	15	0	0.0287	0.0473	0.0364	0.0369
Decadienylcamitine (C10.2)	Acylcarnitines	Nomal	Validation	13	2	0.02	0.29	0.07	0.1008
PC.aa. 32.2	Glycerophospholipids	Nomal	Validation	15	0	2.37	11.89	7.69	7.3293
PC.ae. C36.0	Glycrerophospholipids	Normal	Validation	15	0	1.17	286	1.85	1.9033
	Glycerophosphallipids	Nomal	Validation	15	0	3.93	7.59	4.87	5.4073
MTA	Polyamine Melabolites	Lung Cancer	Validation	9	17	0.0041	0.267	0.0945	0.1067
Valine	Amino Acids and Biogcnic Amines	Lums Cancer	Validation	26	0	120	316	192	204.6154
Argininc	Polyamine Melabolites	L.ang Cancer	Validataion	26	0	51.6	252	89.8	116.3347
Omithine	Polyaminc Mctabolitrs	Lume Cancer	Validation	26	,	174	93.7	47.15	459423
Mchtioninc	Polyamine Metabolites	1.ung Cancer	Validation	26	0	14.5	50.8	31.8	31.4423
Putrescine	Polyaminc Metabolites	Lung Cancer	Validation	3	23	0.0219	0.182	0.112	0.1053
Sprmidinc	Polyamine Metabolites	L.ung Cancer	Validation	26	0	0.154	0.464	0.2285	0.2331
Spermine	Polyamine Metabolites	Lung Cancor	Validation	26	0	0.245	0.482	0.2885	0.3108
Diacectyspemine	Acylcaraitites	Lumg Cancer	Validation	26	,	0.0297	0.358	0.0423	0.9611
Deceadienylcamiline ($\mathbf{C} 10.2$)	Acylcarailios	1.ang Cancer	Validation	15	11	0.01	0.21	0.38	0.2813
PC.aaC32.2	Glycropopospholipids	Lung Cancer	Validation	26	0	3.08	38.67	9.48	12.1392
PC.as.C36.0	Glycerophospholipids	L.ung Cancer	Validation	26		1.14	3.86	2.095	2.1485
$1 \mathrm{ysoPCaCl8}$.	Glycerophospholipids	Lung Cancor	Validation	26	0	0.6	9.44	3.13	3.5692

Table S3

Table 3A: Univariate Summary Measure of each Metabolite

	Training			Validation		
	AUC	P value	FC	AUC	P value	FC
Arginine	$6.61 \mathrm{E}-01$	$1.30 \mathrm{E}-01$	$-3.25 \mathrm{E}-01$	$6.64 \mathrm{E}-01$	$1.33 \mathrm{E}-01$	$-3.26 \mathrm{E}-01$
C10.2	$7.71 \mathrm{E}-01$	$9.44 \mathrm{E}-03$	$-1.28 \mathrm{E}-01$	NA	NA	NA
C18.2	$6.73 \mathrm{E}-01$	$1.85 \mathrm{E}-01$	$-1.11 \mathrm{E}-01$	NA	NA	NA
Diacetylspermi	NA	NA	NA	$7.60 \mathrm{E}-01$	$2.59 \mathrm{E}-02$	$2.12 \mathrm{E}-01$
lysoPC.a.C18.	$7.73 \mathrm{E}-01$	$1.86 \mathrm{E}-03$	$-6.60 \mathrm{E}-01$	$7.65 \mathrm{E}-01$	$3.16 \mathrm{E}-03$	$-8.15 \mathrm{E}-01$
Methionine	$6.67 \mathrm{E}-01$	$4.01 \mathrm{E}-01$	$-2.19 \mathrm{E}-01$	$6.85 \mathrm{E}-01$	$2.08 \mathrm{E}-02$	$-3.44 \mathrm{E}-01$
Ornithine	$5.46 \mathrm{E}-01$	$6.97 \mathrm{E}-01$	$-6.91 \mathrm{E}-02$	$5.69 \mathrm{E}-01$	$3.21 \mathrm{E}-01$	$-1.70 \mathrm{E}-01$
PC.aa.C32.2	$7.96 \mathrm{E}-01$	$2.12 \mathrm{E}-03$	$-9.63 \mathrm{E}-01$	$6.94 \mathrm{E}-01$	$2.75 \mathrm{E}-02$	$5.91 \mathrm{E}-01$
PC.aa.C36.0	$5.71 \mathrm{E}-01$	$4.13 \mathrm{E}-01$	$7.44 \mathrm{E}-02$	NA	NA	NA
PC.ac.C36.0	$7.51 \mathrm{E}-01$	$6.69 \mathrm{E}-03$	$4.28 \mathrm{E}-01$	$6.12 \mathrm{E}-01$	$2.53 \mathrm{E}-01$	$1.64 \mathrm{E}-01$
Putrescine	$8.33 \mathrm{E}-01$	$2.03 \mathrm{E}-02$	$6.64 \mathrm{E}-01$	NA	NA	NA
Spermidine	$5.89 \mathrm{E}-01$	$6.12 \mathrm{E}-01$	$2.46 \mathrm{E}-01$	$6.29 \mathrm{E}-01$	$1.11 \mathrm{E}-01$	$1.90 \mathrm{E}-01$
Spermine	NA	NA	NA	$7.67 \mathrm{E}-01$	$5.20 \mathrm{E}-03$	$1.95 \mathrm{E}-01$
Valine	$8.04 \mathrm{E}-01$	$2.19 \mathrm{E}-03$	$-3.83 \mathrm{E}-01$	$9.09 \mathrm{E}-01$	$2.58 \mathrm{E}-06$	$-5.33 \mathrm{E}-01$

AUC - Area Under the Curve; FC - Fold Change, NA - Not available

Table 3B: t-tests for key Metabolites using training data (A) and validation data (B)

Training Data A				
Metabolites	t-statistic	P value	$-\log 10$ (p)	FDR
Putrescine	$3.54 \mathrm{E}+00$	$9.88 \mathrm{E}-04$	$3.01 \mathrm{E}+00$	$6.44 \mathrm{E}-03$
Valine	$-3.51 \mathrm{E}+00$	$1.07 \mathrm{E}-03$	$2.97 \mathrm{E}+00$	$6.44 \mathrm{E}-03$
$\begin{aligned} & \text { lysoPC.a.C18. } \\ & 2 \end{aligned}$	$3.30 \mathrm{E}+00$	$1.97 \mathrm{E}-03$	$2.70 \mathrm{E}+00$	$7.89 \mathrm{E}-03$
PC.aa.C32.2	$-3.18 \mathrm{E}+00$	$2.72 \mathrm{E}-03$	$2.57 \mathrm{E}+00$	$8.15 \mathrm{E}-03$
PC.ae.C36.0	$3.02 \mathrm{E}+00$	$4.27 \mathrm{E}-03$	$2.37 \mathrm{E}+00$	$9.32 \mathrm{E}-03$
C10.2	$-2.99 \mathrm{E}+00$	$4.66 \mathrm{E}-03$	$2.33 \mathrm{E}+00$	$9.32 \mathrm{E}-03$
Validation Data B				
Metabolites	t-statistic	P value	$-\log 10$ (p)	FDR
Valine	$-5.50 \mathrm{E}+00$	$2.58 \mathrm{E}-06$	$5.59 \mathrm{E}+00$	$2.58 \mathrm{E}-05$
$\begin{aligned} & \text { lysoPC.a.C18. } \\ & 2 \end{aligned}$	$-3.15 \mathrm{E}+00$	$3.16 \mathrm{E}-03$	$2.50 \mathrm{E}+00$	$1.58 \mathrm{E}-02$
Spermine	$2.96 \mathrm{E}+00$	$5.20 \mathrm{E}-03$	$2.28 \mathrm{E}+00$	$1.73 \mathrm{E}-02$
Methionine	$-2.41 \mathrm{E}+00$	$2.08 \mathrm{E}-02$	$1.68 \mathrm{E}+00$	$4.59 \mathrm{E}-02$
Diacetylsperm ine	$2.32 \mathrm{E}+00$	$2.59 \mathrm{E}-02$	$1.59 \mathrm{E}+00$	$4.59 \mathrm{E}-02$
PC aa. C32:2	$2.29 \mathrm{E}+00$	$2.75 \mathrm{E}-02$	$1.56 \mathrm{E}+00$	$4.59 \mathrm{E}-02$

$-\log 10$ (p), FDR False Discovery Rate; t-statistic,

Table 3C: Training data, generalized linear regression multivariate model statistics - key metabolites

	Estimate	S.E.	P value
(Intercept)	0.9438	0.2969	0.0029
Valine	0.0012	0.0011	0.2724
Putrescinc	-0.6203	0.2991	0.0447
PC.aa.C32.2	0.1294	0.0563	0.027
PC.aa.C36.0	-0.2273	0.08	0.0071
C10.2	10.3848	5.2603	0.0555

Table 3D: Validation data, generalized linear regression multivariate model statistics - key metabolites

	Estimate	S. E.	P Value
(Intercept)	1.3407	0.4139	0.0025
Valine	0.0051	0.0009	$1.84 \mathrm{E}-06$
Spermine	-2.8954	1.0274	0.0077
Ornithine	-0.007	0.0036	0.0633

S.E., Standard Error

