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Abstract: Patients (pts) with head and neck squamous cell carcinoma (HNSCC) have different 
epidemiologic, clinical, and outcome behaviors in relation to human papillomavirus (HPV) infection 
status, with HPV-positive patients having a 70% reduction in their risk of death. Little is known 
about the molecular heterogeneity in HPV-related cases. In the present study, we aim to disclose 
the molecular subtypes with potential biological and clinical relevance. Through a literature review, 
11 studies were retrieved with a total of 346 gene-expression data points from HPV-positive HNSCC 
pts. Meta-analysis and self-organizing map (SOM) approaches were used to disclose relevant meta-
gene portraits. Unsupervised consensus clustering provided evidence of three biological subtypes 
in HPV-positive HNSCC: Cl1, immune-related; Cl2, epithelial–mesenchymal transition-related; Cl3, 
proliferation-related. This stratification has a prognostic relevance, with Cl1 having the best 
outcome, Cl2 the worst, and Cl3 an intermediate survival rate. Compared to recent literature, which 
identified immune and keratinocyte subtypes in HPV-related HNSCC, we confirmed the former 
and we separated the latter into two clusters with different biological and prognostic characteristics. 
At present, this paper reports the largest meta-analysis of HPV-positive HNSCC studies and offers 
a promising molecular subtype classification. Upon further validation, this stratification could 
improve patient selection and pave the way for the development of a precision medicine therapeutic 
approach. 

Keywords: self-organizing map; head and neck cancer; treatment de-escalation; HP; molecular 
subtypes; tumor microenvironment 

 

1. Introduction 

Worldwide, head and neck squamous cell carcinoma (HNSCC) affects more than 550,000 patient 
cases/year with around 380,000 deaths annually [1]. Traditionally, alcohol exposure and tobacco 
smoking are identified as exogenous risk factors. However, human papillomavirus (HPV) infection, 
caused predominantly by HPV type 16, is currently recognized as an independent causal factor for 
the development of HNSCC. Since the 1990s, there was a significant increase in HPV-related HNSCC 
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in western countries, whilst the incidence of HPV-negative HNSCC is globally declining [2,3], in 
parallel with the decline in tobacco smoking rates. This high incidence of HPV-positive cases 
establishes HNSCC as one of the most common HPV-related cancers, second only to cervical cancer 
[4]. Moreover, it is estimated that the annual incidence could increase and eventually surpass the 
annual incidence of cervical cancer by 2020. Previous epidemiological studies showed that around 
25% of all HNSCCs are related to HPV infection, with a tendency for the oropharynx (OPSCC) to be 
the specific site, compared to infection in other sites (oral cavity, larynx, and hypopharynx) [5]. It is 
known that HPV-related HNSCC patients have different epidemiologic and clinical behaviors in 
comparison with HPV-negative HNSCC patients, allowing the identification of HPV-positive 
HNSCC as a specific distinct disease with peculiar prognostic characteristics [6]. In fact, HPV-positive 
HNSCC is diagnosed at a younger age than HPV-negative HNSCC, and the five-year survival rate 
for HPV-positive HNSCC is 60–90% as compared with 20–70% for HPV-negative HNSCC [7], 
conferring a more favorable prognosis for HPV-positive HNSCC patients. The differences in 
outcomes between HPV-positive and HPV-negative tumors were already provided, and a multitude 
of molecular differences comparing HPV-negative and HPV-positive HNSCC patients were reported 
[8–10]. However, a clear biological picture behind their broad diversity is not yet elucidated. 
Moreover, considering the better prognosis of HPV-positive HNSCC patients compared with their 
HPV-negative HNSCC counterparts and the median younger age of patients at diagnosis, the 
question about how to treat HPV-positive patients requires an answer. De-escalation of treatment 
protocols, for this subgroup of patients, is currently ongoing [11], with the final aim being to reduce 
the intensity of treatments (both chemoradiation and surgery) and the burden of treatment-related 
toxicities over the next few years. A further investigation on HPV-related HNSCC is needed. As 
already reported in the literature, in addition to the diversity of HPV-positive HNSCC compared 
with HPV-negative HNSCC, it is possible to also observe an intrinsic biological heterogeneity in the 
HPV-positive HNSCC. In particular, we refer to Keck et al. [12], who identified two different clusters 
on the basis of their gene expression, and to Zhang et al. [13], who classified these two groups as 
HPV-positive immune-related (HPV-IMU) and HPV-positive with keratinocyte differentiation 
(HPV-KRT) HNSCC. Both of these studies had the ability to explore the biology related to HPV 
infection, unfortunately without showing a significant survival difference. 

High-throughput technologies allow the assessment of thousands of features, posing challenges 
to data analysis. To deal with increased data complexity, researchers apply machine learning 
approaches to improve biological knowledge via intuitive visualization, even at single-sample 
resolution. This allows questions, such as biomarker discovery and functional biological information 
mining, to be addressed. A particular method, self-organizing maps (SOM), provides important 
benefits including dimension reduction, multidimensional scaling, visualization capabilities over 
alternative methods such as non-negative matrix factorization, and hierarchical clustering [14]. SOM 
gained immediate attention in the bioinformatics field, and early microarray studies reported its 
application [15,16]. Since then, a number of studies on different cancer types proved its robustness 
[17,18]. 

In the present analysis, we focused our attention on HPV-positive HNSCC with annotated gene 
expression data and clinical annotations by exploiting a meta-analysis approach. We applied the 
SOM machine learning method on a total of 346 HPV-positive tumor samples. This allowed us to 
dissect the molecular heterogeneity of the disease and to make suggestions for de-escalation 
treatment. 

2. Results 

2.1. Case Material 

In order to dissect the molecular heterogeneity in HPV-positive HNSCC, 11 eligible published 
studies reporting gene expression data were selected for a systematic survey (Table S1, 
Supplementary Materials). Of these studies, all but one utilized microarray technology for gene 
expression analysis, and, in the majority of cases, HPV status was assessed with qPCR or HPV 
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genotyping. The resulting meta-analysis dataset, containing 346 samples and 8254 EntrezID genes, 
was used for the genomic analysis. HPV infection was assessed by p16 immunohistochemistry (IHC) 
(13 cases, 4%) or DNA or RNA from HPV testing (333, 96%) (Table S1, Supplementary Materials). All 
the methods used are recognized and utilized in clinical practice [19]. 

According to the clinical information (Table 1), a male preponderance (83%) and median age of 
58.7 years (range, 35–87) were observed, in line with the epidemiological data reported in the 
literature. The main subsite of origin was the oropharynx (68%), followed by the oral cavity (17%), 
larynx (6%), and hypopharynx (3%). Stages, assessed following malignant tumor classification 
system (TNM edition 7, American Joint Committee on Cancer, AJCC), were divided into stages I–II 
(35), stages III–IV (229), and information not available (82). Locally advanced stages (III–IV) were the 
most represented (66%), followed by not available (24%) and early stages (I–II; 10%). Survival data 
were available for 197 cases (57%) and not present for 149 cases (43%). Smoking habits were reported 
for 245 patients (169 smokers, 76 never smokers), and were unknown for 101 patients (Table 1). 

Table 1. Demographic and clinical data of the head and neck squamous cell carcinoma (HNSCC) 
human papillomavirus (HPV)-positive patients entered in the meta-analysis. 

Characteristics No. % 
Age, years   

(median; range) 57 (35–87) 77% 
Not available 78 23% 

Gender (male:female ratio) 287/59 83%/17% 
Subsite   

Oropharynx 235 68% 
Oral cavity 59 17% 

Larynx 20 6% 
Hypopharynx 10 3% 
Not available 22 6% 

Stage according to TNM edition 7   
Stage I–II 35 10% 

Stage III–IV 229 66% 
Not available 82 24% 

Smoking   
Smoker 169 49% 

Not smoker 76 22% 
Not available 101 29% 

Availability of follow-up data   
Yes 197 57% 
No 149 43% 

Total 346 100% 

2.2. HPV-Positive HNSCC Tumor Clusters: First-Level Self-Organizing Map (SOM) and Unsupervised 
Clustering Analysis 

We applied the SOM machine learning algorithm to convert the meta-analysis dataset into a 
matrix of meta-gene expression data. Starting from the 8254 genes, we imposed the log-intensity 
variation p-value <0.01, and a data matrix of 3498 genes was yielded. These 3498 genes were 
aggregated in meta-genes (average 10 genes each), resulting in a matrix of 18 × 18 meta-genes. 
Consensus unsupervised clustering was applied on the meta-gene data, revealing three clusters of 
samples. The cluster had well-defined boundaries, as shown by the consensus heatmap (Figure 1a). 
To exclude the existence of under-represented clusters, the consistency of sample assignment was 
evaluated by silhouette plot analysis. The resulting clustering configuration was appropriate (Figure 
1b), since most samples in each cluster had a positive value (average < s >: Cluster 1, Cl1 = 0.68; Cluster 
2, Cl2 = 0.53; Cluster 3, Cl3 = 0.48). Only seven samples (two belonging to Cl2 and five belonging to 
Cl3), corresponding to 2% of the entire case material, had negative values but were in the range 
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between −0.01 and −0.04. These seven samples were assigned by silhouette analysis, as follows: two 
Cl2 samples to Cl1, three Cl3 samples to Cl2, and three Cl3 samples to Cl1. We assessed the sample 
size adequacy by estimating the power for the detection of the three clusters; the robustness of the 
classification was ensured since at least 87% of genes had a power level of 0.9 (Figure S1, 
Supplementary Materials). By training the SOM algorithm, each sample was portrayed by displaying 
its molecular fingerprint. The generated subtype SOM images revealed a series of adjacent mosaic 
tiles coherently over- or under-expressed, and the resulting gallery of SOM portraits was used to 
intuitively visualize the coherent cluster patterns. In this way, we highlighted cluster-specific tiles in 
the SOM portraits, independent of the patient’s individuality (Figure 1c). 

 
Figure 1. Human papillomavirus (HPV)-positive head and neck squamous cell carcinoma (HNSCC) 
tumor clusters: first-level self-organizing map (SOM) and unsupervised clustering analysis. (a) 
Consensus matrix heatmap imposing three clusters: Cl1 (n = 134; 39%), Cl2 (n = 104; 30%), and Cl3 (n 
= 108; 31%). The consensus values are reported in a range from 0 (white, samples that never cluster 
together) to 1 (blue, samples showing the highest clustering affinity). (b) Silhouette plot analysis. The 
samples are ranked based on silhouette values (S) in each cluster. The heights indicate a strong 
similarity of the samples within their clusters compared with the samples belonging to other clusters. 
The colors in the lower bar show the predicted membership by silhouette analysis; the colors 
correspond to the consensus clustering assignment for all samples with the exception of the seven 
samples with a negative number but close to 0. (c) First level of the SOM gallery of the three clusters 
with cluster-specific tiles highlighted. The expression patterns are translated into a color code 
indicating over- and under-expression in a range from red to blue spots, respectively. 

We also investigated the influence related to technical sources of variability on our findings. An 
alluvial diagram was used to show the three-cluster membership, based on the study of origin and 
the platform used for the expression profiling (Figure 2). The percentage of variation, explained by 
these variables, was investigated compared with the variation associated with the present cluster 
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stratification, and this is summarized in the violin plots (Figure S2, Supplementary Materials). Our 
findings supported the biological value behind our three-subtype stratification, with a negligible 
influence of technical covariates. 

 
Figure 2. Alluvial diagram. In the diagram, each of the blocks corresponds to the number of features, 
and the stream fields between the blocks represent changes in the composition of the different blocks. 
The sizes of the blocks are proportional to the number of samples. We explored the cluster 
membership taking into account (i) the study of origin of each sample (11 strata); (ii) the different 
technology platforms used for expression profiling (five strata). Study of the origin: χ2 test = 12.08, p-
value = 0.913; Platform χ2 test = 5.93, p-value = 0.655. 

2.3. HPV-Positive HNSCC Cluster Similarity Relationships: Second-Level SOM 

The second-level SOM analysis investigated the similarity relationships among the first-level 
sample SOM portraits. 

We applied three different sample similarity approaches to estimate the mutual distances among 
samples, based on metagene expression data and using different metrics and algorithms. The first 
approach, independent component analysis (ICA), displayed three clusters supporting the identified 
stratification, although the boundaries between them were not strictly defined (Figure 3a, left panel). 
Additional information could be retrieved from the three independent components (component 1, 
component 2, and component 3): the projections onto the component 1/component two axes (Figure 
3a, right lower panel) segregated Cluster 1 (Cl1, green spots) from Cl2 and Cl3 (blue and red spots, 
respectively); however, regions of high density Cl2 and Cl3 showed distinct behavior without clear 
separation. On the contrary, when the component 1/component three axes were considered, Cl2 and 
Cl3 were more clearly divided (Figure 3a, right upper panel). 

As a second alternative metric, we investigated a correlation network approach: the resulting 
structure was visualized into a graph to highlight the correlation network (Figure 3b), and it 
confirmed the presence of a main cluster including Cl1 with few connections to Cl2 and Cl3.  

The third approach exploited a Euclidean distance-based approach through the resolution of 
neighbor-joining (NJ) clustering, which projects the relationships among samples in phylogenetic 
trees (Figure 3c). The NJ dendrogram was able to disclose finer details than the previous approaches, 
and it revealed inherent substructures and their connections in each cluster. By visual inspection, 
most Cl1 samples were segregated into clearly different branches from Cl2 and Cl3 branches, which, 
in contrast, appeared tightly correlated. 
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Figure 3. HPV-positive HNSCC cluster similarity relationships: second-level SOM. (a) Independent 
component analysis of meta-gene data. Samples were distributed along the three leading independent 
components; the plots show the three-dimensional distribution and the projections into the 
component 1/component 2 (lower panel) and component 1/component 3 (upper panel) dimensions. 
(b) Sample correlation network. The samples are visualized by nodes connected by edges with a 
backbone structure linking samples with the highest correlation. The similarity between samples is 
represented by their reciprocal distance; closer nodes have higher similarity and distant nodes have 
lower similarity. (c) Neighbor-joining analysis. The sample similarities are summarized in a 
phylogenetic tree structure computed using Euclidean distance. The neighbor-joining (NJ) analysis 
visualizes “bush-like” groups of similar samples by assessing their mutual dissimilarity. 

Finally, we investigated the relationship among meta-genes characterizing the three identified 
subtypes. The process of detection of coherent expression of meta-genes in SOM portraits highlighted 
specific molecular features for each subtype. Indeed, the resulting map defined three over-expression 
regions, each of them located in distinct corners of the map. These regions corresponded to SOM 
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clusters of co-regulated meta-genes (Figure 4a). The association of meta-genes to each cluster in 
precise map locations (left panels) and to a bar plot of expression intensity (right panels) better 
confirmed and defined the differences between subtypes: 54, 93, and 57 meta-genes had positive 
correlations with Clusters 1, 2, and 3, respectively (r = 0.77, r = 0.53, r = 0.67) (Figure 4b). 

 
Figure 4. Subtype characterization by group overexpression maps. (a) The 18 × 18 map of meta-genes 
summarizes the expression landscapes over the three subtypes; according to this analysis, co-
regulated meta-genes are located in the opposite corners of the map. (b) Detailed analysis of 
metagenes overexpressed in each subtype: map location (left panels) and bar plot of expression 
intensity (right panels). The bar plot represents the average meta-gene expression of each sample for 
the selected tiles. 

2.4. Tumor Microenvironment Landscape 
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The xCell tool was applied for the detection and evaluation, if present, of any differences in the 
three clusters, regarding microenvironment components. According to a dimensionality reduction 
technique (t-distributed stochastic neighbor embedding, t-SNE), we obtained two-dimensional 
coordinates that clearly segregated the three molecular clusters. It provided evidence about the 
existence of unique and defined biological subtypes (Figure 5a). To better disclose the properties of 
each subtype, the composite scores of immune cells (ImmuneScore), stromal cells (StromaScore), and 
the score of keratinocytes were calculated. Cl1, compared to Cl2 and Cl3, was characterized by 
enrichment of immune components (p-value = 9.9 × 10−29) (Figure 5b) and under-expression of 
keratinocytes (p-value = 2.03 × 10−32) (Figure 5c). On the contrary, Cl2 and Cl3 showed similar 
enrichment in keratinocytes, but a lower immunoscore. Cl2 and Cl3 were clearly separated when 
compared in terms of stromal components, with Cl3 significantly decreased (p-value = 6.3 × 10−18) 
compared with the two other two subtypes (Figure 5d). 

 
Figure 5. Tumor microenvironment landscape. (a) Visualization of the immune and “other cell” 
infiltrates assessed by xCell. Individual patients are summarized based on two-dimensional 
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coordinates from the t-distributed stochastic neighbor embedding (t-SNE) method. The notched 
boxplots show the ImmuneScores (p-value = 9.9 × 10−29) (b), keratinocytes scores (p-value = 2.03 × 10−32) 
(c), and stromal cell infiltrates (p-value = 6.3 × 10−18) (d) split into the three different subtypes. 

2.5. Functional Analyses of Subtypes 

To disclose the biological properties associated with each of the three resulting clusters, further 
functional characterization was performed using Gene Set Enrichment Analysis (GSEA). GSEA is a 
method used to test the overrepresentation of genes in gene sets, which are characterized by 
independent studies. We investigated the “Hallmark” gene set collection representing specific well-
defined biological processes. In particular, our analysis provided evidence of a specific enrichment 
for each cluster. Cl1 showed enrichment in immune-related hallmarks, such as “allograft rejection”, 
“IFN, interferon gamma”, and “IL6 JAK STAT3 signaling”; Cl2 overexpressed genes related to the 
hallmarks “epithelial–mesenchymal transition” (EMT), “myogenesis”, and “hypoxia”; Cl3 displayed 
enrichment in proliferation-related hallmarks, e.g., “E2F targets” and “G2M checkpoint” (Table 2 and 
Figure 6). 

Table 2. Gene-sets significantly up-regulated in each cluster. 

Gene -
set ID 

HALLMARK  
Gene-set name Genesa NESb 

 Nom  
p-value 

FDR  
q-val 

Cl1 vs Cl2 and Cl3 
GS-1 ALLOGRAFT REJECTION (immune resp)  130 2.89 <0.00001 <0.00001 
GS-2 INTERFERON GAMMA RESPONSE 151 2.18 <0.00001 <0.00001 
GS-3 IL6 JAK STAT3 SIGNALING 60 1.94 <0.00001 <0.00001 
GS-4 INFLAMMATORY RESPONSE 132 1.76 <0.00001 0.0018 
GS-5 KRAS SIGNALING UP 114 1.75 <0.00001 0.0019 

      
Cl2 vs Cl1 and Cl3 

GS-1 EPITHELIAL MESENCHYMAL TRANSITION 140 3.01 <0.00001 <0.00001 
GS-2 MYOGENESIS 119 2.42 <0.00001 <0.00001 
GS-3 COAGULATION 77 2.23 <0.00001 <0.00001 
GS-4 ANGIOGENESIS 19 2.02 <0.00001 <0.00001 
GS-5 HYPOXIA 133 1.90 <0.00001 <0.00001 
GS-6 HEDGEHOG SIGNALING 17 1.89 0.0020 <0.00001 
GS-7 UV RESPONSE DN 97 1.78 <0.00001 0.0020 
GS-8 APICAL JUNCTION  137 1.78 <0.00001 0.0020 

Cl3 vs Cl1 and Cl2 
GS-1 E2F TARGETS 143 2.56 <0.00001 <0.00001 
GS-2 G2M CHECKPOINT 150 2.24 <0.00001 0.0020 

      

GS: geneset; thresholds: FDR ≤ 0.005; NES≥1.75, a Number of total genes present in the geneset, b NES 
= normalized enrichment score. 
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Figure 6. Visualization of the Gene Set Enrichment Analysis (GSEA) functional analysis for each of 
the three clusters. The boxplots show how the gene set Z score (GSZ) values (depicted in y-axis) are 
distributed within each of the three clusters (Cl1, green; Cl2, blue; Cl3 red). In each row, comparisons 
of the GSZ score values for the two most enriched hallmark gene sets are shown: for Cl1, over-
expression is shown for the “immune response” hallmark (p-value 1.09 × 10−40) and “interferon (IFN)-
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gamma response” hallmark (p-value = 9.32 × 10−14); for Cl2, enrichment is shown in the “epithelial–
mesenchymal transition (EMT)” hallmark (p-value = 4.30 × 10−33) and “myogenesis” hallmark (p-value 
= 9.68 × 10−19); for Cl3, over-expression is shown in the “E2F targets” hallmark (p-value = 2.68 × 10−18) 
and “G2M checkpoint” (p-value 2.10 × 10−13). The p-values were obtained by means of Kruskal–Wallis 
tests. 

2.6. HPV Presence/Integration and Its Association with Clusters 

We investigated the association between HPV viral integration and our three clusters, using the 
data provided by Koneva et al. [20]. Table S2 (Supplementary Materials) shows the contingency table 
for the TCGA cases analyzed in Koneva et al., reaching a significant association of χ2 =12.32 and a p-
value = 0.00212; the relative presence of HPV integrated cases in each subtype increased in the order 
Cl1 < Cl3 < Cl2, with relative frequencies of 0.45, 0.77, and 1, respectively. Moreover, we explored the 
expression of viral genes (E2, E4, and E5). The expression patterns in Cluster 2 are consistent with 
viral integration. When integrated, the expression of the E2 gene is reduced, since it is truncated along 
with downstream genes such as E4 and E5 (Figure S3). 

2.7. Prognostic Values of the Three-Subtype Classification 

Due to the robust analysis revealing three distinct HPV-positive HNSCC subtypes, we aimed to 
investigate their associations with overall survival as the clinical endpoint. Outcome data (i.e., overall 
survival; OS) were available for 75/134 Cl1 patients, 56/108 Cl2 patients, and 66/104 Cl3 patients, for 
a total of 197 patients. As depicted in Figure 7a, the results showed a significantly better outcome for 
Cl1 subtype patients, with a survival probability at 60 months of 0.809, and a worst outcome for Cl3 
and Cl2 subtypes, with a survival probability at 60 months of 0.47 and 0.197, respectively (log-rank 
p-value = 4.76 × 10−9). 

Furthermore, we applied two different gene expression published signatures to the 197 HPV-
positive HNSCC patients with available follow-up information: (i) the 172-gene model, a prognostic 
model for HNSCC [21]; (ii) the radiosensitivity index (RSI) [22], a gene signature developed as a pan-
marker of cellular radiosensitivity. In order to assess whether and to what extent the signatures were 
associated with HPV-related subtypes, we applied the algorithms developed [21,22] to our cohort. 
The resulting scores were compared to the three-subtype stratification. A significant relationship was 
found between our stratification and these molecular signatures (Figure 7b). In detail, the Cl1 subtype 
showed the lowest 172-gene signature related score, meaning that Cl1 has the minimum predicted 
risk, as confirmed by OS. Furthermore, Cl1 displayed the lowest RSI value, which predicted its 
radiosensitivity. On the contrary, Cl2 subtype exhibited the highest score in the 172-gene signature, 
and the maximum RSI score, compared with the other two subtypes, predicting its high risk and 
intrinsic radioresistance, respectively. The Cl3 subtype showed an “intermediate” behavior, with all 
three analyses (OS, 172-gene signature score, and RSI). 

The clinical relevance of our classification was additionally investigated and associated with the 
outcome in an external validation dataset. For our analysis, we retrieved the RNA-sequencing (RNA-
seq) data of Ando et al. [23], which included 47 HPV-positive oropharyngeal squamous cell 
carcinomas. With this external validation, we confirmed that the three-subtype stratification provides 
useful prognostic information. As a matter of fact, better outcomes were associated with patients 
belonging to Cl1/Cl3 subtypes, and worse outcomes were associated with patients belonging to Cl2 
subtype (Figure 7c) (log-rank p-value = 0.0152). Finally, we investigated the association between clinal 
features and our molecular stratification. Table S3 (Supplementary Materials) reports the data related 
to gender, age, smoking habit, site, and TNM v7 stage. We found a significant association with site 
having Cl2 a higher percentage of cases other than oropharynx. In addition, due to its potential 
prognostic role, smoking habit was associated with the three subtypes. There was a trend in the 
different distribution of the smoking habit with higher percentage of smokers in Cl2. Table S4 
(Supplementary Materials) reports the association for Ando’s dataset including gender, age, 
smoking, Ang et al. (2010) classification system, smoked packs per year, alcohol use, t-stage, and n-
stage. We found a significant association with t-stage, having Cl2 cases a higher percentage of T3–4. 
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Figure 7. Prognostic evaluation of the three-subtype stratification. (a) Survival analysis on the meta-
analysis dataset (MetaHPVpos). The 197 cases, entered into the three subtypes (75/134 Cl1 patients; 
56/108 Cl2 patients; 66/104 Cl3 patients), were used for the Kaplan–Meier analysis, yielding a log-rank 
score of p-value = 4.76 × 10−9. The endpoint was overall survival. (b) Gene-signature. Two models were 
evaluated: (i) radiosensitivity index (RSI), (ii) the 172-gene prognostic model. RSI is directly 
proportional to radioresistance (high index = radioresistance), while the 172-gene model is directly 
proportional to the risk of recurrence. Stratification by both signatures reached p-value = 8.76 × 10−13 
and p-value = 7.98 × 10−22 for the RSI and 172-gene model, respectively. (c) Validation on GSE112026. 
The 47 cases belonging to GSE112026 were stratified based on our three subtypes: 18, 18, and 11 cases 
were predicted as belonging to Cl1, Cl2, and Cl3, respectively. The cases, entered into the three 
identified subtypes, were used for the Kaplan–Meier analysis, yielding a p-value = 0.0152 (log-rank 
test). 

3. Discussion 

Among HNSCCs, the HPV-positive tumors are an independent entity with specific clinical and 
molecular characteristics. Moreover, inside the HPV-positive subgroup, it is additionally possible to 
observe an intrinsic heterogeneity, in terms of patients’ outcomes. This assumption questions 
whether treatment de-intensification could be applied to all HPV-positive HNSCCs. Clinical factors, 
such as large tumor burden and smoking history, correlate with a worse prognosis, but the biological 
mechanisms elucidating the complexity of the HPV-positive subgroup are still not fully understood. 
In the present meta-analysis of transcriptomic data, we applied a rigorous and up-to-date 
bioinformatics analysis to 346 HPV-positive HNSCCs with published sample data. To the best of our 
knowledge, this is the largest cohort of HPV-positive HNSCCs analyzed up until now. Specifically, 
our study identified three tumor subtypes, and it further dissected a population, which was 
previously divided into only two subgroups by published studies [12,13,24]. In agreement with these 
findings, we clearly identified an immune-associated cluster (named Cl1 in our analysis). In addition, 
we stratified the remaining patients (previously described as one “keratinocyte subtype” cluster 
[13,24]) into two well distinct subtypes with clearly defined biological and prognostic characteristics. 
The stratification refinement could be attributed not only to the dimension of the analyzed cohort 
(from two to three times larger than in previous studies), but also to the application of the NJ analysis, 
which revealed a degree of heterogeneity moving from Cl2 to Cl3 samples with disjointed branches. 

In general, HPV-related HNSCCs are known to have better outcomes when compared with 
HPV-negative HNSCCs [25]. The observed overall survival of our cohort of patients is aligned with 
the reported prognostic data. However, our analysis displayed a specific prognosis for each cluster, 
identifying those HPV-positive cases with the best, intermediate, and poorest prognoses. 
Interestingly, the subtype stratification did not provide evidence of a significant association with 
smoking habit, but highlighted some specific biological traits for each cluster that could help in 
interpreting their different outcomes. 

Cluster 1 patients exhibited the best outcome at five years and it showed similar behavior to 
those patients identified as having low-risk HPV-related HNSCC [25]. Additionally, Cl1 was clearly 



Cancers 2019, 11, 1057 13 of 22 

 

separated from the other two clusters by its high immune score in the xCell analysis, and by 
upregulation of the hallmarks “IFN, interferon gamma signaling” and “IL6 JAK STAT3 signaling”. 
The high immune score, associated with a good outcome, could be in agreement with the hypothesis 
that, in these patients, the immune system plays an important role in the clearance of viral proteins 
expressed in HPV-positive cancers [26]. Indeed, tumors enriched by the IFN-gamma signature may 
benefit from immunotherapy [27]. On the contrary, the IL6/JAK/STAT3 pathway hyper-activation is 
more difficult to interpret in the context of a better prognosis. In fact, IL6/JAK/STAT3 signaling is 
expected to drive proliferation, survival, and invasiveness of tumor cells, and to suppress the anti-
tumor immune response. Overall, we could assume that, in Cl1, the immune infiltrate, as determined 
by the ImmuneScore, and the high “IFN, interferon gamma signaling” could counterbalance the pro-
tumoral action of IL6 JAK STAT3 signaling; however, specific functional assays are necessary to 
confirm this assumption. Considering the better prognosis and the biological profile, we could 
hypothesize that Cl1 patients would be the best candidate for de-escalating treatment strategies, even 
including checkpoint inhibitors. 

Cluster 2 exhibited the worst outcomes, and it strongly differed from the other two subtypes by 
its high stromal score. Essentially, this score reflects fibroblast infiltration, and it frequently leads to 
deregulation of EMT-inducing factors, EMT upregulation, and hallmark “hypoxia” overexpression. 
The EMT changes in tumor cells were reported to be linked to the acquisition of aggressive behaviors 
including (i) increased invasive properties, (ii) resistance to DNA damage, (iii) chemotherapy-
induced apoptosis, (iv) immunosuppression, and (v) acquisition of stem-like features [28]. In 
addition, the increase in the hallmark “hypoxia” is in agreement with the radioresistance detected by 
RSI [29]. We hypothesize that treatment intensification could be beneficial for these patients. As an 
example, an accelerated fractionation schedule of radiotherapy should be considered as a strategy to 
overcome radioresistance. 

Cluster 3, characterized by an intermediate outcome compared with the other two clusters, was 
clearly defined by upregulation of the hallmarks “E2F targets” and “G2M checkpoint”, both 
associated with increased proliferation. A possible explanation for these data may be the 
interpretation of boosted proliferation as a result of the integration of the viral genome in the host 
cell. Moreover, upregulation of the hallmarks “E2F targets” and “G2M checkpoints” is in agreement 
with the observation that the HPV genome does not encode enzymes necessary for viral replication 
[26]. Instead, the virus utilizes host cell proteins to replicate its DNA. Therefore, basal cells containing 
HPV genomes remain active in the pathway related to the cell cycle, also due to Rb degradation. The 
E2F transcription factor, without Rb function, is free to drive the expression of S-phase genes [26,30]. 
A first explorative investigation, between the viral integration and our three clusters using data 
provided by Koneva et al. [20], revealed a significant association between the integration of HPV in 
the host genome and each of our subtypes in the following order: Cl1 < Cl3 < Cl2 (Figure S2, 
Supplementary Materials). Despite the analysis being performed on a limited number of samples, 
Cl2 seemed to be in accordance with cases already described in literature, in which HPV was 
integrated and viral integration was associated with a poor prognosis [31]. Nevertheless, in this 
regard, Cl3 shows an intermediate behavior, which may possibly be explained through Nulton 
discovery [32]. Indeed, HPV infection is described not only as its usual integrated and episomal state 
but, additionally, as a third state where the viral genome exists as both episomal and integrated states. 
Anyway, the proposed associations require further evaluation, for not only exploring the HPV state, 
in terms of integration, episomal, and intermediate states, but also to examine possible target 
amplification. 

Some limitations of this study and some differences with more recent data should be mentioned. 
Based on the clinical characteristics of the analyzed patients, we observed a relatively high number 
of missing clinical data (near to 30% in age and stage). The possible explanation for the unavailability 
of these data could reside in the nature of the studies included in our meta-analysis, which had the 
biological description of the HPV tumors as a primary endpoint and, accordingly, an inconsistent 
collection of clinical data was performed. 
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It is noteworthy that HPV-related tumors in subsites, other than the oropharynx, reached a 
higher percentage than expected (10%). We hypothesize that this difference could be attributed to the 
sample collection in the years before the clear prognostic role of HPV infection in oropharynx cancers. 
In fact, the new TNM staging system (American Joint Committee on Cancer, 8th edition) 
distinguishes, for the first time, HPV-related from HPV-unrelated oropharynx cancers by stratifying 
according to p16 expression. The prognostic value for other subsites (i.e., oral cavity, hypopharynx, 
larynx) other than the oropharynx is still debatable, although a recent review demonstrated a 
prognostic role for HPV infection in all HNSCC subsites [33]. 

Considering the prognostic role of our stratification, three subtypes, with different outcomes, 
were described for the first time. An identified limitation could be the fact that treatment was not 
systematically recorded, and the overall survival of our case series was poorer than the expected 
outcome [25]. Moreover, another limitation was identified: the association of subtypes and prognoses 
should be underscored, although we should highlight that the follow-up was only available for 197 
out of 346 (57%) cases. A further bias is related to the differences in treatment techniques used in the 
last 15 years (e.g., three-dimensional (3D) vs. intensity-modulated radiotherapy; trans-oral robotic 
surgery, TORS, robotics vs. traditional open surgery). 

In conclusion, ongoing trials on de-escalation treatment approaches in HPV-positive HNSCC 
are based only on HPV status and do not take the contributions of genomics and molecular profiles 
into consideration [34]. It is conceivable that, upon rigorous validation, our stratification could help 
develop a “precision treatment approach” based on the genomic profile of HPV-related HNSCC to 
select patients. 

4. Materials and Methods 

4.1. Case Material: Gene Expression and Clinical Data 

A survey of gene-expression data on HNSCC (available at 31 August 2018) was accomplished. 
The cases entered into our study were selected based on the following eligibility criteria: (i) primary 
lesions of squamous cell carcinoma; (ii) reported HPV status, according to the clinical practice in the 
reference center; (iii) MIAME (Minimum Information about a Microarray Experiment) [35] complaint 
data with the availability of raw data deposited on publicly accessible repositories and full gene 
annotation (Gene Bank accession or EntrezID). After literature revision, there were 11 datasets [12,36–
45]. See Table S1 (Supplementary Materials) for details regarding the datasets including the accession 
numbers and methods of HPV detection. Raw microarray data were retrieved from the NCBI 
(National Center for Biotechnology Information) Gene Expression Omnibus (GEO) database [46], 
ArrayExpress (the EMBL European Bioinformatics Institute, UK) [47], MIAME-Vice [48], and TCGA 
repositories [49] and were integrated into a unique dataset through a meta-analysis approach, as 
previously described [50]. 

In addition, we collected available clinical data related to this case material, comprising age at 
diagnosis, gender, smoking habits, tumor subsite, stage, and overall survival. 

For validation purposes, we retrieved the data from Ando et al. [23], which are publicly available 
on the GEO repository (identifier (ID): GSE112026). A cohort of 47 primary tumor tissues with HPV-
related oropharyngeal squamous cell carcinoma was collected for RNA-seq analysis and 
microdissected to yield at least 80% tumor purity. HPV tumor status was confirmed by in situ 
hybridization for high-risk HPV subtypes or p16 immunohistochemistry. According to the TCGA 
RSEM (RNA-Seq by Expectation Maximization) pipeline, RNA-seq data were processed using RSEM 
version 1.2.9 and upper quartile normalization. For class prediction purposes, analyses were 
performed through R-based BRB-ArrayTools software (version 3.5.0) developed by Richard Simon 
and the BRB-ArrayTools development team [51]. A class prediction method based on a supervised 
learning method was applied for classifying GSE112026 cases. Prediction was based on the support 
vector machine (SVM) method by incorporating genes at the univariate significance level (α = 0.001) 
in a binary tree classification framework, which was chosen due to its ability to classify more than 
two classes. SVM is specifically designed to address binary classification; however, it can be adapted 
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to handle multi-class classification by building a sequence of binary classifiers. The prediction error 
of the binary tree classifier was estimated by the leave-one-out cross-validation method. 

4.2. Data Preprocessing for Meta-Analysis Dataset Generation 

The selected studies were analyzed with four platforms, including three microarray platforms 
(Affymetrix, Agilent, and Nimblegene) and one RNA-seq (Illumina). For Affymetrix data, signal 
intensities were normalized within each individual dataset using a robust multi-array average (RMA) 
tool. For Agilent data, the normexp background correction and loess normalization were used for 
two-channel arrays, while quantile normalization procedures were applied to the probe-level data. 
For Illumina microarray data, quantile normalization was applied. For RNA-seq data, TCGA level 3 
files were downloaded along with the clinical annotations and used for the analysis. The redundancy 
of probes mapping the same EntrezID was removed by selecting the probe with the highest variance 
among multiple probe-sets by identifying the same gene; collapse was performed using WGCNA 
package 1.63 (function: collapseRows) and the “maxRowVariance” method [52]. To reduce the likelihood 
of systemic non-biological technical experimental biases among data from different platforms, after 
log2 transformation, the ComBat algorithm was applied [53]. Then, the expression value of each gene 
was averaged over all samples of our data matrix, converting the expression data into the change in 
log-expression (Δei,m) of gene i in sample m; Δei,m = 0 implies an expression level according to its mean 
value, while a relative positive or negative value refers to over- or under-expression, respectively, 
according to the mean gene expression. 

4.3. Tumor Clusters: First-Level SOM 

The Δei,m data matrix was used to train a SOM, an unsupervised machine learning method based 
on the artificial neural network, enabling the dimensionality reduction of complex data structures of 
size N × M (N: number of genes; M: number of samples) to K × M (K: number of meta-genes), where 
K << N, promoting the discovery of qualitative relationships among samples [54]. Each meta-gene 
represents a cluster of genes sharing similar expression profiles and was selected by an interactive 
machine learning process by SOM; the process was trained until the meta-genes captured the entire 
range of expression patterns present in the data matrix. SOM algorithm data analysis and landscape 
visualization were performed using the “oposSOM” R package (version 1.18.0) [55], which uses the 
“som” R package [56]. A statistical significance criterion based on expression variance was applied 
to discard the non-informative features in our data matrix through the BRB-ArrayTools developed 
by Dr. Richard Simon and the BRB-ArrayTools Development Team [57]. The procedure assigns each 
input gene measured in M samples into a meta-gene of the same length, and each gene is included in 
a meta-gene, Δei,mmeta, of closest similarity established by the Euclidian distance. The meta-genes are 
organized in a two-dimensional grid of K = x × y tiles with the most similar expression profiles of 
meta-genes adjacent each to another, while the dissimilar ones are more distant. In the present study, 
we adopted a tile size with an average of nk ≈ 10 genes per meta-gene, corresponding to a two-
dimensional grid of size K = 18 × 18 meta-genes with square topology and the Gaussian neighborhood 
function [14]. The meta-genes were normalized to fit into the range −1 ≤ ei,mmeta ≤ 1 and coded by a 
color scale from blue (low expression) to red (high expression). 

4.4. Tumor Clusters: Unsupervised Clustering Analysis 

The R-package “ConsensusClusterPlus” [58] was applied to portion the samples into molecular 
coherent subtypes. The meta-data Δei,mmeta were used as input for unsupervised class identification 
using partition around medoids (PAM) clustering with 1-Pearson correlation as the distance matrix. 
The PAM algorithm [59] is similar to the K-means algorithm, with both being partitional algorithms 
that split the dataset into clusters and try to minimize the error. However, while K-means works with 
centroids, which are artificially created entities that are representative of each cluster, PAM chooses 
real data-points as cluster centers. An unsupervised clustering procedure was applied to the data 
through 1000 re-sampling interactions by randomly selecting a fraction of the samples. Cluster 
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numbers ranging from 2 to 10 were tested, and the empirical cumulative distribution function (CDF) 
and delta area plots displaying consensus distributions were assessed to identify the number of 
clusters giving maximum stability with a negligible increase in the CDF area [60]. To estimate the 
accuracy of the classification, the silhouette correlation width values were calculated for all samples 
(R-package: “oposSOM”), providing a graphical representation of how well the samples lay within 
their assigned cluster. The silhouette values ranged from +1 to −1, indicating the degree of similarity 
of a sample to the assigned cluster (cohesion) or to other clusters (separation). The evaluation of 
sample size adequacy of the identified clusters was assessed according to Warnes and Liu (R-
package: “ssize”) [61] and computed by imposing the type I error rate (false discovery rate, FDR), α = 
0.05, and a minimum effect size (log fold-change) of Δ = 1. Cluster-specific portraits represent the 
mean value of each meta-gene of the samples belonging to the cluster in detail. The portraits are 
depicted in a log (fold-change) scale where the fold-change is the expression difference compared 
with the mean expression in all samples. To ascertain to what degree technical variability (i.e., study 
of origin and platform) affects our subtype clustering analysis, we used the “alluvial diagram”, a 
variant of the parallel coordinates plot that is helpful for exploring categorical data by grouping them 
into flows that can easily be traced in the diagram [62]. The plots were generated using the R-package 
“alluvial”. In addition, we used a linear mixed model to quantify the extent of technical variability in 
each sample through the “variancePartition” R package [63]. To visualize the contribution of each 
variable, violin plots were depicted to show the trend and rank the distribution of variance explained 
by each variable across all genes. The plots summarize the results in terms of the percentage of 
variance explained. 

4.5. Cluster Similarity Relationships: Second-Level SOM Cartography 

Second-level SOM analysis aims to address the issue of similarity relationships among groups 
of samples. It estimates the hierarchy of similarities and mutual distances based on the expression of 
meta-genes, and it provides improved visualization and representativeness of the results. To infer 
the main structures present in our data, we applied three approaches for computing the distance 
metrics. 

Independent component analysis (ICA) [64] was applied to the SOM meta-genes using the 
“fastICA” R package [65], a method based on the covariance matrix assessed by Pearson’s correlation 
to decompose the input meta-genes into independent and non-Gaussian components in order to 
ensure that each one is statistically as independent from the others as possible. 

The correlation backbone through a two-nearest-neighbor graph is a correlation network 
approach where Pearson correlations are computed between all pairwise combinations of samples, 
and their structures are visualized in a graph. 

The NJ algorithm (“ape” R package [66]) is a distance-based method offering phylogenetic tree 
reconstruction where similarity trees are defined between samples into an Euclidian space, allowing 
“bush-like clusters” displaying mutual dissimilarity to be revealed [67]. 

To visualize the main meta-genes related to subtype stratification, we assessed the group over-
expression spots. We exploited SOM portraits by detection of the coherent expression of meta-genes. 
Using group overexpression maps, we linked selected meta-genes (correlation with r > 0.5) in 
different regions of the SOM with groups of samples. The group overexpression portrait was 
calculated as the mean map profile by averaging the meta-gene expression over the three subtypes. 
To identify the over-expression tiles, a 98th percentile criterion was applied to the meta-gene 
expression SOM training aggregate meta-genes with similar profiles in the adjacent neighbored tiles 
of the map. These tiles’ profiles grouped over-expressed (or under-expressed) samples that differed 
from the others. The samples belonging to each subtype were summarized in an average 
representative portrait. The mining of biological functions from SOM portraits was performed using 
“oposSOM” R package (version 1.18.0). 

4.6. Tumor Microenvironment Landscape 
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To evaluate the heterogeneity in the tumor microenvironment, the immune, stromal, and other 
cell components were inferred by an in silico approach using the xCell tool [68,69]. This approach 
enables the assessment of 64 cell types using the bulk gene expression profiles of the tumors as input 
and comparing them across samples, as described by the authors of Reference [69]. The tool outputs 
include the transformed xCell scores for the immune, stromal, and other cell types. The adjusted 
ImmuneScore included 10 populations (B-cells, CD4+ T-cells, CD8+ T-cells, DC, eosinophils, 
macrophages, monocytes, mast cells, neutrophils, and NK cells) and StromaScore 3 populations 
(adipocytes, endothelial cells, fibroblasts). In addition, to identify potential keratinocyte 
differentiation, the xCell score for keratynocytes was computed. To visualize the cellular 
heterogeneity of the clusters, we applied a dimension reduction method by t-distributed stochastic 
neighbor embedding (t-SNE) using the “Rtsne” package [70], which projected the cell type 
enrichment scores onto two-dimensional axes [71]. We presented the scores of each subtype in 
notched boxplots using the “ggplot2” R package. Notch boxplots display a confidence interval around 
the median based on the median ±1.58 × IQR (interquartile range) /sqrt(n). They are useful graphs for 
comparing groups of samples, because an absence in notch overlapping provides strong visual 
evidence that the medians differ. The p-values were calculated by the Kruskal–Wallis test, a 
nonparametric test that compares the means among three or more groups, as in our subtype 
classification. 

4.7. Functional Analyses 

To disclose the biological functional properties associated with the proposed molecular 
subtypes, gene set analysis was applied. This approach estimates gene set over-representation 
(probability of finding genes in a list compared to their random appearance) and over-expression 
(difference in expression compared to the mean expression over the samples). The gene sets were 
defined from a priori knowledge from independent studies and they were summarized in a list of 
genes specifically related to molecular pattern/biological function. A large collection of gene sets was 
retrieved from the Gene Set Enrichment Analysis (GSEA Broad Institute; 
software.broadinstitute.org/gsea/) and the Molecular Signatures Database (MSigDB) repository, 
including 50 hallmark gene sets. We used the gene set Z-score (GSZ) to summarize the profile of a 
gene set across all samples [72]. GSZ is a Z-score function that merges both over-representation and 
over-expression features from a gene set to give a defined gene set and provides a representative 
score of the gene set for each sample. Boxplots were generated using the “ggplot2” R package with 
the notched boxplot function (see Section 4.6). 

4.8. Analysis of Viral Presence/Integration and Its Association with Clusters 

The association between viral integration and our subtype stratification was investigated using 
the results provided by Koneva et al. [20]. Based on TCGA RNA-seq data and exploiting VirusSeq 
software [73], they detected known virus strains and identified the integration sites. Thus, the authors 
disclosed the HPV integration status of 65 TCGA cases present in our meta-analysis and assessed 
viral gene expression (E2, E4, and E5). We investigated the relative presence of integrated HPV cases 
defined as integrated cases/(integrated + non-integrated cases) in each subtype, and significance was 
calculated by the χ2 test. Counts per million (CPM) were retrieved from Koneva et al. and transformed 
into the log scale by log2(CPM + 1) [74]. Associations with viral gene expression were visualized by a 
heatmap. The samples were ranked by the Gene Set Variation Analysis (GSVA [75]) based on the 
three viral genes. GSVA was used to estimate the variation of a gene set over the samples in an 
unsupervised manner. The p-values were calculated by the Kruskal–Wallis test. 

4.9. Evaluation of Prognostic Signatures 

Statistical analysis was performed using R (version 3.5.1) [76] and Bioconductor (release 3.7) [77]. 
Survival curves were assessed according to the Kaplan–Meier method, and overall survival was used 
as the endpoint. Differences between the subtypes were assessed using the log-rank test and R 
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package “survival”. Two signatures were evaluated: (i) the 172-gene prognostic model [21]; (ii) the 
radiosensitivity index (RSI) [22]. The list of genes and the algorithm used for model assessment were 
retrieved from the original papers. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1: Figure S1: 
Estimation of sample size adequacy. The relationship between the genes in our data matrix and power to detect 
a sample size defined by our three-subtype stratification (Cl1 = 134; Cl2 = 104; Cl3 = 108) is shown in the plots. 
The percentage of genes achieving a power level of at least 0.9 is displayed by the red bars and was calculated 
by performing a pairwise comparison between subtypes; Figure S2: Violin and boxplot of the percent variation 
in gene expression explained by the study of origin, platform, and our three-cluster stratification. Median 
percentage variation explained: cluster = 50.4%; study <1%; platform <1%; Figure S3: Expression heatmap of viral 
genes. The expression values for HPV E2, E4, and E5 in the TCGA cases were retrieved from Koneva et al. For 
visualization purposes, samples were ranked based on Gene Set Variation Analysis (GSVA) from low to high 
viral gene enrichment. The membership of each TCGA sample is depicted in the bar below the heatmap. Low 
E2, E4, and E5 expression was found in Cl2 cases compared with Cl1 and Cl3 (p-value = 0.00156, p-value = 
0.00204, and p-value = 0.00147 determined by Kruskal–Wallis Tests, respectively); Table S1: List of used datasets. 
Dataset name, platform used, provider, technology, repository (included websource), number of samples, 
assignment to the three clusters, and methods of HPV detection are detailed in the table for each of the 11 sources 
utilized; Table S2: Contingency table for TCGA HPV cases annotated for HPV integration status by Koneva et 
al; Table S3: Association to clinical parameters in the meta-analysis dataset. The table includes the evaluation of 
the following clinical parameters: (i) gender; (ii) age; (iii) smoking habit (current or former smokers vs. never 
smoke); (iv) site (oropharynx vs. other sites); (v) stage. p-values by χ2 test, with the exception for age determined 
by Kruskal–Wallis Tests; Table S4: Association to clinical parameters in the validation dataset (GSE112026). The 
table includes the evaluation of the following clinical parameters: (i) gender; (ii) age; (iii) smoking, (iv) Ang et 
al. (2010) classification system; (v) smoked packs per year; (vi) alcohol use; (vii) t-stage; (viii) n-stage. p-values 
by χ2 test, with the exception for age determined by Kruskal–Wallis Tests. 
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