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Abstract: Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer
histotype, characterized by high biological aggressiveness and scarce treatment options. Recently, we
have established a clinically relevant murine HCC model by co-expressing activated forms of v-akt
murine thymoma viral oncogene homolog (AKT) and oncogene c-mesenchymal-epithelial transition
(c-Met) proto-oncogenes in the mouse liver via hydrodynamic tail vein injection (AKT/c-MET mice).
Tumor cells from these mice demonstrated high activity of the AKT/ mammalian target of rapamycin
(mTOR) and Ras/ Mitogen-activated protein kinase (MAPK) signaling cascades, two pathways
frequently co-induced in human HCC. Methods: Here, we investigated the therapeutic efficacy of
sorafenib, regorafenib, the MEK inhibitor PD901 as well as the pan-mTOR inhibitor MLN0128 in
the AKT/c-Met preclinical HCC model. Results: In these mice, neither sorafenib nor regorafenib
demonstrated any efficacy. In contrast, administration of PD901 inhibited cell cycle progression
of HCC cells in vitro. Combined PD901 and MLN0128 administration resulted in a pronounced
growth constraint of HCC cell lines. In vivo, treatment with PD901 or MLN0128 alone moderately
slowed HCC growth in AKT/c-MET mice. Importantly, the simultaneous administration of the two
drugs led to a stable disease with limited tumor progression in mice. Mechanistically, combined
mitogen-activated extracellular signal-regulated kinase (MEK) and mTOR inhibition resulted in a
stronger cell cycle inhibition and growth arrest both in vitro and in vivo. Conclusions: Our study
indicates that combination of MEK and mTOR inhibitors might represent an effective therapeutic
approach against human HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most frequent form of primary liver cancer and the second
leading cause of cancer-related mortality around the world [1–3]. The incidence of HCC has been
rapidly and steadily rising over the past decades. Generally, patients with HCC do not show early
stage symptoms and the diagnosis often comes late, thus most patients do not meet the criteria for
effective surgical resection or liver transplantation [1,4]. For patients with advanced stage HCC, the
multi-kinase inhibitor sorafenib is the standard of care worldwide. For those who progress on sorafenib,
additional drugs, such as regorafenib, another multi-kinase inhibitor, have been recently approved as
the second line therapeutics against HCC [5–7]. Recently, immune checkpoint inhibitors, including
nivolumab and pembrolizumab, have demonstrated efficacy in ~20% of HCC patients [8]. However,
many patients do not respond to any of these treatments and the overall survival rate of HCC remains
extremely poor, with HCC incidence rate roughly coinciding with that of mortality [9]. Thus, novel
and effective therapeutic strategies are of prime importance for this malignancy.

The phosphoinositide-3-kinase (PI3K)/AKT/mTOR pathway is active in diverse tumor entities,
such as breast cancer [10], colon cancer [11], and cholangiocarcinoma [12]. Aberrant activation of this
signaling cascade has also been found in about 40–50% of HCCs [13]. Evidence shows that this pathway
plays an important role in cell proliferation, survival, and energy metabolism, and is associated with
tumor lower differentiation, poorer prognosis, and rapid cancer recurrence [14,15]. Due to the key
function of the PI3K/AKT/mTOR cascade in liver cancer, its suppression by targeted agents is a rational
direction for the treatment of HCC. MLN0128 is a second-generation mTOR ATP site inhibitor [16] and
can reduce the tumor burden effectively in CD44 expressing HCC, which is insensitive to sorafenib [17].
In addition, MLN0128 is currently under evaluation in several Phase I and II clinical trials, including a
Phase I/II clinical trial as a first-line single agent compared with standard sorafenib in advanced HCC
(NCT 02575339, https://clinicaltrials.gov/).

The MEK signaling is a critical molecular axis driving various cellular processes including growth,
differentiation, survival, migration, and angiogenesis [18–20]. Either activating mutations of various
oncogenes or growth factors are able to trigger this pathway [21]. Deregulation of the MEK signaling
cascade has been described in several cancer types, including breast, melanoma, lung, and pancreatic
tumors [19–21]. In light of this evidence, targeting this kinase offers an attractive therapeutic target for
cancer and, consequently, various MEK inhibitors have been developed [21]. In human HCC, it has
been shown that the Ras/MEK pathway is ubiquitously activated [22], and targeting MEK has shown
to be detrimental for the growth of HCC cell lines [23]. Taken together, these data support the potential
importance of MEK inhibition in HCC therapy.

We have recently established a clinically relevant murine HCC model by simultaneously
overexpressing activated AKT and c-MET proto-oncogenes in the mouse liver (AKT/c-MET) by
hydrodynamic tail vein injection. In these mice, pure HCC develop, and mice require to be sacrificed by
8 weeks post hydrodynamic injection due to high tumor burden. At the molecular level, AKT/c-MET
tumor cells demonstrated high levels of activation of the AKT/mTOR and Ras/MAPK cascades [24].

In the present study, we investigated the therapeutic efficacy of sorafenib, regorafenib, the MEK
inhibitor PD-0325901 (PD901), and the pan-mTOR inhibitor MLN0128 in vitro using HCC cell lines and
in vivo using the AKT/c-MET preclinical HCC model. We found that a combination therapy targeting
concurrently the Ras/MAPK and AKT/mTOR cascades is effective in inducing tumor growth restraint.
Thus, our study underlines the synergistic efficacy of Ras/MAPK and AKT/mTOR inhibitors-based
treatment in suppressing HCC growth, representing a new and promising therapeutic strategy for
advanced HCC.

https://clinicaltrials.gov/
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2. Results

2.1. Limited Efficacy of Sorafenib and Regorafenib in HCC from AKT/c-MET Mice

Recently, we established a clinically relevant HCC model by hydrodynamically transfecting
activated forms of AKT and c-MET proto-oncogenes (AKT/c-MET) in the mouse liver [24]. Specifically,
we co-expressed myristoylated/activated (myr)-AKT and c-MET oncogenes together with the sleeping
beauty transposase into the mouse liver via hydrodynamic tail vein injection. This procedure leads to
the formation of high HCC burden within 8 weeks post-injection with 100% penetrance in AKT/c-MET
injected mice [24]. This mouse HCC model has been replicated independently by other groups of
scientists recently [25,26]. Since sorafenib remains the first-line treatment for HCC, and regorafenib is
the second line drug for patients who progress with sorafenib, we tested these drugs in the AKT/c-MET
murine HCC model (Figure 1A).
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Figure 1. Effect of sorafenib treatment in AKT/c-MET mice. (A) Study design. (B) Liver weight of
pre-treatment, vehicle-, and sorafenib-treated AKT/c-MET mice. (C) Gross images and H&E staining
of livers from pre-treatment, vehicle-, and sorafenib-treated AKT/c-MET mice. At the pre-treatment
stage (Pre), livers of AKT/c-MET mice appear occupied by clear-cell, lipogenic tumors, which are
subsequently (vehicle and sorafenib treated groups) substituted by more basophilic lesions. (D) Effect
of sorafenib administration on the levels of putative target proteins in livers from AKT/c-MET mice.
(Magnifications: 100× and 200×, Scale bar: 100 µm). Abbreviations: H&E, hematoxylin and eosin
staining; Pre, pre-treatment.

Tumor growth was monitored in AKT/c-MET mice until 4 weeks after injection, when the mice
display a moderate tumor burden (average liver weight ~4 g) (Figure 1A,B). Subsequently, AKT/c-MET
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mice were randomly separated into three cohorts. A group of mice at 4 weeks post-injection was
harvested as a ‘pre-treatment’ cohort, while the remaining two groups were continually treated with
either vehicle or sorafenib for 3 weeks (Figure 1A). Interestingly, we found that tumor continued
to grow with sorafenib (30 mg/kg/day) treatment. All vehicle as well as sorafenib-treated mice had
to be euthanized by 3 weeks of treatment due to high liver tumor burden. In AKT/c-MET mice,
tumor nodules were diffused and colliding, with no surrounding capsules; as a consequence, it was
impossible to accurately count the surface tumor nodule number in these mice (Figure 1C, right panels).
As most (over 90%) of the liver parenchyma was occupied by the tumor cells, we used overall liver
weight as the measure of tumor burden. This method has been shown to accurately reflect HCC
burden in this murine liver tumor model by independent groups [25,26]. We found that the sorafenib-
treated cohort had higher tumor burden than the pre-treatment cohort, and similar tumor burden
was found in sorafenib- and vehicle-treated mice (Figure 1B,C). At the molecular level, sorafenib
did not inhibit p-ERK or p-AKT expression in the mouse liver tissues (Figure 1D). At the cellular
level, sorafenib treatment did not affect HCC cell proliferation, but was able to induce apoptosis
(Figure 2A,B). However, as the cell apoptosis rate was relatively low even in sorafenib-treated mice, it
was not able to significantly counteract the rapid tumor cell proliferation and, thus, had limited impact
on overall tumor burden. Since sorafenib has been shown to inhibit VEGFR-mediated angiogenesis,
we examined the microvasculature in sorafenib-treated HCC samples. Again, no significant differences
were observed when comparing the vessel density in sorafenib- and vehicle-treated mice (Figure 2C).
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Figure 2. Effects of treatment with sorafenib on the AKT/c-MET mouse lesions, as determined by
immunohistochemistry. Ki-67 (A) and TUNEL (B) staining in livers from AKT/c-MET mice subjected to
the various treatments were quantified and represent the percentage of positive cells for proliferation
and apoptosis, respectively. At least 3000 tumor cells per sample were evaluated. (C) CD34 staining
in livers from AKT/c-MET mice subjected to the various treatments. The “vessel density” represents
the percentage of CD34 staining area in each field from the sections as assessed by the ImageJ
software. Tukey–Kramer test: at least p < 0.001. a, vs. Pre-treatment; b, vs. Vehicle. Abbreviations:
Pre, pre-treatment.
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Next, we treated the AKT/c-MET tumor bearing mice with regorafenib. Unexpectedly, we found
that regorafenib was highly toxic to the mice, even at 15 mg/kg/day concentration. All mice treated
with regorafenib showed signs of lethargy and profound weight loss. Due to these signs of overt
toxicity, all regorafenib-treated mice had to be euthanized within ~1 weeks of treatment per the IACUC
protocol (Xianqiong Liu and Xin Chen, University of California, San Francisco, CA, USA, Personal
communication, 2018).

In summary, our study indicates that neither sorafenib nor regorafenib are effective against
hepatocarcinogenesis induced by AKT/c-MET co-expression in mice, due to either lack of efficacy or
significant toxicity. The lack of therapeutic potential exerted by sorafenib and regorafenib on tumor
growth in AKT/c-MET mice is consistent with the clinical observation that these drugs have the limited
efficacy in significant subsets of patients with advanced HCC.

2.2. Increased Growth Inhibition in Human HCC Cell Lines by PD901 and MLN0128

As activated AKT/mTOR and Ras/MAPK signaling cascades are frequently and concomitantly
observed in human HCC [24] as well as in AKT/c-MET hepatocellular lesions [24], we hypothesized
that MEK and/or AKT/mTOR inhibitors might be effective for HCC treatment.

As a first step to test this hypothesis, we investigated the growth suppressive potential of the
MEK inhibitor PD901 and the pan-mTOR inhibitor MLN0128 in human HCC cell lines. We found
that the HCC cells tested were more sensitive to MLN0128, with IC50 ranging between 0.2 to 5 µM,
when compared to PD901, which displayed a higher IC50, between 100 and 200 µM (Figure 3A,B).
Importantly, when the HCC cell lines were treated with both PD901 and MLN0128 inhibitors, a
significantly stronger growth suppressive activity was detected (Figure 3C).
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Figure 3. PD901 and MLN0128 inhibit HCC cell growth in vitro. (A,B) IC50 values calculated by
quantifying the Crystal violet staining from a panel of HCC cell lines treated for 3 days with the
indicated doses of PD901 (A) and MLN0128 (B). (C) Combining PD901 with MLN0128 (around IC50

concentration) resulted in a significantly reduced cell viability in HCC cell lines compared with
PD901 or MLN0128 single treatment. Abbreviation: Comb, combined PD901/MLN0128 treatment.
Tukey–Kramer test: at least p < 0.005 a, vs. Control b, vs. PD901; c, vs. MLN0128.
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At the molecular level, the levels of mTORC2 target phosphorylated/activated p-AKTS473, the
mTORC1 target phosphorylated/activated p-RPS6 as well as phosphorylated/activated p-mTOR were
strikingly reduced following MLN0128 administration in all HCC cell lines tested, whereas inconsistent
results were detected when assessing the levels of phosphorylated PI3K (Figure 4). On the other hand,
PD901 remarkably reduced the levels of phosphorylated/activated p-ERK (Figure 4). Deregulation of
cell cycle results in unconstrained cell division, leading to continuous proliferation, and represents a
pivotal driver of carcinogenesis [27]. We found that the expression of Cyclin D1, one of the critical
proteins promoting cell cycle progression, was suppressed both in PD901 and MLN0128 treated HCC
cells. Moreover, PD901 and MLN0128 combined treatment led to further decreased levels of Cyclin D1
in the HCC cells (Figure 4). No consistent changes of the cell cycle negative regulators, such as p53,
p21, and p16, were observed in the same HCC cell lines (Figure 4).
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Figure 4. Effect of combined PD901/MLN0128 treatment on the levels of putative targets in HCC
cell lines. (A–C) Representative western blot analysis of AKT/mTOR, Ras/MAPK, and proliferation
signaling pathways in SNU475 (A), Huh7 (B), and MHCC97H (C) HCC cell lines.

We further investigated how these drugs affected HCC cell cycle progression. In all 3 HCC cell
lines tested, PD901 induced cell cycle arrest, leading to the decreased cell numbers in S-phase, while
MLN0128 had different effects depending on the cell line examined, with decreased cell numbers in
S-phase in SNU475 and MHCC97H cells, but not Huh7 cells (Figure 5). Importantly, combined PD901
and MLN0128 treatment resulted in a more pronounced cell cycle arrest in all HCC cell lines tested
when compared with single treatments (Figure 5).
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compared with treatment with PD901 and MLN0128 alone. The percentages of cells in the S phase
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Subsequently, we evaluated apoptosis in the three cell lines subjected to PD901, MLN1028, and
combined treatment (Figure 6). We found that both PD901 and MLN1028 administration induced
significant higher cell death than treatment with solvent (DMSO) alone at both time points examined.
In all three cell lines, the apoptotic power of MLN0128 was significantly stronger than that of PD901.
Of note, the combined administration of the two inhibitors did not result in a consistent significant
increase of apoptosis when compared with treatment with single agents (Figure 6). SNU475 cells
showed a marginal increased apoptosis in the combination treatment group both at 24 h and 48 h
treatment. As concerns Huh7 cells, there was no significant increased apoptosis in the combination
group at 24 h and 48 h time point. In MHCC97H cells, on the other hand, concomitant PD901 and
MLN0128 administration led to a rise in apoptosis rate 48h after treatment (Figure 6).
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Altogether, the present findings indicate that combined PD901/MLN0128 treatment induces a
strong growth inhibition of HCC cells in vitro, predominantly by triggering cell cycle arrest.

2.3. PD901 and MLN0128 Combination Therapy Results in a Stable Disease in AKT/c-MET Mice

Our in vitro findings indicate that combined PD901/MLN0128 treatment leads to a strong growth
suppression in human HCC cells. Subsequently, we investigated whether the same effects could be
observed in vivo in the AKT/c-MET HCC preclinical model. Thus, AKT/c-MET tumor bearing mice
were treated with PD901, either alone or in combination with MLN0128.

First, we evaluated the maximum dose of PD901 and MLN0128 that could be tolerated by mice.
Our previous studies demonstrated that there is no significant toxicity dosing mice with 10mg/kg/day
PD901 [28] or 1 mg/kg/day MLN0128 [29]. However, using mouse body weight as measurement
of overall drug toxicity, dosing combined PD901 and MLN0128 at 10 mg/kg/day and 1 mg/kg/day
separately to the mice for 5 days induced intolerable toxicity. Upon decreasing MLN0128 dose to 0.5
mg/kg/day, we found that 10 mg/kg PD901 plus 0.5 mg/kg MLN0128 was well-tolerated and, therefore,
selected for the in vivo studies.

Similar to that described for the experiments with sorafenib (Figure 1A,B), tumor growth was
monitored in AKT/c-MET mice until 4 weeks after injection (Figure 7A,B). Next, AKT/c-MET mice
were randomly separated into five cohorts. A group of mice at 4 weeks post-injection was harvested
as ‘pre-treatment’ cohort, while the remaining four groups were continually treated with vehicle,
PD901, MLN0128, or PD901/MLN0128 for 3 weeks (Figure 7A). Total liver weight was used as the
measurement of HCC tumor burden in mice. We found that MLN0128 or PD901 single treatment led
to slower tumor growth in AKT/c-MET mice, as demonstrated by a significant lower tumor burden
than the vehicle cohort (Figure 7B). The data also showed that the tumor burden of MLN0128 or
PD901 monotherapy group was still higher than the pre-treatment group (Figure 7B), indicating the
continual tumor growth despite of the therapy employed. In contrast, combined PD901 and MLN0128
administration exhibited a significantly improved therapeutic efficacy when compared with MLN0128
or PD901 monotherapy. Specifically, lowest liver weight was observed in PD901/MLN0128 combination
therapy group (Figure 7B). Importantly, no difference in liver weight between the pre-treatment and
combination therapy group was detected (Figure 7B). These results were also verified by macroscopic
evaluation and histopathological analysis (hematoxylin and eosin staining) of the livers (Figure 7C).
All tumor cells were positive for HA-tag, which stained the ectopically expressed AKT. Small tumor
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lesions were observed in pre-treatment as well as PD901/MLN0128 treated mice, whereas large lesions
were found in vehicle, PD901, and MLN0128 treated mice (Figure 7C).
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Figure 7. Effects of PD901/MLN0128 combination on hepatocarcinogenesis in AKT/c-MET
mice. (A) Study design. (B) Liver weight of pre-treatment, vehicle-, MLN0128-, PD901-, and
PD901/MLN0128-treated AKT/c-MET mice. (C) Gross images and H&E and HA-tag staining of livers
from pre-treatment, vehicle-, PD901-, MLN0128-, PD901-, PD901/MLN0128-treated AKT/c-MET mice.
HA-tag areas indicate the myr-AKT (with a HA-tag) positive cells. Magnification: 100×, Scale bar:
200 µm. Abbreviations: H&E, hematoxylin and eosin staining; Pre, Pre-treatment; Comb, combined
PD901/MLN0128 treatment.

In summary, the present data indicate that, in the AKT/c-MET preclinical HCC model, PD901
and MLN0128 monotherapy led to progressive disease, although HCC grew at a slower rate, whereas
combined PD901/MLN0128 treatment induced a stable disease.

2.4. Combined PD901/MLN0128 Regimen Inhibits Tumor Cell Proliferation In Vivo

Since we have demonstrated that PD901/MLN0128 combination treatment dramatically inhibits
HCC cell proliferation in vitro (Figure 5), we asked whether the tumor stabilizing efficacy in vivo
was also driven by this mechanism. Using Ki-67 immunohistochemistry as a surrogate marker
of proliferation, we evaluated the proliferation indices in the five cohorts of AKT/c-MET mice.
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The data obtained from the analysis revealed that administration of PD901 or MLN0128 alone
significantly decreased cell proliferation rates when compared with vehicle group (Figure 8A).
Strikingly, PD901/MLN0128 combination treatment inhibited tumor cell proliferation more effectively
than either PD901 or MLN0128 monotherapy (Figure 8A). As for the apoptosis rate, we discovered that
MLN0128 monotherapy as well as combined PD901/MLN0128 treatment led to equivalent increase
in apoptosis, whereas PD901 had no effect on tumor cell death (Figure 8B). However, the overall
apoptosis rate was relatively low compared to cell proliferation rate. Therefore, the increased apoptosis
is likely to have limited effects on overall tumor growth. Subsequently, to determine angiogenesis in
the five mouse cohorts, we examined the expression of the CD34 protein (Figure 8C). Compared to
the vehicle group, MLN0128 or PD901 monotherapy as well as combination treatment group led to a
slight decrease of CD34 immunoreactivity, indicating that inhibition of angiogenesis is not a major
mechanism for the anti-tumor activities exerted by MLN0128 or PD901 in AKT/c-MET mice.
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Figure 8. Effect of PD901/MLN0128 combination on the lesions of AKT/c-MET mice, as determined by
immunohistochemistry. (A) Ki-67 staining in livers from AKT/c-MET mice subjected to the various
treatments. Ki-67 positive tumor cells were counted and quantified per 3000 tumor cells. (B) TUNEL
and CD34 (C) staining in livers from AKT/c-MET mice subjected to the various treatments. TUNEL
positive tumor cells were counted and quantified per 3000 tumor cells and indicate the apoptosis rate.
The “vessel density” represents instead the percentage of CD34 staining area in each field from the
sections as assessed by ImageJ software. Tukey–Kramer test: at least p < 0.01. a, vs. Pretreatment;
b, vs. Vehicle; c, vs. MLN0128; d, vs. PD901. Abbreviations: Pre, Pre-treatment; Comb, combined
PD901/MLN0128 treatment.

Mechanistically, we found that PD901 could profoundly decrease the expression of p-ERK1/2, the
biomarker of PD901 efficacy, in PD901-treated mice, while MLN0128 treatment induced a decline in
p-RPS6, p-4EBP1, p-mTOR and p-AKT expression (Figure 9). The expression of p-RPS6 was further
inhibited after combined PD901/MLN0128 treatment (Figure 9). As concerns proliferation markers,
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PD901 administration reduced PCNA expression, whereas MLN0128 inhibited Cyclin D1 levels.
Combined PD901/MLN0128 treatment led to decreased levels of both PCNA and Cyclin D1 (Figure 9).
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Figure 9. Effect of combined PD901/MLN0128 administration on the levels of putative target proteins
in livers from AKT/c-MET mice. Western blot analysis was performed (A) and quantified (B) to analyze
AKT/mTOR, Ras/MAPK, and proliferation pathways, in HCC tissues from pre-treatment, vehicle-,
PD901-, MLN0128-, and PD901/MLN0128-treated AKT/c-MET mice. Western blot results were assessed
by Image J software. Tukey–Kramer test: at least p < 0.01. a, vs Pre; b, vs Vehicle; c, vs PD901; d, vs
MLN0128; e, vs Comb. Abbreviations: Pre, Pre-treatment; Comb, combined PD901/MLN0128 treatment.

Overall, our study demonstrates that combined PD901/MLN0128 treatment strongly inhibits
tumor cell proliferation, leading to stable disease in AKT/c-MET HCC mice.

3. Discussion

Progressed, unresectable HCC is a highly pernicious tumor with few systemic therapeutic
options [1,4]. Multi-kinase inhibitors, such as sorafenib and regorafenib remain the first- and
second-line regimens for patients with advanced HCC, respectively. However, the response to these
drugs is very limited, leading to an increase of the overall survival only of a few months [9]. Indeed,
in the clinical studies on sorafenib for advanced HCC, the overall radiological progression time
was about 5.5 months in sorafenib group and 2.8 months in the placebo group [7]. Importantly, all
patients subjected to the treatment with these multi-kinase inhibitors eventually progressed. These
clinical findings indicate that resistance to these multi-kinase inhibitors is a major hurdle during
HCC treatment. To subvert this gloomy scenario, appropriate models should be established where
to test the effectiveness of innovative therapeutic approaches. Thus, in the present investigation,
we evaluated the therapeutic efficacy of sorafenib and regorafenib in the AKT/c-MET preclinical
HCC model. We discovered that neither sorafenib nor regorafenib slowed HCC progression in vivo.
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The results are consistent with the clinical observation that only a small percentage of patients with
advanced HCC benefit from these regimens, whereas most of the patients either do not or marginally
respond to the treatment. It is worth to note that, when dosed at the same concentration, Sorafenib has
been found to effectively inhibit cell growth in HCC cell lines and in a xenograft model by blocking
the Ras/MEK/MAPK cascade and suppressing angiogenesis [30]. We failed to observe any of these
biochemical and cellular effects by sorafenib in vivo using the AKT/c-MET HCC model. In light
of the present findings and the scarcity of positive effects by sorafenib and regorafenib on human
HCC patients, the present data suggest the AKT/c-MET model as a valid in vivo system to study the
mechanisms of resistance to multi-kinase inhibitors in HCC.

AKT/mTOR and Ras/MEK/MAPK signaling pathways are widely upregulated in HCC and could
be promising targets in HCC treatment [10,21,28]. Following this hypothesis, first generation mTOR
inhibitors, such as everolimus, have been tested in HCC patients. Unfortunately, everolimus failed
to show any therapeutic efficacy in clinical trials for advanced HCC [31]. It is important to note that
everlimus and other rapalogs that have been tested in clinical trials, are all partial mTORC1 inhibitors.
Indeed, they inhibit the activation of the RPS6 protein, but do not affect the 4EBP1/eIF4E axis and
the mTORC2 signaling [32,33]. On the other hand, the second generation mTOR inhibitors, such as
MLN0128 used in the present study, fully suppress the mTORC1 complex (PRS6 and 4EBP1/eIF4E) as
well as mTORC2 [34]. It is also worth to underline that targeting mTOR cascade alone may have limited
therapeutic efficacy because tumor cell proliferation could be fully sustained via the compensatory
activation of the Ras/MAPK cascade [35,36]. Consequently, concomitant targeting of both AKT/mTOR
and Ras/MEK/MAPK signaling pathways may be required for the effective treatment of advanced HCC.

In our previous investigation, we found that AKT/c-MET co-expression promotes activation of
the AKT/mTOR and Ras/MAPK pathways in the mouse liver, leading to rapid HCC development [24].
Thus, using this preclinical HCC model, we evaluated the therapeutic potential of the MEK inhibitor
and the mTOR inhibitor, either alone or combination, for HCC treatment. We show here that compared
to monotherapies, combined treatment with PD901 and MLN0128 induces a more pronounced HCC
growth restraint both in vitro and in vivo. Noticeably, both PD901 and MLN0128 single treatments
as well as PD901/MLN0128 combination exhibited superior therapeutic efficacy than sorafenib on
AKT/c-MET mouse lesions, indicating that the combination of PD901 with MLN0128 might be an
effective novel therapy for HCC subsets displaying high expression of c-MET and/or AKT/mTOR and
Ras/MEK/MAPK pathways. Nonetheless, due to the poor liver function in most HCC patients, we
cannot exclude that the combination of these drugs may be limited by their toxicity. Thus, targeted
drug delivery directly into the tumor cells may be necessary. In addition, the combined regimens
could be tested via trans-arterial chemoembolization (TACE) to achieve local therapeutic efficacy.
Alternatively, siRNA-based therapies targeting members of the MEK1/2 and mTOR pathways might
be explored. Overall, while it remains to be determined whether such a combination therapy may
be efficacious in the clinical setting, our investigation provides solid preclinical data to support the
further investigation of anti-MEK and mTOR based therapies for HCC treatment.

MEK inhibitors may be appropriate to treat cancers with Ras/MEK/ERK pathway activation, which
leads to abnormal cell proliferation [21,28]. Furthermore, specific inhibitors or chemotherapeutic drugs
that can induce the death of tumor cells may potentiate the anti-cancer efficacy of MEK inhibitors
in patients. In our previous study, we revealed that the mTOR inhibitor MLN0128 could suppress
intrahepatic cholangiocarcinoma (ICC) development in AKT/YAP mice mainly through the induction of
strong apoptosis [29]. The synergistic anti-neoplastic efficacy of combined MEK and mTOR inhibitors
has been demonstrated in melanoma, lung, and colorectal cancer, where it resulted in profound tumor
cell apoptosis and inhibition of tumor cell proliferation [37,38]. Unfortunately, our study reveals
that MLN0128 alone or combined with PD901 treatment fails to induce robust apoptosis in vitro and
in vivo, which could explain why the combination therapy was able to induce a stabilization -but not
regression- of tumor development in AKT/c-MET mice. As both MEK and mTOR inhibitors promote
a decrease in HCC cell proliferation both in vivo and in vitro, the data suggest that these inhibitors
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could be combined with other small molecules, which may be more potent in inducing apoptosis, for
HCC treatment. Some examples include ABT-737 [39], navitoclax [40], and venetoclax [41]. Among
them, venetoclax has been approved for the treatment of chronic lymphocytic leukemia with 17p
deletions [41]. It would be important to further investigate these apoptosis activators in HCC treatment
using preclinical models, and whether they can be combined with MEK or mTOR inhibitors for
increased therapeutic efficacy.

In summary, our findings demonstrate that combined PD901/MLN0128 treatment strongly inhibits
tumor growth in AKT/c-MET mice and HCC cell lines. This body of evidence indicates that the
combination of anti-MEK and anti-mTOR based therapy could be useful for human HCC treatment.

4. Materials and Methods

4.1. Reagents

pT3-EF1α, pT3-EF1α-HA-myr-AKT, pT3-EF1α-V5-c-MET, and pCMV/sleeping beauty transposase
(pCMV/SB) plasmids were described previously [24,42,43]. An endotoxin-free Maxi Prep Kit
(Sigma-Aldrich, St. Louis, MO, USA) was used to purify the plasmids before being injected into
mice. Sorafenib, regorafenib, PD0325901 (PD901) and MLN0128 were purchased from LC Laboratories
(Woburn, MA, USA).

4.2. Hydrodynamic Tail Vein Injection and Mouse Treatment

Female wild-type (WT) FVB/N mice were obtained from Charles River Laboratories (Wilmington,
MA, USA). Hydrodynamic injection was performed according to previous study [44]. Briefly, to generate
the HCC model, 10µg pT3-EF1α-HA-myr-AKT and 20µg pT3-EF1α-V5-c-Met and 1.2 µg pCMV/SB
were injected in FVB/N mice. Sorafenib (30 mg/kg/day), regorafenib (15 mg/kg/day), MLN0128
(0.5 mg/kg/day), PD901 (10 mg/kg/day), MLN0128 + PD901 or vehicle were orally administered by
gavage. We started therapy administration 4 weeks post injection for 3 consecutive weeks, and mice
were sacrificed 7 weeks after hydrodynamic injection. Total liver weight was recorded and used
as the measurement of tumor burden in the study. For sorafenib preparation, 100 mg of the drug
were dissolved in 2.5 mL of a stock solution containing 75% ethanol and Cremophor EL (1:1) at
60 ◦C (40 mg/mL). Subsequently, the drug was vortexed at highest speed and placed back at 60 ◦C,
until sorafenib was completely dissolved. Subsequently, aliquots were frozen and stored at −80 ◦C.
Regorafenib was dissolved in polypropylene glycol 400/polyethylene glycol 400/10% Pluronic F-68
Aqueous solution (42.5:42.5:15) to the concentration of 3 mg/mL. PD901 was dissolved in 0.5% (w/v)
hydroxypropyl-methylcellulose (HPMT; Sigma-Aldrich) in water plus 0.2% v/v Tween 80 to a stock
concentration of 3.33 mg/mL. PD901 was orally administered via gavage for 5 days/week. Before
gavage, stock solution was diluted with 0.9% NaCl to form a microemulsion. MLN0128 was dissolved
in 1-methyl-2-pyrrolidinone (NMP; Sigma-Aldrich) to make a stock solution of 20 mg/mL and the
aliquots were stored at −80 ◦C. It was diluted 1:200 into 15% PVP/H2O (PVP: polyvinylpyrrolidone K
30, Sigma-Aldrich; diluted in H2O at a 15.8:84.2 w/v ratio). The diluted solution could be stored at 4 ◦C
for 2–3 weeks in dark. Mice were housed, fed, and monitored in accord with protocols approved by
the Committee for Animal Research at the University of California San Francisco (San Francisco, CA,
USA), protocol number: AN173073.

4.3. Histology and Immunohistochemistry

Mouse liver specimens were fixed overnight in 4% paraformaldehyde (Anatech Ltd, Battle Creek,
MI, USA) and embedded in paraffin. Sections were done at 5 µm in thickness. Preneoplastic and
neoplastic liver lesions were assessed independently by two board-certified pathologists and liver
experts (M.E. and K.U.). Briefly, slides were deparaffinized in xylene, rehydrated through a graded
alcohol series, and rinsed in PBS. Depending on the protein target to be revealed, antigen retrieval was
achieved by boiling either in 10 mM sodium citrate buffer (pH 6.0) or 1 mM ethylenediaminetetraacetic
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acid (EDTA; pH 8.5) buffer for 10 min, followed by a 20-min cool down at room temperature. After a
blocking step using the 5% goat serum and Avidin-Biotin blocking kit (Vector Laboratories, Burlingame,
CA, USA), the slides were incubated with specific primary antibodies (Supplementary Table S1)
overnight at 4 ◦C. In order to quench the endogenous peroxidase activity, slides were incubated for
10 min with 3% hydrogen peroxide and, subsequently, the biotin conjugated secondary antibody was
applied at a 1:500 dilution for 30 min at room temperature. The immunoreactivity was visualized using
the Vectastain Elite ABC kit (Vector Laboratories) and 3, 3′-diaminobenzidine or Vector NovaRed (Vector
Laboratories) as the chromogen. Finally, slides were counterstained with hematoxylin. Proliferation
index was determined in mouse HCC lesions by counting Ki-67 positive cells on at least 3000 tumor
cells per mouse sample. Apoptosis index was determined in mouse HCC lesions by counting TUNEL
positive cells on at least 3000 tumor cells per mouse using the TumorTACSTM In Situ Apoptosis
Detection Kit (Trevigen, Gaithersburg, MD, USA), following the manufacturer’s protocol. All HCC
lesions were carefully analyzed and classified independently by two board-certified pathologists and
liver experts (Prof. Matthias Evert and Dr. Kirsten Utpatel).

4.4. Western Blot Analysis

Frozen mouse livers tissues and cultured cell samples were homogenized in a lysis buffer consisting
of 30 mM Tris (pH 7.5), 150 mM NaCl, 1% NP-40, 0.5% Na deoxycholate, 0.1% SDS, 10% glycerol, and
2mM EDTA] containing the Complete Protease Inhibitor Cocktail (ThermoFisher Scientific, Waltham,
MA, USA). For the assessment of protein concentrations, the Bio-Rad Protein Assay Kit (Bio-Rad,
Hercules, CA, USA) was employed. Bovine serum albumin was used as standard. For Western blot
analysis, aliquots of 40 µg were denatured by boiling in Tris-Glycine SDS Sample Buffer (Bio-Rad),
separated by SDS-PAGE, and transferred onto nitrocellulose membranes (Bio-Rad) by electroblotting.
Membranes were blocked in Pierce Protein-free Tween 20 Blocking Buffer (ThermoFisher Scientific) for
1 h and then probed with specific antibodies. The complete list of the antibodies used is depicted in
Supplementary Table S1. Anti-β-Actin (Sigma-Aldrich) and/or GAPDH (EMD Millipore, Burlington,
MA) antibody was used as loading control. Each primary antibody was followed by incubation with
horseradish peroxidase-secondary antibody (Jackson Immunoresearch Laboratories Inc., West Grove,
PA, USA) diluted 1:5000 for 30 min and proteins bands were revealed with the Super Signal West
Femto (Pierce Chemical Co., New York, NY, USA).

4.5. In Vitro Experiments

SNU475, Huh7, and MHCC97H human HCC cell lines were used for the in vitro studies. The
Huh7 cell line was purchased from the JCRB Cell Bank, whereas the SNU475 cell line was purchased
from ATCC. MHCC97H cells were a kind gift from Dr. Binbin Liu from Liver Cancer Institute and
Zhongshan Hospital of Fudan University, Shanghai, China. Cell lines were maintained as monolayer
cultures in Dulbecco’s modified Eagle medium or RPMI 1640 medium supplemented with 10% fetal
bovine serum (FBS; Gibco, Grand Island, NY, USA), 100 U/mL penicillin, and 100 g/mL streptomycin
(Gibco).

For IC50 determination, cells were seeded in 24-well plates and treated with increasing doses of
PD901or MLN0128 in triplicate for 24–48 h. Cells were stained with crystal violet. After washing,
stained cells were treated with lysate solution and shaken gently on a rocking shaker for 20–30 min.
Diluted lysate solutions were added to 96-well plates and OD was measured at 590 nm with an ELx808
Absorbance Microplate Reader (BioTek, Winooski, VT, USA). All cell line experiments were repeated at
least three times in triplicate.

Cell proliferation was assessed in HCC cell lines at the 24- and 48-hour time points using the
BrdU Cell Proliferation Assay Kit (Cell Signaling Technology, Danvers, MA, USA). For the BrdU
incorporation assay, control or drug-treated cells were incubated with bromodeoxyuridine (BrdU)
for 1.5–3 h and the assay was performed using the FITC BrdU Flow Kit (BD Biosciences, San Jose,
CA, USA), following the manufacturer’s instructions. Briefly, the cells were fixed after removing the
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medium with BrdU. Then, DNase was used to expose incorporated BrdU. Next, the anti-BrdU antibody
was added and bound to newly synthesized cellular DNA which is labelled with BrdU. 7-AAD was
used for the total DNA staining. The measurement of cell cycle parameters was performed with the
Becton Dickinson LSRII Flow Cytometer (BD Biosciences) and data processed using the FlowJo 10
software (FlowJo, LLC, Ashland, OR, USA).

As concerns apoptosis, it was determined in the three HCC cell lines using the Cell Death Detection
Elisa plus Kit (Roche Molecular Biochemicals, Indianapolis, IN, USA), following the manufacturer’
instructions. DMSO-, PD901-, and/or MLN0128-treated cells were initially subjected to 24 h serum
starvation. Subsequently, apoptotic cell death was assessed at 24 h and 48 h time points. DMSO
values were used as the baseline (“1”), and all values were normalized to the baseline reading. All
experiments were repeated at least three times in triplicate.

4.6. Statistical Analysis

GraphPad Prism version 6.0 (GraphPad Software Inc., La Jolla, CA, USA) was used to evaluate
statistical significance. Data are presented as Means ± SD. Comparisons between two groups were
performed using U-tests; and multiple groups using ANOVA test. p values < 0.05 were considered
statistically significant. All in vitro experiments were repeated at least three times in triplicate.

5. Conclusions

Our investigation employing HCC cell lines and the AKT/c-MET mouse HCC model suggests that
combination of anti-MEK and anti-mTOR inhibitors could be a new therapeutic approach for human
HCC treatment.
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