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Abstract: DNA methylation profiles within whole-blood samples have been reported to be associated
with colorectal cancer (CRC) occurrence and might enable risk stratification for CRC. We systematically
reviewed and summarized studies addressing the association of whole-blood DNA methylation
markers and risk of developing CRC or its precursors. We searched PubMed and ISI Web of Knowledge
to identify relevant studies published until 12th November 2018. Two reviewers independently
extracted data on study population characteristics, candidate genes, methylation measurement
methods, methylation levels of patients in comparison to healthy controls, p-values, and odds ratios of
the markers. Overall, 19 studies reporting 102 methylation markers for risk assessment of colorectal
neoplasms met our inclusion criteria. The studies mostly used Methylation Specific Polymerase Chain
Reaction (MS-PCR) for assessing the methylation status of a defined set of genes. Only two studies
applied array-based genome-wide assays to assess the methylation levels. Five studies incorporated
panels consisting of 2–10 individual methylation markers to assess their potential for stratifying
the risk of developing colorectal neoplasms. However, none of these associations was confirmed
in an independent cohort. In conclusion, whole-blood DNA methylation markers may be useful
as biomarkers for risk stratification in CRC screening, but reproducible risk prediction algorithms
are yet to be established by large scale epigenome-wide studies with thorough validation of results
in prospective study cohorts including large screening populations. The possibilities of enhancing
predictive power by combining methylation data with polygenetic risk scores and environmental risk
factors need to be explored.
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1. Introduction

Worldwide, colorectal cancer (CRC) is the third most common cancer in terms of incidence
and second in terms of mortality, accounting for nearly 1.8 million new cases and 881,000 deaths
annually [1]. The disease burden has been shown to be dramatically decreased with population-based
screening, which allows early detection and removal of precancerous lesions [2–4]. Despite strong
recommendations for screening, the participation rate in the general population remains low [5,6].
Among the several factors accounting for poor screening uptake is a lack of perceived risk among the
patients and physicians [7–9]. Screening adherence can potentially be increased through identification
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of risk subgroups in the population. Risk stratification could assist both physicians and patients, in
making more informed screening decisions [10].

Besides genetic alterations, epigenetic alterations that alter gene expression without changing the
DNA sequence have been increasingly implicated in the etiology of CRC [11]. DNA methylation is an
epigenetic modification of special interest as it has been identified to play a significant role in CRC
initiation [12–14] and is therefore a potential biomarker for evaluating the likelihood of developing CRC.
Studies have identified a plethora of biomarkers for early diagnosis or risk assessment of CRC using
DNA derived from tissue, blood, stool, urine as well as bowel lavage fluid [15–19]. Among the various
samples used to extract DNA, blood sampling offers the advantage of being commonly available in
epidemiological studies, minimally invasive and more acceptable to the screening population [20,21].
Methylation of septin 9 (SEPT9) in tumor-derived cell-free DNA (cfDNA) is the only blood-based
FDA-approved methylation biomarker for detecting CRC [22,23]. Although methylation changes can
be detected in cfDNA from plasma or serum, the low proportion of tumoral DNA in cfDNA and wide
variation in methods for processing blood and isolating cfDNA present significant problems [24–26].
Compared to DNA extracted from plasma or serum, the recovery of DNA from whole blood is more
efficient. While emerging evidence also suggests that peripheral blood cell or white blood cell (WBC)
DNA methylation is linked to cancer susceptibility [19,25,27–30], a comprehensive review of the
potential use of DNA methylation markers in whole blood for CRC risk stratification or diagnosis
has not been done yet. We provide here a systematic review of the published literature including
articles that have assessed DNA methylation in whole-blood-borne DNA from patients with colorectal
neoplasms and healthy controls. We report the performance of DNA methylation markers in whole
blood for CRC risk evaluation

2. Results

2.1. Study Selection

The literature search and selection process is shown in Figure 1. We identified 770 articles of which
172 were duplicates and removed. Titles and abstracts of the remaining 598 articles were reviewed,
leading to 18 articles that were selected for a full-text review. Cross-referencing resulted in identification
of one additional study. Finally, 19 studies met our inclusion criteria and were included in this review.
Information regarding odds ratios (ORs) could be extracted in 15 articles. In the remaining four studies,
only the results of the statistical tests for the differences in DNA methylation levels between cases and
controls were reported. Areas under the receiver operating characteristic curves (AUCs) could be
extracted from two studies only.

2.2. Study Characteristics

An overview on the study characteristics is shown in Supplementary Table S1. Of the 19 included
studies, ten were carried out in Europe, including three studies from Italy [30–32], two from the
United Kingdom [33,34], and one each from Germany [19], Finland [27], Sweden [28], France [35], and
Lithuania [36]. Five studies were carried out in China [37–41], three in the United States [42–44], and
one in Canada [45]. A majority of studies (16) followed a case-control design and collected blood
samples from cases at the time of diagnosis or shortly after diagnosis. Of the 19 included studies,
two studies [27,28] and one cohort from a third study [34] were nested case-control studies which
allowed assessment of methylation status in cases prior to disease onset. In these studies, CRC cases
were identified during follow-up of the cohorts and were compared to cohort participants remaining
free of CRC. Most of the included studies included only CRC patients as cases, while three studies
included only colorectal adenomas [43–45] and two studies [33,38] included both colorectal adenomas
and CRC as separate case groups. Five case-control studies [36–38,41,42] explicitly reported that blood
samples were collected from cases before treatment (chemotherapy or adjuvant radiotherapy), while
the remaining studies did not specify treatment status at the time of sampling. In one study [19], 33
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of the 93 cases were reported to have received neoadjuvant therapy before blood sampling. The age
range (in one study) or average age (in 13 studies) was reported in 14 studies. Most of these studies
reported a fairly similar age distribution between cases and controls. However, the mean age varied
largely between cases and controls in some studies e.g., 69 versus 49 years in a study from China [38]
and 64 versus 40 years in a study from France [35]. To measure methylation, most of the studies
used Methylation Specific Polymerase Chain Reaction (MS-PCR). Only two studies [19,27] applied
array-based genome-wide assays, such as the Illumina Infinium HumanMethylation 450K Beadchip
and Illumina GoldenGate Methylation Cancer Panel I to assess the methylation levels. A majority of
the studies had low case numbers and rarely implemented internal validations. None of the studies
verified the reported associations in an independent study population.
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Figure 1. Flow diagram of the literature search process (search until 12.11.2018).

2.3. Overview of Whole-Blood based DNA Methylation Markers

From the included studies, methylation markers with any measure of relative risk or diagnostic
performance or p-value for the comparison of methylation levels or with enough data to calculate them
were selected. Of the included 19 studies, 16 studies applied a gene-specific approach and reported
63 methylation markers, two studies [19,27] used array-based genome-wide assays and reported 28
differentially methylated gene regions, and one study [36] used pyrosequencing to analyze methylation
at 11 individual long interspersed element (LINE)-1 loci and identified one differentially methylated
locus. Genes/LINE-1 regions within which these markers were identified are summarized in Table 1.
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Nine of the 80 genes/LINE-1 regions were reported ≥2 times and the remaining genes/LINE-1 regions
were only reported once. IGF2 methylation was assessed most frequently (five times), followed by
APC (three times). The frequency of statistically significant findings for each individual marker ranged
from 0% to 100%. Table 1 also shows the direction of methylation changes (hypo- or hypermethylation)
for colorectal adenoma or CRC cases compared to controls. Among the genes which had been
evaluated ≥2 times, the majority showed no difference in methylation levels between cases and
controls, and only IGF2 was hypo- or hypermethylated [35,39], SEPT9 was hypomethylated [32] and
WIF1 [39] was hypermethylated in cases compared to controls. Among the 71 genes/LINE-1 regions
reported only once, 52 showed no association with colorectal adenoma/CRC, whereas significant
hypermethylation and hypomethylation were reported among colorectal adenoma/CRC cases for
15 and 4 genes/LINE-1 regions respectively. Supplementary Table S1 presents the targeted genetic
region of all reported genes/LINE-1 regions. The vast majority of the studies assessed the methylation
levels in the promoter region of targeted genes, 3 studies assessed methylation levels of the differentially
methylated regions (DMRs) [28,34,35] and only a few studies assessed methylation levels of the gene
body [19], transcriptional start site, gene-coding area [45], and individual long interspersed element
(LINE)-1 loci [36].

2.4. Associations of Methylation Markers with Colorectal Neoplasms

In assessing the associations between DNA methylation markers and colorectal neoplasms, four
studies reported significant ORs for dichotomized methylation levels of 15 target loci (Table 2) and
four studies presented significant associations for other comparisons of quantitative methylation
levels of other 31 target loci (Table 3). Of the 31 target loci identified as significantly associated using
quantitative methylation levels, correction for multiple testing was applied for 29 loci [19,27,36] and
only four remained significantly associated after the correction. Studies which only provided p-values
(for difference in methylation levels between cases and controls) or non-significant ORs (for colorectal
adenoma or CRC risk) are shown in Supplementary Tables S2 and S3.

The four studies estimating dichotomized methylation of 15 target loci and reporting significant
associations to risk of colorectal adenoma/CRC performed methylation analysis using MS-PCR or
Methylation-sensitive High-resolution Melting (MS-HRM) (Table 2) [37,39,40,43]. Most of the ORs were
adjusted for vitamin C and D use or for age and BMI. In one study, hypomethylation (no methylation
detected) of markers presented positive associations with CRC risk with ORs ranging from 2.9 to 11.1,
while in the other three studies, hypermethylation of markers presented positive associations with
CRC risk with ORs ranging from 1.72 to 16.96.

In the four studies reporting significant associations for quantitative methylation levels of target
loci, methylation levels were derived by four types of methylation techniques, including Human
450K methylation array, Sequenom EpiTYPER, Illumina GoldenGate Methylation Cancer Panel I,
and pyrosequencing (Table 3) [19,27,36,45]. Two studies estimated AUCs [19,36] and two studies
estimated ORs [27,45]. Among the two studies estimating ORs, one study estimated ORs for tertiles
of methylation levels [27], while the other study calculated ORs for quartiles of methylation levels
or for an increase in DNA methylation per one standard deviation [45]. In the study estimating ORs
for tertiles of methylation levels [27], the reported associations are before multiple testing correction
and none of these remained statistically significant after the correction. The two studies estimating
AUCs [19,36] built diagnostic models with significant markers and reported point estimates of the
AUC values. In one study, the reported AUC was internally validated by bootstrapping, yielding an
optimism-corrected value [19]. Two CpG sites in the promoter region of KIAA1549L were identified
as markers with best performances—cg14472551 with a c-statistic of 0.72 demonstrated the best
performance in screening setting, while cg04036920 with a c-statistic of 0.70 demonstrated the best
performance in clinical setting. The AUC in the other study [36] was derived from the training
(derivation) populations, and is therefore prone to over-optimism due to overfitting.
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Table 1. DNA methylation markers in whole blood for risk assessment of colorectal neoplasms.
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CITED4 1 1 1

GSTM2 1 # c 1 0

MTHFR 1 # 1 0

PARP1 1 # c 1 0

PER3 1 1 1

PTCH2 1 # c 1 0

AOX-1 2 1 1

CNRIP1 2 1 1

L1C2 2 # 1 0

PER2 2 # 1 0

TMEFF2 2 # # 2 0

ADAMTS9 3 1 1

MLH1 3 # # 2 0

MME_ 3 # c 1 0

RARB2 3 # 1 0

SEMA3F 3 # c 1 0

APC 5 # # # 3 0

FLT4 5 # c 1 0

NEUROG1 5 1 1

DSP 6 # c 1 0

ESR1 6 # # c 2 0
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Table 1. Cont.
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IRF4 6 1 1

L1C6 6 # 1 0

PLAGL1 6 # c 1 0

PDK4 7 1 1

PODXL 7 # c 1 0

SEMA3C 7 # c 1 0

SFRP4 7 # 1 0

SGCE 7 # c 1 0

CRH 8 # 1 0

APBA1 9 1 1

CDKN2A 9 # # 2 0

DAPK1 9 1 1

FOXE-1 9 # 1 0

L1C10 10 # 1 0

MGMT 10 # # 2 0

SFRP5 10 # 1 0

H19 11 # 1 0

IGF2 11 # # # 5 2

IL18BP 11 # c 1 0

KIAA1549L 11 c 1 1

KCNK4 11 # c 1 0
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Table 1. Cont.
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L1C11 11 # 1 0

WT1 11 1 1

CYP27B1 12 # 1 0

PDE1B_ 12 # c 1 0

RERG 12 1 1

TMEM132D 12 # 1 0

WIF1 12 # 2 1

WNT1 12 # c 1 0

GJB2 13 # c 1 0

MLH3 14 # c 1 0

SNRPN 15 # c 1 0

CDH1 16 # 1 0

NDRG4 16 # 1 0

BRCA1 17 # 1 0

CA10 17 1 1

HIC1 17 # c 1 0

NGFR 17 # 1 0

PER1 17 1 1

SEPT9 17 # 2 1

BCL2 18 c 1 1

INSR 19 # c 1 0
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Table 1. Cont.
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CDH4 20 # 1 0

DNMT3B 20 1 1

HCK 20 # c 1 0

L1C20 20 # 1 0

B3GALT5 21 # c 1 0

COL18A1 21 # c 1 0

TIMP3 22 # 1 0

DKC1 X # c 1 0

GLA X # c 1 0

L1X1 X # 1 0

L1X3 X # 1 0

L1X4a X # 1 0

L1X5b d X # 1 0

L1X6b X # 1 0

L1X8 X c 1 1

HBII # c 1 0

MINT31 1 1

# represents no difference in methylation levels between colorectal adenoma/CRC cases and controls; represents hypermethylated marker in colorectal adenoma/CRC cases; represents
hypomethylated marker in colorectal adenoma/CRC cases. a Cases included both, colorectal adenomas and CRCs; b Cases included only colorectal adenomas; c Reported association after
multiple testing correction (methylation changes of 26 CpG sites were significantly associated with CRC risk before Bonferroni correction, but none remained statistically significant after
the correction); d Methylation was significantly different in female patients compared to healthy women. Abbreviations: LINE, long interspersed element.
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Table 2. Dichotomized methylation of specific genes with significant associations to risk of colorectal neoplasms.

Gene First Author, Year
[Ref NO.] Country No.

Cases/Controls
Age (Years)

Cases/Controls
DNAm
assay

OR
(95%CI) p-Value *

Hypomethylation a

PER1
(promoter)

Alexander, 2017
[43] USA 38/69 – MS-PCR 2.9 (1.1–7.7) b 0.03

APBA1
(promoter)

Alexander, 2017
[43] USA 38/69 – MS-PCR 5.3 (1.0–28.2) c 0.05

PER3
(promoter)

Alexander, 2017
[43] USA 38/69 – MS-PCR 11.1 (1.6–78.5) d 0.02

Hypermethylation

AOX-1 Luo, 2016 [40] China 421/506 59.5/56.6 MS-HRM 1.72 (1.30–2.27) e 0.00

ADAMTS9 Luo, 2016 [40] China 421/506 59.5/56.6 MS-HRM 1.85 (1.37–2.49) e 0.00

RERG Luo, 2016 [40] China 421/506 59.5/56.6 MS-HRM 2.08 (1.56–2.77) e 0.00

WIF1 Liu, 2017 [39] China 428/428 59.4/59.4 MS-HRM 2.44 (1.53–3.87) f <0.0001

IGF2 Liu, 2017 [39] China 428/428 59.4/59.4 MS-HRM 2.54 (1.65–3.92) f <0.0001

NEUROG1 Liu, 2017 [39] China 428/428 59.4/59.4 MS-HRM 2.57 (1.55–4.25) f <0.0001

WT1 Gao, 2018 [37] China 466/507 60.1/56.7 MS-HRM 2.59 (1.73–3.88) g 0.00

DAPK1 Liu, 2017 [39] China 428/428 59.4/59.4 MS-HRM 2.95 (1.94–4.49) f <0.0001

CITED4 Gao, 2018 [37] China 466/507 60.1/56.7 MS-HRM 2.96 (1.68–5.24) g 0.00

MINT31 Liu, 2017 [39] China 428/428 59.4/59.4 MS-HRM 4.27 (1.52–12.05) f 0.01

CA10 Gao, 2018 [37] China 466/507 60.1/56.7 MS-HRM 4.83 (2.82–8.28) g 0.00

IRF4 Luo, 2016 [40] China 421/506 59.5/56.6 MS-HRM 16.96 (5.15–55.84) e 0.00
a Odds of adenoma development given no methylation detected in the candidate gene. OR: b Model adjusted for vitamin C and D use and physical activity; c Model adjusted for vitamin C
and D use, and ever smoking; d Model adjusted for multivitamin use, vitamin C and D use, physical activity, ever smoking, age, and being married; e Model adjusted for age, BMI,
occupation and family history of cancer; f Model adjusted for age, gender, BMI, occupational physical activity, smoking, and consumption of coarse grains, fish stewed with brown sauce,
fried food, leftovers. and pork; g Model adjusted for BMI, age, fruit, coarse grains, fruit can, pork intestines, fried food, garlic, and braised fish in brown sauce. p-value *: statistical
significance for OR. Abbreviations: Ref., Reference; No., Number; DNAm, DNA methylation; OR, Odds Ratio; CI, Confidence Interval; MS-PCR, Methylation Specific Polymerase Chain
Reaction; MS-HRM, Methylation-sensitive High-resolution Melting.
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Table 3. Quantitative methylation of specific genes with significant associations to risk of colorectal neoplasms.

Gene
First Author,

Year
[Ref. No.]

No.
Cases/

Controls

Age (Year)
Cases/

Controls

DNA
Methylation

Assay
AUC p-Value *

OR a

Tertile 3 vs. 1
(95%CI)

OR b

Quartile 4 vs. 1
(95%CI)

OR b

per SD
(95%CI)

BCL2 (gene-body,
cg12459502)

Heiss, 2017
[19]

Screening
Setting: 46/46

Clinical
setting: 93/94

67/67
65/65

HM 450K
MassArray

0.57
0.69

<0.05
<0.05 – – –

B3GALT5
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.2 (1.06–1.37) – –

COL18A1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.2 (1.05–1.37) – –

DKC1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.2 (1.05–1.43) – –

DNMT3B (GCA,
31351136)

Ho, 2015
[45] 87/172 – Sequenom

EpiTYPER 0.03 – – 1.38
(1.03–1.86)

DNMT3B (GCA,
31351260–31351263)

Ho, 2015
[45] 87/172 – Sequenom

EpiTYPER 0.03 – 2.07 (0.88–4.86) –

DSP
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.27
(1.12–1.43) – –

FLT4
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.15
(0.99–1.32) – –

GJB2
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.03 (0.9–1.18) – –

GLA
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.45
(1.19–1.75) – –

GSTM2
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.17
(1.03–1.34) – –

HBII
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 0.87
(0.76–0.99) – –
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Table 3. Cont.

Gene
First Author,

Year
[Ref. No.]

No.
Cases/

Controls

Age (Year)
Cases/

Controls

DNA
Methylation

Assay
AUC p-Value *

OR a

Tertile 3 vs. 1
(95%CI)

OR b

Quartile 4 vs. 1
(95%CI)

OR b

per SD
(95%CI)

HCK
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.2 (1.03–1.39) – –

HIC1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.22
(1.07–1.41) – –

IL18BP
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.07
(0.91–1.26)

INSR
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.24
(1.09–1.41) – –

KCNK4
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.15
(1.01–1.31) – –

KIAA1549L
(promoter, cg04036920)

Heiss, 2017
[19]

Screening
Setting: 46/46

Clinical
setting: 93/94

67/67
65/65

HM 450K
MassArray

0.67
0.70

<0.05
<0.05 – – –

KIAA1549L
(promoter, cg14472551)

Heiss, 2017
[19]

Screening
Setting: 46/46

Clinical
setting: 93/94

67/67
65/65

HM 450K
MassArray

0.72
0.64

<0.05
<0.05 – – –

L1X8 (intergenic,
UBQLN2/
Centromer)

Nüsgen, 2015
[36] 21/59 – Pyrosequencing 0.66 <0.05 – – –

MLH3
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.27 (1.1–1.46) – –

MME_
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.17
(1.03–1.33) – –

PARP1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 0.87
(0.76–0.99) – –
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Table 3. Cont.

Gene
First Author,

Year
[Ref. No.]

No.
Cases/

Controls

Age (Year)
Cases/

Controls

DNA
Methylation

Assay
AUC p-Value *

OR a

Tertile 3 vs. 1
(95%CI)

OR b

Quartile 4 vs. 1
(95%CI)

OR b

per SD
(95%CI)

PDE1B_
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.21
(1.05–1.41) – –

PLAGL1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 0.88
(0.76–1.01) – –

PODXL
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.12
(0.99–1.28) – –

PTCH2
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.26
(1.11–1.43) – –

KIAA1549L
(promoter, cg14472551)

Heiss, 2017
[19]

Screening
Setting: 46/46

Clinical
setting: 93/94

67/67
65/65

HM 450K
MassArray

0.72
0.64

<0.05
<0.05 – – –

L1X8 (intergenic,
UBQLN2/
Centromer)

Nüsgen, 2015
[36] 21/59 – Pyrosequencing 0.66 <0.05 – – –

MLH3
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.27 (1.1–1.46) – –

MME_
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.17
(1.03–1.33) – –

PARP1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 0.87
(0.76–0.99) – –

PDE1B_
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.21
(1.05–1.41) – –

PLAGL1
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 0.88
(0.76–1.01) – –

PODXL
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.12
(0.99–1.28) – –
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Table 3. Cont.

Gene
First Author,

Year
[Ref. No.]

No.
Cases/

Controls

Age (Year)
Cases/

Controls

DNA
Methylation

Assay
AUC p-Value *

OR a

Tertile 3 vs. 1
(95%CI)

OR b

Quartile 4 vs. 1
(95%CI)

OR b

per SD
(95%CI)

PTCH2
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.26
(1.11–1.43) – –

SEMA3C
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 0.88 (0.77–1) – –

SEMA3F
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0 c 1.16
(1.01–1.34) – –

SGCE
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 1.23 (1.08–1.4) – –

SNRPN
(promoter) Gao, 2012 [27] 221/219 58/58 GoldenGate

Cancer Panel I 0.01 c 0.98
(0.87–1.11) – –

OR: a Model adjusted for age and batch factor; b Model adjusted for sex and age. c p-value was significant before multiple testing correction but did not remain statistically significant after
the correction. Methylation levels were adjusted for leukocyte composition and batch effects [19]. Cases included only colorectal adenomas [45]. p-value *: significant difference in
methylation between colorectal adenoma/cancer cases and controls. Abbreviations: Ref., Reference; No., Number; OR, Odds Ratio; CI, Confidence Interval; SD, Standard Deviation;
HM-450K, Human Methylation 450K; GCA, Gene-coding area.
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2.5. DNA Methylation Panels

Combinations of different markers were evaluated in five studies (Table 4) [19,37,39,40,43]. Two
studies [19,39] reported AUC values validated internally by bootstrapping. Liu et al. [39] estimated
the association for dichotomized methylation of 10 individual markers and also calculated a weighted
methylation risk score (MRS) based on a panel of these 10 markers (MRS_10). Only 5 out of the 10
individual markers were significantly associated with CRC risk with ORs ranging from 2.44 (1.53–3.87)
to 4.27 (1.52–12.05) (Table 2). However, MRS_10 was significantly associated with CRC risk with OR
of 3.85 (2.72–5.45) and 6.51 (3.77–11.27), respectively, for MRS-Medium group and MRS-High group
compared to MRS- Low group. Furthermore, the AUC for the MRS_10 model was 0.69 (0.66–0.73,
p < 0.0001), which represented significantly higher discrimination accuracy than any individual
marker. In the other study, Heiss and Brenner [19] estimated an optimism-corrected c-statistic for three
individual markers (two in the promoter region of KIAA1549L and one in the body region of BCL2),
and for panels built on all three markers. The c-statistic for single markers ranged from 0.57–0.72 in
the screening setting and 0.64–0.70 in the clinical setting. Compared to the performance of individual
markers, the marker panel barely improved discrimination with a c-statistic 0.69 in the screening
setting and 0.73 in the clinical setting.

2.6. Quality Assessment of Studies

The results for the quality assessment of studies using the QUADAS tool are presented in
Supplementary Figures S1 and S2. Patient selection was at high risk of bias for most of the studies since
they used a case–control design and did not collect samples from asymptomatic cases in a screening
setting. Bias assessment for the index test was unclear for most of the studies. The reasons were lack of
information on whether the test was performed blinded to the results of the reference standard and if
or not a pre-specified threshold was used. For most of the studies, there were no concerns of bias for
the reference standard. Regarding flow and timing, 11 studies were judged as having unclear risk of
bias and seven as having low risk. Applicability concerns regarding use in a screening setting were
high for patient selection as most of the studies collected blood samples from symptomatic cases at the
time of diagnosis.
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Table 4. Diagnostic performance of methylation panels.

Gene Panel First author,
Year [Ref. No.]

No.
Cases/Controls

Age(yrs)
Cases/Controls

DNAm
Assay AUC Classification OR

(95%CI)
p-

Value *

Hypomethylation

PER1/PER3 Alexander, 2017 [43] 38/69 – MS-PCR – – 0.50 (0.22–1.15) a 0.10

PER1/APBA1 Alexander, 2017 [43] 38/69 – MS-PCR – – 0.59 (0.26–1.33) a 0.20

PER3/APBA1 Alexander, 2017 [43] 38/69 – MS-PCR – – 0.27 (0.09–0.81) a 0.02

PER1/PER3/APBA1 Alexander, 2017 [43] 38/69 – MS-PCR – – 0.57 (0.25–1.27) a 0.17

Hypermethylation

MCSM
(WT1, CA10, CITED4 &

TMEM132D)
Gao, 2018 [37] 466/507 60.1/56.7 MS-HRM –

Non-MCSM 1.00 b

(no methylated gene) (ref)
MCSM-L (≤2 methylated genes) 1.43 (0.50–4.05) 0.50
MCSM-H (≥3 methylated genes) 4.32 (1.53–12.2) 0.01

MCSM 2.53 (0.92–6.94) 0.07

MRS_10
(APC+CDH1+

CDKN2A+DAPK1+
IGF2+MGMT+

MINT31+MLH1+
NEUROG1+WIF1)

Liu, 2017 [39] 428/428 59.4/59.4 MS-HRM
0.69 (0.66–0.73),

p < 0.0001

Low predicted probability ≤0.5 (ref) 1.00 c

Medium 3.85 (2.72–5.45) <0.0001
(0.5 < predicted probability ≤ 0.7)

High 6.51 (3.77–11.27) <0.0001
(predicted probability >0.7)

Medium or High 4.39 (3.19–6.05) <0.0001

Markers-only model
(cg04036920, cg14472551 &

cg12459502)
Heiss, 2017 [19] SS: 46/46

CS: 93/94
67/67
65/65 HM 450K 0.69 (0.55, 0.82) d

0.73 (0.63, 0.83) d

Full model (combining sex, age,
cg04036920, cg14472551 &

cg12459502)
Heiss, 2017 [19] SS: 46/46

CS: 93/94
67/67
65/65 HM 450K 0.69 (0.54, 0.83) d

0.73 (0.61, 0.82) d

MCSM
(AOX-1, RARB2, RERG,

ADAMTS9, IRF4, & FOXE-1)
Luo, 2016 [40] 421/506 59.5/56.6 MS-HRM –

Non-MCSM 1.00 e

(no methylated gene) (ref)
MCSM-L (1 methylated gene) 1.23 (0.87–1.75) 0.24

MCSM-H (≥2 methylated genes 1.79 (1.28–2.52) 0.00
(except for RARB2))

MCSM 1.50 (1.11–2.03) 0.01
a Crude OR (95% CI) for dichotomized methylation of gene panel and adenoma risk; coding of methylation status seems erroneous and could not be clarified. b ORs adjusted for BMI,
age, fruit, coarse grains, fruit can, pork intestines, fried food, garlic, and braised fish in brown sauce. c ORs adjusted for age, gender, BMI, occupational physical activity, smoking, and
consumption of coarse grains, fish stewed with brown sauce, fried food, leftovers, and pork. d Methylation levels were adjusted for leukocyte composition and batch effects. e Model
adjusted for age, BMI, occupation and family history of cancer. p-value *: statistical significance for OR. Abbreviations: Ref., Reference; No., Number; DNAm, DNA methylation; OR, Odds
Ratio; CI, Confidence Interval; SS, Screening Setting; CS, Clinical setting; MRS, methylation risk score; MCSM, multiple CpG site methylation; HM-450K., Human Methylation 450k;
MS-PCR, Methylation Specific Polymerase Chain Reaction; MS-HRM, Methylation-sensitive High-resolution Melting.
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3. Discussion

In this review, we present an overview of studies exploring the association between
gene/locus-specific DNA methylation status and the risk of colorectal neoplasms. We focused
on studies investigating methylation markers in whole blood and identified 19 studies evaluating 102
DNA methylation markers for colorectal adenoma/CRC risk stratification. For 22% of the 102 markers
significant associations with colorectal adenoma/CRC risk were reported in either univariate or
multivariate regression analysis. However, the suggested associations should be interpreted with
caution considering that they were mostly reported from single studies only without further validation
or replication. Furthermore, in reporting the association of 102 markers with the risk of colorectal
neoplasms, correction for multiple testing was applied only for 30 markers out of which only four [19,36]
remained statistically significant after the correction.

An important factor that could have affected the outcome of the reviewed studies is the study
design and population. A majority of the studies followed a case-control design and recruited study
participants in clinical settings. Relying on samples obtained just before or at the time of clinical
diagnosis, these studies may only provide preliminary evidence for potential risk stratification or
early detection. Markers identified may only be associated with symptomatic disease and therefore of
limited use for risk evaluation of asymptomatic cases. When selecting cases, only 5 studies included
adenomas [33,38,43–45] which are the precursors of most CRCs and would be most relevant to
stratify risk for developing CRC. As regards controls, the inclusion criteria were different among
studies. While most of the studies included only healthy controls, three studies [19,37,43] also included
diseased controls i.e., carriers of hyperplastic polyps or non-digestive system disease patients, making
comparison across studies difficult. Most of the studies did not clearly report if the control cohort had
undergone colonoscopy. The estimated prevalence of adenomas among older adults is 16–30% [46,47].
In studies in which control participants had not undergone colonoscopy, associations could have
been underestimated by including adenoma cases as controls. Furthermore, the studies involved
different ethnic groups from different geographical regions, among which DNA methylation patterns
are known to be highly divergent [48,49]. Markers identified in specific populations may have limited
generalizability and transferability to other populations. Given such heterogeneity in study designs
and cohort compositions across reviewed studies, a number of suggestions could be made for future
research to obtain more realistic estimates of associations. Markers identified in clinical settings should
be evaluated in large-scale prospective studies conducted in true screening settings with external
validation in ethnically and geographically diverse populations.

Other potential sources of bias that affected methylation status in the reviewed studies are the
variations in blood processing methods and cell population used as a source of DNA in each study. The
studies collected and stored different amounts (5–20 mL) of blood samples using a variety of methods;
four studies [38,43–45] specified collecting samples in vacutainers containing EDTA anticoagulant
and three studies [28,33,40] specified storing the samples at −70 ◦C to −80 ◦C until DNA extraction.
The studies then used various kits for extracting DNA from samples including QIAamp DNA Blood
Mini Kit [37,39,40], PUREGENE genomic DNA purification kit [33,42,43], Wizard genomic DNA
purification kit [30,31], etc. Three studies [33,37,40] specified determining DNA concentration using
UV spectrophotometry, while one study [45] determined concentration using Quant-iTTM PicoGreen.
Of the 19 studies, 16 opted to use whole blood/buffy coat/leukocytes as the source of DNA, while three
studies extracted DNA from lymphocytes [28,34,35]. Except for the three studies using lymphocytes, the
remaining studies, used cell populations that were a mixture of heterogeneous leukocyte subpopulations
for DNA extraction. Given that leukocyte subtypes have unique DNA-methylation profiles [50,51],
the associations observed in these studies could be confounded by differential leukocyte distribution.
Despite blood cell composition posing a significant risk for confounding methylation measurements,
almost all studies failed to adjust for this factor. Only one study [19] identifying three significantly
differentially methylated markers between cases and controls reported risk estimates adjusted for
leukocyte composition. While confounding introduced by leukocyte composition could be minor [52],
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the differences resulting from varying cell populations make the methylation measurements across
studies less comparable. Nevertheless, even if differential methylation resulting from differential
leukocyte distribution may be regarded as confounder from a biological perspective, it might still be
useful for risk stratification based on whole blood DNA methylation patterns.

Besides DNA source, another issue in reviewed studies is the selection of candidate genes/CpG
sites to assess differential methylation that does not allow systematic and unbiased approach to
risk evaluation. Most of the studies examined selected candidate genes, mainly focusing on gene
promoter CpG islands and few studies focused on differentially methylated regions and body regions.
Among these studies, only three studies [19,36,45] evaluated methylation at specific loci, while the
rest reported methylation at the region as a whole. By utilizing primer- and probe-based assays, the
studies analyzed only a few CpG dinucleotides that served as a surrogate for the methylation status of
the whole region. As methylation patterns often vary largely across genomic regions and are poorly
defined [53,54], the analysis of a limited number of CpG dinucleotides is less informative compared to
a genome-wide analysis. However, the identification of differentially methylated regions within the
selected genes provides encouraging evidence that differences in methylation at these regions should
be explored further to identify specific differentially methylated loci for developing more precise
risk-stratification tools.

The reviewed studies varied substantially in reporting the DNA methylation analysis results,
mostly due to the lack of standardization of methodology. The studies used six types of methylation
assays including variant combinations of pretreatment techniques and analytical steps to investigate
DNA methylation markers. For distinguishing cancer-related aberrant methylation from baseline
methylation, the use of methods that deliver quantitative methylation data is desirable. Over
the last decade, technological advancements have considerably augmented the development of
robust quantitative assays for analyzing DNA methylation. However, the most commonly used
assays in the included studies were non- or semi-quantitative. Binary measurements of methylation
obtained using MS-PCR or MS-HRM are rarely informative as thresholds used for dichotomizing the
methylation data vary largely. While a few studies used quantitative methods like pyrosequencing,
the method only analyzes a small range of CpG sites, and does not provide genome-wide methylation
information [55,56]. Although the advantages of microarray- or sequencing-based technologies for
high-throughput genome-wide methylation profiling have been effectively demonstrated [57,58], only
two included [19,27] studies assessed methylation using these technologies. Potential shortcomings
that may have limited the use of microarray- or sequencing-based technologies are cost considerations
as well as the complexity involved in the interpretation of results. Nevertheless, in order to identify
promising biomarkers for CRC risk stratification, there is an urgent need for more rigorous assessment
of genome-wide methylation patterns. Such rigorous assessment involving the interrogation of
methylation at over 850,000 sites across the human genome and covering 99% of RefSeq genes, is
now possible using the recently introduced Illumina Infinium MethylationEPIC BeadChip [59]. In the
future, more studies utilizing this technology might be warranted.

Compared to methylation of SEPT9 [22,23] in tumor-derived cell-free DNA, or to other types of
molecular markers such as micro RNA [60,61], genetic [62], or proteomic markers [63,64], performance
of whole-blood methylation markers for diagnosis/risk stratification of colorectal neoplasms seems
much poorer. In the past 10–15 years large progress has been made in risk stratification of CRC
by genetic risk variants and their combination in polygenetic risk scores [62,65–68]. Reproducible
genetic risk variants have mostly been identified by hypothesis-free screening of genetic variants
through genome-wide arrays in large scale international consortia including tens of thousands of
CRC cases and controls, with thorough correction for multiple testing and independent validation of
promising risk variants and risk scores, rather than by candidate gene approaches. It appears plausible
that analogous hypothesis-free epigenome-wide methylation analyses in large scale consortia, with
thorough correction for multiple testing and independent validation of promising risk variants in
prospective cohorts including large screening populations will be the most promising way to go for
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identification of robust methylation-based risk predictors in the future. A most promising approach
could then be to combine such methylation-based risk scores with polygenetic risk scores, traditional
risk factor-based risk scores [69] and possibly other, yet to be established biomarker-based risk scores
to come up with most informative risk prediction.

We acknowledge that there are limitations to this review. Firstly, we presented only a structured
synthesis of multiple study results. Due to the heterogeneity across the reviewed studies, we did not
conduct a meta-analysis combining the results of independent studies. Secondly, selection of studies
may have affected our conclusions; even after developing the inclusion/exclusion criteria to ensure that
all relevant studies are included, some articles could have been missed. Finally, publication bias with a
tendency to publish more promising results may have led to overestimated associations in this review.

4. Methods

We conducted this systematic literature review according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [70].

4.1. Systematic Literature Search

We conducted a literature search to identify studies assessing DNA methylation in
whole-blood-borne DNA from colorectal adenoma or sporadic CRC patients and healthy controls.
Databases of PubMed and ISI Web of Science were searched for relevant articles until 12 November 2018.
The search term combinations used were as follows: (“colorectal cancer” OR “colorectal carcinoma”
OR “colorectal tumor” OR “colorectal neoplasm” OR “colorectal adenoma” OR “colon cancer” OR
“colon carcinoma” OR “colon tumor” OR “colon neoplasm” OR “colon adenoma” OR “colonic cancer”
OR “colonic carcinoma” OR “colonic tumor” OR “colonic neoplasm” OR “colonic adenoma” OR
“rectal cancer” OR “rectal carcinoma” OR “rectal tumor” OR “rectal neoplasm” OR “cancer of colon”
OR “cancer of the colon” OR “cancer of rectum” OR “cancer of the rectum” OR CRC) AND (“blood”
OR “PBMC” OR “leukocyte” OR “lymphocyte”) AND (“DNA” OR “deoxyribonucleic acid” OR
“ds-DNA”) AND (“methylation” OR “hypermethylation” OR “hypomethylation”) AND (“detection”
OR “diagnosis” OR “screen” OR “screening” OR “marker” OR “biomarker”). Additionally, reference
lists of relevant studies and reviews were scanned to identify relevant articles. Duplicate articles
were removed.

4.2. Eligibility Criteria

We included studies if they were examining DNA methylation in whole blood samples from
colorectal adenoma cases or CRC patients with sporadic disease compared to healthy individuals. Our
search was restricted to human research studies in English language. The first step in the selection of
eligible studies was based on reading the title and abstract. Articles were excluded if they were (1)
not relevant to the topic, (2) not original articles, (3) not based on whole blood samples, (4) assessing
global DNA methylation only, or (5) exclusively focusing on hereditary CRC. Then, the full texts of
these articles were read and included when deemed relevant. Finally, articles that did not report any
measure of relative risk or diagnostic performance or p-value for the comparison of methylation levels
and without enough data to calculate them were also excluded.

4.3. Data Extraction and Quality Assessment

Two authors (J.R.R. and Z.G.) independently extracted data from the eligible studies. Extracted
variables included first author, publication year, country, study design, age of study population, DNA
methylation assay, candidate gene, and relevant results including p-value for differential methylation
levels between cases and controls, OR, and AUC. For articles not reporting the risk estimates explicitly,
information was extracted from available text and tables to calculate the ORs. Discrepancies in extracted
data were discussed and resolved by consensus among the authors.
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The quality of included articles was assessed using the QUADAS-2 (Quality Assessment of
Diagnostic Accuracy Studies 2) tool [71]. The tool was tailored to the review topic and the risk of
bias and concerns regarding applicability for each study were assessed over four domains: Patient
selection, index test, reference standard, and flow and timing. The risk of bias and concerns regarding
applicability for each study was then rated as “high”, “low”, or “unclear”.

5. Conclusions

In summary, there is considerable interest in the use of whole-blood DNA methylation biomarkers
to assess the likelihood of developing colorectal neoplasms. However, current risk assessment
studies are inconclusive as to which methylation markers are promising for CRC risk stratification.
This is due to several limitations in methodology as outlined in this article. The variation in
methodology and incomplete reporting among the studies also limited the analyses of this review.
It is, therefore strongly recommended that future risk assessment studies apply more standardized
methods, particularly in quantifying methylation data. Although time-consuming and expensive,
diagnostic and risk stratification performance should preferably be evaluated in screening cohorts
or large-scale population-based cohort studies rather than case-control studies in which methylation
patterns among cases may have been altered through the course of the disease, after diagnosis or even
initial treatment. Integrating epigenetic and genetic markers may represent a promising approach
for future CRC risk stratification schemes. Thus, further research should aim for assessment and
validation of the combined performance of genetic and epigenetic markers for CRC risk prediction in
order to best define the use of such signatures for research and clinical practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/7/912/s1,
Figure S1: QUADAS overview, Figure S2: QUADAS-2 risk of bias assessment of reviewed studies, Table S1: Study
characteristics of reviewed studies, Table S2: DNA methylation difference between colorectal adenoma/CRC cases
and controls reported by p-value only, Table S3: Methylation of genes with no significant association to colorectal
adenoma/CRC risk.
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