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Abstract: Previous investigations proposed a link between the Epstein-Barr virus (EBV) and lung
cancer (LC), but the results are highly controversial largely due to the insufficient sample size and
the inherent limitation of the traditional viral screening methods such as PCR. Unlike PCR, current
next-generation sequencing (NGS) utilizes an unbiased method for the global assessment of all
exogenous agents within a cancer sample with high sensitivity and specificity. In our current study,
we aim to resolve this long-standing controversy by utilizing our unbiased NGS-based informatics
approaches in conjunction with traditional molecular methods to investigate the role of EBV in a
total of 1127 LC. In situ hybridization analysis of 110 LC and 10 normal lung samples detected EBV
transcripts in 3 LC samples. Comprehensive virome analyses of RNA sequencing (RNA-seq) data sets
from 1017 LC and 110 paired adjacent normal lung specimens revealed EBV transcripts in three lung
squamous cell carcinoma and one lung adenocarcinoma samples. In the sample with the highest EBV
coverage, transcripts from the BamHI A region accounted for the majority of EBV reads. Expression
of EBNA-1, LMP-1 and LMP-2 was observed. A number of viral circular RNA candidates were also
detected. Thus, we for the first time revealed a type II latency-like viral transcriptome in the setting
of LC in vivo. The high-level expression of viral BamHI A transcripts in LC suggests a functional role
of these transcripts, likely as long non-coding RNA. Analyses of cellular gene expression and stained
tissue sections indicated an increased immune cell infiltration in the sample expressing high levels of
EBV transcripts compared to samples expressing low EBV transcripts. Increased level of immune
checkpoint blockade factors was also detected in the sample with higher levels of EBV transcripts,
indicating an induced immune tolerance. Lastly, inhibition of immune pathways and activation of
oncogenic pathways were detected in the sample with high EBV transcripts compared to the EBV-low
LC indicating the direct regulation of cancer pathways by EBV. Taken together, our data support the
notion that EBV likely plays a pathological role in a subset of LC.
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1. Introduction

Infectious agents have long been hypothesized to contribute to lung carcinogenesis [1,2].
The Epstein-Barr virus (EBV) is an extremely ubiquitous human virus and is causally associated
with a variety of lymphoproliferative and neoplastic disorders, including nasopharyngeal carcinoma,
Burkitt’s lymphoma, Hodgkin’s disease, and gastric cancer [3]. EBV may be associated with lung
cancers (LC) since a higher EBV seropositivity was observed in LC patients compared to the one
seen in the healthy control individuals [4,5]. EBV has been detected in the bronchoalveolar fluid
collected from LC patients, indicating that the lung tissue may serve as a potential EBV reservoir [6].
The first EBV-positive LC case was reported by Begin and colleagues in 1987 [7] and histologically it
seems that the EBV-positive LCs are more likely to be the primary pulmonary lymphoepithelioma-like
carcinoma, a relatively rare form of non-small cell lung cancer (NSCLC) preferentially occurring in
Asian patients [8–13]. Meanwhile, the presence of EBV in lung squamous-cell carcinomas (LUSC) and
lung adenocarcinomas (LUAD) was also reported by several studies [14–20].

To date, the association of EBV and LC remains inconclusive, since quite a few studies of EBV in
LC have produced negative results [21–23]. Notably, previous studies exclusively relied on traditional
detection methods such as histology staining and polymerase chain reaction (PCR) to detect the EBV
DNA and/or RNA. Although they are important methods, their intrinsic limitations (e.g., PCR false
priming, usage of inappropriate/biased detection markers, etc.) can also lead to false discovery
and/or controversy.

Recently, the next-generation sequencing (NGS) technology has been successfully applied to
the discovery and interrogation of numerous cancer-associated pathogens. This approach utilizes
an unbiased method to globally assess all the exogenous microbes within a cancer sample with
high sensitivity and specificity. Several research groups including ours have successfully utilized
NGS techniques and especially high-throughput RNA sequencing (RNA-seq) for the discovery and
interrogation of exogenous pathogens associated with various types of cancers [24–34]. To date,
this technology has helped us not only discover new tumor-associated pathogens, but also elucidate
previous false discoveries.

Although EBV is likely associated with a subtype of non-small cell lung cancers, the conclusion
remains controversial. To resolve this long-standing controversy, we utilized our unbiased NGS-based
informatics approaches together with traditional molecular methods to investigate the role of EBV in
a total of 1127 LC (including 1017 LC RNA-seq data sets plus 110 LC tissue samples). As far as we
know, the magnitude of such screening work for EBV infection in LC has not been reported before,
and we reasoned that the sample size should be sufficient for us to draw a definitive conclusion of
whether EBV is associated with LC. We first analyzed the expression of EBV transcripts in LC cells by
staining 110 LC plus 10 paired normal lung tissue sections. Strong EBV-encoded RNA (EBER) signals
were detected in tumor cells in 3 LC samples. However, we did not detect any EBER signals in the
tumor-infiltrating immune cells among 110 LC samples, indicating the scarcity of EBV-positive immune
cells infiltrated in the LC tissues. Further, to investigate the presence of EBV in a broader lung cancer
patient population, we utilized our sequencing-based approaches to examine the EBV infection in a
total of 1017 human non-small lung cancer as well as 110 paired adjacent normal lung tissue samples
from the NIH’s The Cancer Genome Atlas (TCGA) project. The presence of EBV was determined by its
transcriptional activity using our recently created computational pipeline RNA CoMPASS [28,29,35].
EBV was detected in 4 out of 1017 NSCLC samples and the complete viral transcriptome structure
was assessed. To the best of our knowledge, this is the first study to globally assess both EBV and its
host transcriptomes in the lung cancer settings using RNA-seq. We for the first time revealed a type II
latency-like viral transcriptome in the setting of LC in vivo. We also discovered high-level expression
of viral BamHI A transcripts in LC, suggesting a functional role of these transcripts in LC development.
In other EBV-associated cancers such as nasopharyngeal carcinomas, EBV is known to regulate the
tumor immune microenvironment to facilitate tumor development. Interestingly, in the context of
lung cancers, an increased immune cell infiltration was observed in the sample expressing high levels
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of EBV transcripts relative to samples expressing low EBV transcripts. Increased levels of immune
checkpoint blockade factors were also detected in the sample with higher levels of EBV transcripts,
indicating an induced immune tolerance. Lastly, our pathway analysis shows inhibition of immune
pathways and activation of oncogenic pathways in the sample with high EBV transcripts, suggesting
the direct regulation of tumor pathways by EBV.

Overall, our current study strongly indicates that EBV is not a major carcinogen for LC in general,
but EBV may play a critical role to promote the development of a subset of lung squamous cell
carcinoma and lung adenocarcinoma cases. Our data also led to significant insights into the EBV-host
interactions and the mechanisms through which EBV promotes lung carcinogenesis.

2. Results

2.1. EBV is Detected in Primary Non-Small Cell Lung Cancer Samples

To investigate EBV infection in lung cancers, we first analyzed 110 cases of lung cancer samples
(including 40 cases of lung squamous cell carcinoma, 3 lung adenosquamous carcinoma, 48 lung
adenocarcinoma, 4 bronchioloalveolar carcinoma, 3 large cell carcinoma, 8 small cell carcinoma and
4 malignant lung carcinoid tumors) as well as 10 paired normal lung samples. Expression of EBV
marker small RNA EBERs [36–38] was measured by in situ hybridization. As shown in Figure 1, EBERs
were detected in the non-small cell lung cancer cells, including one lung squamous cell carcinoma
patient, one lung adenosquamous carcinoma patient, and one lung adenocarcinoma patient. However,
we cannot detect EBV in other types of examined lung cancers such as small cell lung cancers or
malignant lung carcinoid tumors or paired normal lung samples. Furthermore, we did not detect any
EBER signal in the tumor-infiltrating immune cells, indicating the scarcity of EBV-positive immune
cells in the tumor tissues.
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Figure 1. Detection of EBV marker small RNA EBERs in lung cancer cells. Images of paraffin-embedded
human lung cancer probed for EBERs using in situ hybridization. EBERs (brown signal) were detected
in three non-small cell lung cancer cases. Patient IDs were shown above or below each image. Control
(patient ID# Rln060040-B11) represents an EBV-negative lung squamous cell carcinoma case. Scale bar:
50 µm.

To further investigate EBV infection in non-small cell lung cancers, 1127 RNA-seq data sets from
The Cancer Genome Atlas (TCGA) non-small cell lung cancer (NSCLC) project were downloaded from
the NIH database, which carries the datasets from 501 primary lung squamous cell carcinoma (LUSC)
samples, 516 primary lung adenocarcinoma (LUAD) samples, as well as 110 paired adjacent normal
lung tissue samples. Because the analysis is highly computationally intensive, to improve the overall
screening efficiency, virome analyses of all these polyA-selected RNA-seq datasets were performed by
analyzing approximately 20 million of randomly selected reads (around 1/3 of the total reads which
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allow us to identify samples carrying a relatively high amount of EBV transcripts) from each sample
using our automated RNA-seq exogenous organism analysis pipeline, RNA CoMPASS [28,29,35].

Most of the analyzed samples contained low levels of bacteriophage sequences (e.g., Enterobacteria
phage phiX174), which are quality control spike-ins (Figure 2A). Among 1127 samples, EBV transcripts
were detected in 4 non-small cell lung cancer datasets, but not detected in any paired control normal
lung tissue samples (Figure 2A). Further, we did not detect any other known human pathogens in the
EBV-positive LC samples. To thoroughly examine the EBV transcription in these EBV-positive datasets,
the complete sequencing file for each EBV-positive tumor (~60–118 million reads) was aligned directly
to the human reference genome (GRCH38/hg38) plus a modified Akata strain of the EBV genome
that was split between the BBLF2/3 and the BGLF3.5 to accommodate coverage of splice junctions
for the LMP-2 viral gene using the STAR aligner. As shown in Figure 2B (also see Table S1 in the
supplementary material for the number of mapped viral and human reads), we found that sample
TCGA-96-A4JL has the highest EBV read number (>400 reads per million human mapped reads),
whereas the other 3 EBV-positive samples have relatively low EBV read numbers (around 1 read
per million human mapped reads). Hereafter, we classified the sample TCGA-96-A4JG as EBV-high,
and the other three EBV(+) NSCLC as EBV-low.
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Figure 2. Detection of EBV in non-small cell lung cancer data sets. (A) Approximately 20 million
of randomly selected RNA-seq reads from each of 1127 non-small cell lung cancer samples and
tumor-adjacent normal lung tissue samples were analyzed using the RNA CoMPASS software.
The virome branch of the taxonomy trees for the four EBV positive samples was generated using the
metagenome analysis tool, MEGAN 4. (B) For more in-depth analyses of EBV reads, the entire sequence
read file for each sample (~60–118 million reads) was aligned to the modified Akata-EBV genome
and the hg38 human genome assembly using the STAR aligner. Of the EBV(+) samples, one sample
(EBV-high) was identified as having high numbers of EBV reads, while three (EBV-low) were found to
have low but detectable numbers of EBV reads. (C) Histology types of analyzed lung cancer specimens.

Given the rigorous diagnosis procedure of the TCGA, the chance of misdiagnosis of these NSCLC
samples is slim. To further ensure the identity of these samples, here we set out to confirm the
molecular origin of these EBV(+) NSCLCs. The cellular gene expression signatures of these four EBV(+)
NSCLCs were analyzed by the unsupervised hierarchical cluster analysis together with six EBV(+)
nasopharyngeal carcinoma (NPC) samples (our unpublished RNA-seq data). As shown in Figure S1 in
the supplementary material, the four EBV(+) NSCLCs form their own branch which is well separated
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from the NPC branch. Thus, our data further confirm the diagnosis of the four EBV(+) NSCLCs and
they are unlikely the metastasis from other EBV-associated epithelial tumors.

Taken together, our virome screening work in a large number of LC indicates that EBV is not
likely an etiological factor for the majority of the LC cases. However, the detection of EBV in a number
of LC samples indicates that EBV may be associated with a subset of lung squamous cell carcinoma
and lung adenocarcinoma cases.

2.2. Type I EBV is Detected in EBV(+) NSCLC

Based on the variation of the genomic sequence, geographic distribution, and virulence, there are
two main types of EBV strains: Type I EBV and Type II EBV. Generally, the Type I EBV is more prevalent
and also more virulent than the Type II EBV strain. We and others previously reported that among
the EBV latency genes, EBNA-2, EBNA-3A, EBNA-3B, and EBNA-3C are uniquely and significantly
less conserved between type I and type II EBV strains, but nevertheless show strong intra-strain
conservation [26]. To identify the types of EBV that infected these viral associated lung cancers,
we developed an in-house computational pipeline to genotype the EBV strains. More specifically,
non-human reads from each EBV(+) samples were extracted and then aligned sequentially to the Type I
Akata-EBV and Type II AG876-EBV reference genomes (NCBI genbank # DQ279927.1). Reads mapped
to the unique EBNA-2/EBNA-3 regions of each EBV type were identified and the EBV type was
determined by the number of viral reads mapped to these strain-determining regions. Since only the
EBV-high sample has enough read coverage to allow an accurate genotyping call, we only analyzed
the EBV-high sample and we found that the EBV-high NSCLC sample was Type I in accordance with
the fact that all the analyzed lung cancer samples were collected in the Type I EBV endemic region (see
Table S2 in the supplementary material).

2.3. EBV Transcriptome Analysis

To the best of our knowledge, comprehensive analyses of the EBV transcriptome in the lung
cancer setting have not been reported. We reasoned that the depth of coverage in these EBV(+) NSCLC
RNA-seq data sets was sufficient for EBV transcriptome analysis. The EBV transcript quantification
was then conducted by using the transcriptome analysis software, RSEM with a modified Akata-EBV
genome. Notably, since the sequencing libraries were generated from polyA selected RNA, viral EBER
transcripts were precluded during the library preparation.

Our results showed that the EBV-high sample has a distinct viral gene expression pattern compared
to the EBV-low samples (Figure 3A). In the EBV-high sample, genes from the BamHI A region expressed
at high levels, including RPMS1, A73, etc., but these genes were barely detectable in the EBV-low
samples. Furthermore, other key EBV latent gene transcripts including EBNA-1, LMP-1, LMP-2A,
and LMP-2B were also detected in the EBV-high sample, but not in the EBV-low samples. Meanwhile,
EBV type III latency genes, EBNA-3A, -3B, -3C and -LP were not detected in any of these samples.
Thus, our data indicate that the EBV-high sample exhibits a Type II-latency-like infection in the lung
cancer setting.

EBV immediate-early lytic transactivator BZLF1 is similarly detected in all four EBV-positive
samples (Figure 3A). Despite the detection of BZLF1 reads in the EBV-high sample, a remarkable
absence of reads for most other downstream lytic genes was observed in this sample. Consistently, as
shown in Figure 3B, we plotted the ratio of lytic gene transcripts to the latent gene transcripts and
found that the EBV-low samples show high lytic-to-latent ratio. The lack of distinct latency-gene
expression together with the observed overall low EBV transcript levels for the samples with low EBV
read numbers raise the possibility that the finding of EBV in these EBV-low lung cancer samples is less
consequential than it is in the EBV-high sample. Further, we cannot rule out the possibility that the
low level EBV reads were partially derived from the low-level reactivation in infiltrating latent B-cells,
although our EBER staining did not show any evidence of EBV-positive immune cells infiltrating in
the LC tissues.
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Figure 3. EBV gene expression analysis. (A) A heatmap shows EBV transcript levels for the four EBV(+)
lung cancer samples. Unsupervised hierarchical clustering separated the EBV-low and EBV-high
samples. (B) The ratio of EBV lytic-to-latent gene expression for each EBV(+) sample. (C) Principal
component analysis (PCA) of variability among EBV(+) NSCLC samples based on EBV gene expression.
Each point represents one sample, with color indicating sample groups as described in the figure
legends. (D) A plot of the EBV gene expression pattern determined by correlation analyses of the
EBV(+) samples.

To further elucidate global differences in EBV gene expression patterns in these EBV(+) lung
cancers, we performed an unsupervised hierarchical cluster analysis, a correlation analysis, and a
principal component analysis of the viral gene expression data. Consistently, the samples with a low
number of EBV read counts were found to group together (Figure 3C,D). In addition, visualization
of reads across the EBV genome using the Integrative Genomics Viewer (IGV) software showed
latency-gene peaks in the sample with high EBV read counts (Figure 4). In contrast, only scattered
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reads were observed across the entire genome in the samples with low EBV read counts (see Figure S2
in the supplementary material).

Cancers 2019, 11, x 7 of 26 

2.4. Analysis of the Highly Transcribed BamHI A Region 

Our data show that the BamHI A region is the most actively polyA transcribed region of the EBV 
genome (Figure 4). As shown in the coverage data, we found that most of the RPMS1 and A73 gene 
exons show excellent read coverage. Meanwhile, additional coverage was also observed for the 
regions carrying the leftward transcribed genes such as BALF3, BALF4, BALF5, BILF1, LF1, and LF2. 
Coverage across these leftward genes is unexpected since they are classified as lytic genes and are 
not expressed during the latency. Because all the sequencing data sets were not developed from 
strand-specific libraries, we cannot differentiate the leftward transcripts from the rightward 
transcripts. But since a similar phenomenon has also been discovered in EBV(+) gastric cancer 
samples using strand-specific RNA-seq data [28], we reasoned that the transcription observed across 
this region in the lung cancer specimen is likely rightward oriented and largely related to the RPMS1 
and/or A73 but not BALF3, BALF4, BALF5, BILF1, LF1, or LF2.  

 
Figure 4. The EBV transcriptome in lung cancer. EBV genome coverage data for the EBV-high NSCLC 
is shown using the Integrative Genomics Viewer (IGV) based on the modified Akata-EBV genome. 
The modified EBV Akata genome was split between the BBLF2/3 and the BGLF3.5 lytic genes rather 
than at the terminal repeats to accommodate coverage of splice junctions for the latency membrane 
protein LMP-2. The y-axis represents the number of reads at each nucleotide position. The scale for 
the sample is set to a maximum read level of 700 reads. Blue features represent lytic genes, red features 
represent latent genes, green features represent potential noncoding genes, aquamarine features 
represent microRNAs, and black features represent non-gene features (e.g., repeat regions). Inset: 
Detailed read coverage data for the RPMS1/BamHI A region of the EBV genome. 

As shown in the boxed regions in Figure 4 inset, we observed some significant coverage across 
the introns between exons 4 and 5 as well as exons 6 and 7 of the RPMS1 gene. We reasoned that the 
coverage is unlikely due to the spliced-out intron fragments for two reasons: (i) The sequencing 
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Figure 4. The EBV transcriptome in lung cancer. EBV genome coverage data for the EBV-high NSCLC
is shown using the Integrative Genomics Viewer (IGV) based on the modified Akata-EBV genome.
The modified EBV Akata genome was split between the BBLF2/3 and the BGLF3.5 lytic genes rather
than at the terminal repeats to accommodate coverage of splice junctions for the latency membrane
protein LMP-2. The y-axis represents the number of reads at each nucleotide position. The scale
for the sample is set to a maximum read level of 700 reads. Blue features represent lytic genes, red
features represent latent genes, green features represent potential noncoding genes, aquamarine features
represent microRNAs, and black features represent non-gene features (e.g., repeat regions). Inset:
Detailed read coverage data for the RPMS1/BamHI A region of the EBV genome.

2.4. Analysis of the Highly Transcribed BamHI A Region

Our data show that the BamHI A region is the most actively polyA transcribed region of the EBV
genome (Figure 4). As shown in the coverage data, we found that most of the RPMS1 and A73 gene
exons show excellent read coverage. Meanwhile, additional coverage was also observed for the regions
carrying the leftward transcribed genes such as BALF3, BALF4, BALF5, BILF1, LF1, and LF2. Coverage
across these leftward genes is unexpected since they are classified as lytic genes and are not expressed
during the latency. Because all the sequencing data sets were not developed from strand-specific
libraries, we cannot differentiate the leftward transcripts from the rightward transcripts. But since a
similar phenomenon has also been discovered in EBV(+) gastric cancer samples using strand-specific
RNA-seq data [28], we reasoned that the transcription observed across this region in the lung cancer
specimen is likely rightward oriented and largely related to the RPMS1 and/or A73 but not BALF3,
BALF4, BALF5, BILF1, LF1, or LF2.

As shown in the boxed regions in Figure 4 inset, we observed some significant coverage across
the introns between exons 4 and 5 as well as exons 6 and 7 of the RPMS1 gene. We reasoned that
the coverage is unlikely due to the spliced-out intron fragments for two reasons: (i) The sequencing
library was generated from polyA selected RNA; (ii) we did not detect any coverage of the first 6
RPMS1 introns. Thus, the coverage between exons 4 and 5 as well as between exons 6 and 7 may reflect
novel and uncharacterized exons or transcripts. The coverage between exons 6 and 7 may be derived
from a novel intron-bearing RPMS1 isoform. Meanwhile, since the coverage between exons 4 and 5
largely initiates at the middle of this intron, it suggests that this is likely a transcription initiation site or
a splice acceptor site. Further, since our subsequent splicing analysis did not detect any candidate
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splicing events at the beginning of this intron coverage, we reasoned that this read coverage may result
from a transcription initiation from an unknown upstream promoter.

In the EBV-high lung cancer sample, greater than 96.3% of all EBV reads align to the BamHI
A region. Furthermore, RPMS1 exon coverage ranks within the top six percent of the expressed
cellular genes in the EBV-high lung cancer sample and is forty-five times more than the median cellular
gene expression level (Figure 5). Thus, we concluded that the expression of this region is not only
high compared to other EBV-encoded genes, but the expression is also high relative to cellular genes.
However, within the BamHI A locus, we did not detect LF3 gene expression in the in vivo lung cancer
dataset, although we previously reported high levels of LF3 in Burkitt’s lymphoma [24].
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Figure 5. EBV transcripts from RPMS1 are among the highest expressed genes in EBV(+) NSCLC.
Transcripts per million (TPM) values calculated using reads across all RPMS1 exons are shown with
respect to the median expression of all expressed cellular genes (expressed genes defined as cellular
genes with greater than 0.01 TPM). The percentage values above the RPMS1 bar represents the rank of
RPMS1 expression among all expressed cellular genes.

We next analyzed the splicing events in the BamHI A region, and the alignment was conducted
using the STAR aligner. As shown in Figure 6, we found that the most abundant splice junction reads
reflect the predominance of splicing from exons 1-2-3-4-5-6-7. However, significant splicing events
were detected within exons 3, 5, and 7. Further, exons 1a, 1b, and 2 were also used to generate alterative
splicing, although to a lesser degree. Notably, we also detected some splicing events (coverage = 4)
that initiate from the middle of the newly identified coverage in the intron between exons 4 and 5 to the
start of exon 5, suggesting that some transcripts splice to exon 5 whereas some read through to exon 5.
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Figure 6. Alternative splicing in the EBV BamH1 A region in EBV-high NSCLC. RNA-seq data of the
EBV-high NSCLC were analyzed using the STAR aligner and were aligned to the modified Akata-EBV
genome to obtain splice junction information. Junctions were visualized using the Integrative Genomic
Viewer (IGV). The thickness of the red junction features correlates with the number of reads for the
respective junction. The number of junction spanning reads for each junction is indicated above each
junction feature.
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2.5. Analysis of the Viral circRNAs

Using both computational and wet lab techniques, we have recently discovered and validated a
repertoire of EBV encoded circular RNAs (circRNA) in EBV infected cell lines and clinical samples [39].
Here, we’d like to investigate if any backsplicing events of viral transcripts occurred in EBV(+) lung
cancers. The RNA-seq data set of the EBV-high NSCLC was then analyzed with the find_circ pipeline
and a total of 4814 unique backsplice junctions were identified and 3 of them belong to the EBV.
Interestingly, all these EBV circRNA candidates were derived from the RPMS1 region (Table 1). Notably,
since the RNA-seq library was constructed to enrich poly-adenylated RNA but not the circRNA,
we reasoned that the true abundance of viral circRNA in EBV(+) LC should be much higher than what
we observed here.

Table 1. Listing of EBV backsplicing read counts in the EBV-high NSCLC sample.

Chromosome Coord 1 Coord 2 Gene/Locus Junction Counts

EBV Akata Strain 47242 47383 RPMS1 1
EBV Akata Strain 47516 47631 RPMS1 2
EBV Akata Strain 51610 51683 RPMS1 1

2.6. Differential Cellular Gene Expression Profiles in EBV-High and EBV-Low Lung Squamous Cell Carcinoma

We hypothesized that EBV may promote lung cancer development by altering certain oncogenic
pathways. Nevertheless, the mechanism that EBV manipulates these oncogenic pathways may be
different from the pathway disruption mechanism utilized in the absence of EBV such as through
gene/chromosomal mutations. Because cellular gene expression usually responds to the altered
signaling mechanisms, we thus can use differences in gene expression patterns to classify cell
populations as well as reveal signaling events within certain cell populations. To elucidate the
influences of EBV-dependent alterations in oncogenic pathways, we first assessed global cellular gene
expression in all 4 EBV(+) lung cancer samples. We did not include EBV gene expression data in this
analysis to ensure that clustering occurred based solely on differences in cellular gene expression and
will not be affected by the biases incurred by the signatures of EBV gene expression.

Notably, when these samples were analyzed using principal component analysis (PCA), the three
EBV(+) lung squamous cell carcinoma (LUSC) samples displayed slight differences (based on the
distance along the PC1 axis) (Figure 7A), while the EBV(+) lung adenocarcinoma (LUAD) sample
showed significant differences and large separation from the LUSC group. In accordance, our correlation
and cluster analysis showed that EBV(+) LUSC samples form a well-separated branch, and the EBV(+)
LUAD sample forms another main branch (Figure 7B). These data indicate that LUAD and LUSC
are distinct molecular subtypes of NSCLC and carry their own unique molecular signatures. Thus,
since only the LUSC samples carry both high levels and low levels of EBV in the analyzed NSCLC
data sets, to better determine the role of EBV infection in the development of NSCLC, we restricted
our analysis to the EBV-high and EBV-low LUSC samples. Strikingly, as shown in the correlation and
cluster plot (Figure 7B), within the EBV(+) LUSC groups, the two EBV-low LUSC samples clustered
together and were well-separated from the EBV-high LUSC sample. Thus, a different gene expression
pattern occurred in the EBV-high sample.

The count data of human transcripts from the LUSC with high levels of EBV reads were
subsequently compared to the LUSCs with low levels of EBV reads using the EB-Seq algorithm [40].
Notably, the empirical Bayes hierarchical algorithm of EB-Seq allows us to calculate statistically
significant gene alterations between 2 groups. Importantly, it allows a minimum of one sample
in each group and the gene alteration will be determined as statistically significant if the false
discovery rate (FDR) is less than 0.05. We found that a total of 4994 cellular genes show statistically
significant differential expression (FDR < 0.05) in the EBV-high LUSC sample relative to the EBV-low
LUSC samples.
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Figure 7. Dimension reduction, correlation and cluster analysis of cellular gene expression data of the
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groups as described in the figure legend. (B) Correlation analysis of the EBV(+) NSCLC samples with
the plot showing the correlation to the cellular gene expression pattern.

We next used the Ingenuity Pathway Analysis (IPA) software to analyze pathways and known
molecular functions associated with differentially expressed cellular genes. In the EBV-high LUSC
sample, the most activated canonical pathway was the BRCA1-mediated DNA damage response
(Table 2). It suggests that EBV infection in LUSC cells may promote BRCA1 signaling. This observation
is consistent with previous studies reporting that BRCA1 is involved in the innate sensing of herpes
virus DNA and also involved in EBV replication [41,42]. In addition, TNF-receptor signaling was
also activated in the EBV-high LUSC cells, which may be due to the expression of viral LMP-1,
a constitutively activated truncated form of the TNF receptor. CDK5 signaling can be activated by
EBV infection and viral EBNA-2 expression in lung cancer via upregulation of the CDK5 activator
p35 [43]. Further, multiple cancer associated signaling pathways were activated in the EBV-high LUSC,
including G2/M and G1/S cell cycle control, the p53, HIPPO, and Sirtuin signaling pathways (Table 2).

Table 2. Top 15 activated canonical pathways detected in the EBV-high sample by the Ingenuity
pathway analysis (ranked by Z-score).

Canonical Pathways Z-Score

Role of BRCA1 in DNA Damage Response 2.6
HIPPO signaling 2.3
TNFR1 Signaling 1.8
TNFR2 Signaling 1.7
CDK5 Signaling 1.5

Cell Cycle: G2/M DNA Damage Checkpoint Regulation 1.5
Sirtuin Signaling Pathway 1.5
Sonic Hedgehog Signaling 1.4

Glutamate Receptor Signaling 1.3
Death Receptor Signaling 1.0

Calcium Transport I 1.0
p53 Signaling 0.7

Fatty Acid alpha-oxidation 0.7
Th2 Pathway 0.7

Cell Cycle: G1/S Checkpoint Regulation 0.6



Cancers 2019, 11, 759 11 of 25

More than half of the top inhibited canonical pathways in the EBV-high LUSC were involved in
immune regulation (Table 3). EBV infection may repress leukocyte extravasation and inhibit neutrophil
signaling, B cell activation, as well as signaling mediated by multiple key cytokines such as TGF-beta
and IL-8.

Table 3. Top 15 inhibited canonical pathways detected in the EBV-high sample by the Ingenuity
pathway analysis (ranked by Z-score).

Canonical Pathways Z-Score

Oxidative Phosphorylation −3.3
Leukocyte Extravasation Signaling −3.2

ILK Signaling −3.2
TGF-beta Signaling −3.1

IL-8 Signaling −2.9
HMGB1 Signaling −2.7

fMLP Signaling in Neutrophils −2.5
Neuregulin Signaling −2.5

BMP signaling pathway −2.5
EIF2 Signaling −2.4

NRF2-mediated Oxidative Stress Response −2.4
B Cell Receptor Signaling −2.2

Regulation of eIF4 and p70S6K Signaling −2.1
CXCR4 Signaling −2.1

Regulation of Cellular Mechanics by Calpain Protease −2.1

The IPA analyses allowed us to identify the candidate master upstream regulators (UR) which
were likely responsible for the observed alterations in cellular signaling. Interestingly, four of the
fifteen activated URs are oncogenic miRNAs (Table 4). We previously showed that EBV latent infection
induces microRNA miR-155 expression and activities in various EBV model cell systems [44,45] and
the activation of miR-155 in EBV-high LUSC may be caused by similar mechanisms. Notably, all of the
identified activated URs are either oncogenes or associated with tumor development (Table 4).

Table 4. Top 15 activated upstream regulators detected in the EBV-high sample by the Ingenuity
pathway analysis (ranked by Z-score).

Upstream Regulator Z-Score

IFNL1 3.6
miR-21-5p (and other miRNAs w/seed AGCUUAU) 3.5

miR-155-5p (miRNAs w/seed UAAUGCU) 3.3
NANOG 2.9

PML 2.9
NEUROG1 2.8

HSF1 2.7
GSK3B 2.7
KDM5B 2.5

miR-17-5p (and other miRNAs w/seed AAAGUGC) 2.4
miR-30c-5p (and other miRNAs w/seed GUAAACA) 2.4

ZNF281 2.4
MSC 2.3

SIN3A 2.2
NR5A1 2.2

The majority of the inhibited URs are cytokines or molecules involved in the immune response
(Table 5), which is consistent with the findings that many immune pathways were also inhibited in the
EBV-high LUSC. For example, the top inhibited molecule, TGFB3, may correlate with down-regulation
of TGF-beta target genes by EBV EBNA-1 protein. This process is known to promote progression of
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Hodgkin’s lymphoma [46]. Thus, the inhibition of both immune pathways and immune URs may help
induce tolerance to infiltrating immune cells in EBV-high LUSC.

Table 5. Top 15 inhibited upstream regulators detected in the EBV-high sample by the Ingenuity
pathway analysis (ranked by Z-score).

Upstream Regulator Z-Score

TGFB3 −4.3
IL1A −3.9

TGFB1 −3.8
CSF1 −3.6
IL6 −3.5

CSF2 −3.3
IGFBP2 −3.3

IL4 −3.1
SMAD3 −2.9

YAP1 −2.8
SMARCA4 −2.7

KLF6 −2.7
ELF4 −2.6

TGFB2 −2.6
ATF4 −2.6

2.7. Elucidation of the Tumor Immune Microenvironment

Recent studies have used computational deconvolution approaches to elucidate the relative
immune cell content in the tumor microenvironment from gene expression data. One such method,
known as CIBERSORT, has shown consistent agreement between immune cell classification by
deconvolution of RNA-seq data and flow cytometry [47]. The CIBERSORT method assumes that the
gene expression pattern of an unknown bulk biospecimen can be interpreted by the weighted sum of
the cell-type specific patterns that it comprises. An accurate deconvolution is largely dependent on the
signature gene expression panel (SGEP) utilized. The expression levels of genes in the panel should be
quantified well enough to distinguish between the types of cells contained in the mixed population.
The default SGEP of the CIBERSORT software is based on the microarray data, which is not fully
compatible with the RNA-seq data derived from lung tumors. Therefore, we developed our own
RNA-seq based SGEP (namely LM18) which is derived from RNA-seq data of 18 immune cell types.

To dissect infiltration of specific immune cell subsets, we then set out to deconvolve the gene
expression data of EBV(+) LUSCs using CIBERSORT. The largest immune cell components corresponded
to B cells, CD4+ and CD8+ T cells (Figure 8A). The unsupervised hierarchical cluster analyses showed
that the EBV-low LUSCs had similar immune cell components, which differed from the EBV-high
LUSC. The EBV-high LUSC had a higher proportion of CD8+ T effector and CD4+ T naïve cells as well
as a lower proportion of CD8+ T naïve and CD4+ T effector cells relative to the EBV-low LUSCs.

H&E-stained tissue sections (Figure 8B and see Figure S4 in the supplementary material for a
high-resolution image) revealed that the EBV-high LUSC had a higher level of infiltrating immune
cells compared to the EBV-low LUSCs. Although more observations will be necessary to confirm this
correlation, these data are consistent with the concept that higher levels of EBV infection may promote
infiltration of immune cells into the lung tumors.

To further investigate the potential role of EBV in the host immune regulation, we analyzed the
expression levels of known immune checkpoint molecules, which regulate the activities of infiltrating
immune cells and are involved in the tumor immune tolerance. Interestingly, our clustering analyses
revealed that the EBV-low LUSCs have similar expression patterns of immune checkpoint molecules
(Figure 8C). Relative to the EBV-low LUSCs, the EBV-high LUSC expressed elevated levels of key
inhibitory checkpoint molecules such as IDO, PD-1, CTLA-4, LAG3, BTLA, and VISTA. This finding
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agrees with the hypothesis that EBV may promote the expression of these checkpoint molecules and
thereby promote tumor escape from the immune surveillance.
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Figure 8. Immune infiltration status of EBV(+) NSCLCs. (A) Fractions of immune cell subsets in EBV(+)
NSCLC samples inferred from gene-expression data using CIBERSORT. CIBERSORT empirical p value,
p < 0.001. (B) Representative images of hematoxylin and eosin staining of EBV(+) NSCLC and adjacent
normal lung samples. Arrowheads point to the infiltrating immune cells. Scale bar: 50 µm. (C) A
high EBV level is associated with enhanced expression of immune checkpoint molecules in EBV(+)
NSCLC samples. Heatmap shows transcripts levels of known cellular checkpoint molecules in EBV(+)
NSCLC samples. Checkpoint molecules that were significantly up-regulated in the EBV-high sample
are highlighted in red. Unsupervised hierarchical cluster analysis shows the separation of EBV-low
and EBV-high samples.

The total amount of immune checkpoint molecules is determined by their expression within tumor
cells and infiltrating immune cells. Recent studies have shown that tumor cell-intrinsic checkpoint
molecules such as IDO, PD-1, CTLA-4 and VISTA likely play important roles in the development
of non-small cell lung cancer [48–51]. Next, we set out to elucidate if EBV can directly induce these
checkpoint molecules expression in lung cancer epithelial cells. To the best of our knowledge, a lung
cancer cell line carrying naturally infected EBV has not been reported. To discover any existing EBV(+)
lung cancer cell lines, we then screened EBV infection using RNA-seq data of 184 known lung cancer
cell lines from the CCLE (Cancer Cell Line Encyclopedia) cohort (for the list of analyzed cell lines,
see Table S3 in the supplementary material). The total sequencing reads of each dataset were aligned to
a reference genome containing a human genome (hg38; Genome Reference Consortium GRCH38) plus
a modified Akata-EBV genome using the STAR aligner. The results show that no EBV transcriptional
activity was detected in these datasets. Since there’s no available EBV(+) lung cancer cell line, we then
decided to introduce recombinant EBV genomes into the lung cancer cells. A lung squamous cell
carcinoma cell line, NCI-H1703 was then transfected with plasmids carrying either recombinant EBV
M81 strain (rM81) or B95.8 strain (rB95.8), respectively. The EBV(+) cells can be monitored based
on their constitutive expression of green fluorescence protein (GFP) carried by the recombinant EBV
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(rEBV) genomes. Forty-eight hours post-transfection, cells were harvested and around 10% of cells
were positive for EBV infection based on the GFP signal (Supplementary Figure S5A). Total RNAs
were then extracted for the qRT-PCR analysis. Compared to the control group, high levels of EBV
EBER transcripts were detected in rEBV-transfected cells, indicting a high EBV transcriptional activity
(Supplementary Figure S5C). As shown in Figure S5C, EBV RPMS1 was also detected in EBV(+) cells,
which is consistent with our RNA-seq data as shown in Figure 3. Compared to the EBV negative
NCI-H1703 control cells, cellular checkpoint molecules such as IDO, PD-1, CTLA-4, and VISTA were
strongly induced in rB95.8 EBV(+) lung cancer cells (Supplementary Figure S5B). Meanwhile, PD-1
and CTLA-4 were also induced in rM81 EBV(+) lung cancer cells. The lower induction of cellular
checkpoint molecules by rM81 EBV may be due to virus’ high lytic activity, as evidenced by the
high levels of lytic inducer BZLF1 in rM81 EBV(+) cells (Supplementary Figure S5C). Meanwhile,
neither EBV strain can effectively induce LAG3 and BTLA expression in lung cancer cells, suggesting
that these molecules were mainly expressed within the infiltrating immune cells in the tumor tissue.
Thus, our results further support the notion that EBV infection may manipulate the cellular checkpoint
molecule expression in lung cancer cells, and subsequently contribute to lung carcinogenesis.

3. Discussion

Although smoking is a key risk factor for lung cancer development, the incidence of lung cancer
is slowly declining even after the dramatic reduction of smoking through public health awareness
movement. Only 10–20% of total smokers develop lung cancer [52]. Further, around 15% of male lung
cancer patients and 53% of female lung cancer patients are never smokers, and lung cancer is believed
to be the 7th most common cause of cancer death in never smokers [53], indicating other etiological
factors for lung cancer development.

EBV has been previously proposed to be associated with certain subtypes of lung cancer, but that
conclusion was exclusively based on the results from traditional viral screening methods such as PCR.
Due to the inherent limitations of those traditional screening methods (such as PCR priming issues,
usage of inappropriate/biased detection markers, etc.), the reported EBV-lung cancer association was
questionable. Here, in addition to the PCR-based method, we utilized an RNA-seq based informatics
approach to comprehensively interrogate the involvement of EBV in the lung cancer in an unbiased
and more accurate manner. Our analyzed data sets were derived from samples collected in nine
countries such as the United States, Germany, Australia, etc. The patient population is not restricted
to a particular race but includes Caucasians, Blacks, and Asians. The total number of RNA-seq data
sets is 1127 (Figure 2C). To the best of our knowledge, the magnitude of such screening work for EBV
infection in lung cancer has not been reported before.

By doing in situ hybridization, we detected EBERs in non-small lung cancer cells but not the
infiltrating immune cells. It suggests that EBV can indeed infect lung cancer cells. Meanwhile,
our virome screening analyses of the TCGA data sets demonstrate that 4 cases with EBV positivity,
but only the EBV-high sample undoubtedly represents a bona fide latent EBV infection of tumor cells.
Although less likely, we cannot totally rule out the possibility that EBV reads detected in the 3 EBV-low
samples are partially derived from the infiltrating EBV-positive immune B cells. If that is the case, the
true EBV infection rate in the analyzed TCGA cohort is no more than 0.4%. This low EBV infection rate
indicates that EBV is unlikely to play a significant role in the development of lung cancers in general,
but may contribute to the development of a subset of lung cancer cases. In areas where EBV-associated
cancers are endemic, such as sub-Saharan Africa and Southeast Asia, the connection between EBV and
lung cancer may be more prevalent.

Another rational explanation for the observed low EBV incidence rate is that EBV may utilize
the hit-and-run strategy to infect lung epithelial cells, which subsequently contributes to lung cancer
development [54]. The transient presence of EBV genomes can potentially cause some genetic scars in
the host cells and lead to a permanent alternation of cellular gene expression and promote tumorigenesis.
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In accordance, a recent study reported that EBV may promote breast cancer development using the
hit-and-run mechanism [55].

Notably, the only EBV-high sample from the TCGA cohort was collected from an Asian female
patient (Table 6). This is consistent with the notion that the Asian population is more susceptible to
EBV-associated lung cancer [20,56]. Our results support previous findings that in the lung cancer setting
EBV is not restricted to the lymphoepithelioma-like carcinoma (LELC) subtype [14–20]. Moreover,
the EBV-high sample was collected from a never-smoking patient, indicating that EBV may promote
lung carcinogenesis in a smoking independent manner. Although speculative, these findings offer a
plausible explanation for the high incidence of lung cancer in never smoking Asian women [57].

Table 6. Clinical information of the EBV(+) NSCLC samples.

Patient ID Diagnosis Gender Race TNM Stage Tumor Stage Smoking History Age Source

Rln060065-C11 LUSC FEMALE N/A T2-N2-M0 Stage IIIA N/A 51 Biomax
Rln120096-D7 Adenosquamous FEMALE N/A T2-N0-M0 Stage IB N/A 64 Biomax
Rln060480-H6 LUAD MALE N/A T2-N0-M0 Stage IB N/A 49 Biomax

TCGA-96-A4JL LUSC FEMALE ASIAN T2a-N1-M0 Stage IIA Lifelong Non-smoker 78 TCGA
TCGA-69-8255 LUAD MALE WHITE T1a-N0-M0 Stage IA smoker 71 TCGA
TCGA-98-7454 LUSC MALE WHITE T2a-N0-M0 Stage IB smoker 73 TCGA
TCGA-66-2769 LUSC MALE N/A T4-N0-M0 Stage IIIB smoker 75 TCGA

Since EBV may underlie the pathogenesis of some lung cancers, it is important to determine how
EBV interacts with the host cells. Our analyses detect a type II latency-like EBV transcriptome in
lung cancer, which mimics the viral gene expression pattern seen in the EBV associated gastric cancer.
The high levels of BamHI A transcripts detected in the EBV-high lung cancer sample are consistent
with true EBV latency, since BamHI A transcripts are more highly expressed in the infected epithelial
cells than in B cells. We also detected transcripts from two novel regions within the BamHI A segment,
the region between exons 4 and 5, as well as between exons 6 and 7. Since the coverage of reads starts
in the middle of the intron between exons 4 and 5, there is likely a new transcription initiation site or a
new splice acceptor site within this intron. We did not detect any splicing event near the beginning
of this intron coverage. Therefore, we reasoned that a hidden upstream promoter may initiate this
transcript and it is responsible for the observed coverage. Further analysis is warranted to characterize
this region for new genes or new transcript isoforms.

Our analyses of RNA-seq evaluate transcript structures and quantify the expression of BamHI A
region genes compared to other viral and cellular genes. Although previous studies have been unable
to detect protein from naturally expressed BamHI A rightward transcripts [58,59], the high expression
level of these transcripts in EBV-high NSCLC sample suggests a functional role in lung cancers,
possibly as long non-coding RNAs (lncRNA), which has been previously proposed in the EBV(+)
gastric cancers [60]. Many lncRNAs function in complexes that repress transcription, which raises the
possibility that the rightward BamHI A transcripts function as lncRNAs that selectively repress cellular
gene expression in EBV-high NSCLCs. These rightward BamHI A transcripts also encode at least 44
intronic BART microRNAs (miRNAs). The function of these BART miRNAs in the EBV’s life cycle and
in EBV-associated cancers have been previously explored [61]. The high expression level of the BamHI
A rightward transcripts in lung cancer would facilitate a significant role in modulating the cellular
phenotype by BART miRNAs in this tumor type. In addition, the new coverage region detected in the
RPMS1 and A73 region indicates that additional rightward exons/genes are present within this region
and they may similarly play a role in noncoding RNA-mediated modulation of cellular function.

Previously, we and others have identified novel alternative splicing events of LMP2A in EBV
associated cancers [62–64]. Here, the sequencing depth of the EBV-high LC allows us to further
characterize the transcript structure of LMP2A in the setting of LCs. In accord with the previous
observation in the EBV(+) ENKTL (extra-nodal NK/T-cell lymphoma) and CAEBV (chronic active
EBV) samples, classical splicing event between the first exon (exon 1A) and exon 2 of LMP2A was not
detected (Supplementary Figure S3). The read coverage of the intronic region next to the 5′ end of
exon 2 indicates that an alternative promoter may be utilized to initiate the LMP2A transcription in
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EBV(+) lung cancers (Supplementary Figure S3 inset). Furthermore, a novel splicing event between
splicing sites located within LMP2A exon 2 and RPMS1 exon 7 was also detected. Thus, together with
previous findings, our data indicate that the alternative splicing of LMP2A may be more common than
we previously expected and it may play important regulatory and functional roles in EBV’s life cycle
and pathogenesis.

We detected a high level of EBV BNLF2a gene expression in the absence of significant expression of
other viral lytic genes in the EBV-high NSCLC sample. BNLF2a is an early lytic phase protein
that suppresses immune detection of the EBV infected cells by blocking antigen presentation
through inhibition of peptide loading onto the major histocompatibility complex (MHC) class I
molecules [30,65–69]. Previously, we found that BNLF2a is expressed in a good portion of EBV-
associated gastric cancers and EBV(+) gastric cancer cell lines [28,30]. Expression of BNLF2a with
EBNA-1 and LMP-2 in the absence of reactivation suggests a new latency program. Thus, a subset of
lung and gastric cancers may possess an EBV-associated etiology characterized by immune tolerance
promoted by BNLF2a.

We reported previously that gastric carcinomas with high levels of EBV reads exhibit activation of
distinctive pathways, compared to samples with low/no EBV reads [28]. Here, using this established
approach in the EBV-high NSCLC sample, we detected activation of EBV-associated oncogenic pathways
and inhibition of multiple tumor suppressors. Moreover, our computational assessment of immune
cell infiltration was confirmed in the stained tissue section from the EBV-high sample. Despite this
heightened influx of immune cells, EBV-positive tumor cells persist in the patient. We reasoned that
the tumor may have successfully employed certain immune evasion strategies perhaps facilitated by
BNLF2a that allow virus/tumor survival. First, the limited expression of viral protein-coding genes
in the EBV-high sample likely contributes to the avoidance of viral antigen targeting [70]. Second,
even though the EBV-encoded protein, EBNA-1 is required for viral episomal maintenance/replication
and thereby must be expressed in proliferating cells, it encodes a glycine-alanine repeat domain to
block its proteasomal processing for cytotoxic T-lymphocyte presentation [71,72]. Third, here we
found elevated expression of multiple immune checkpoint inhibitors, such as IDO, PD-1, CTLA-4,
LAG3, BTLA, and VISTA in the EBV-high NSCLC sample. These immune inhibitors may contribute to
EBV-associated tumor immune tolerance. For example, IDO (indoleamine 2,4-dioxygenase), one of
the top EBV-induced immune inhibitors, may inhibit the activities of cytotoxic T lymphocytes and
NK cells by causing local tryptophan depletion in the tumor niche and thus help promote tumor
survival [28,73–75], despite the enhanced immune infiltration in the EBV-high NSCLC. The recent
development of antagonists for these immune checkpoint inhibitors in the tumor immunotherapy field
may eventually help improve the prognosis of the EBV(+) NSCLC in the near future.

Together, our current data support the notion that EBV likely plays a pathological role in a subset
of NSCLC. However, due to the limitation of our study (especially the limited number of EBV(+)
NSCLC cases analyzed), a definitive association between EBV and the subset of NSCLC cannot be
confidently established at this moment. Further study with inclusion of more EBV(+) NSCLC patients
will surely help us solve this puzzle.

4. Materials and Methods

4.1. Sequencing Data Set Acquisition

Controlled access RNA-seq data from 1017 non-small cell lung cancer samples and 110 paired
adjacent normal lung tissue samples generated through the National Institutes of Health (NIH),
The Cancer Genome Atlas (TCGA) project were obtained from the Cancer Genomics Hub and Genomic
Data Commons (https://gdc.cancer.gov). Demographic and clinical data for each sample is available
through the GDC data portal (https://portal.gdc.cancer.gov). Briefly, surgically removed samples
were obtained from 9 countries (including the United States, Germany, Australia, Canada, Russia,
Switzerland, Ukraine, Romania, and Vietnam) with no previous treatment.

https://gdc.cancer.gov
https://portal.gdc.cancer.gov
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4.2. RNA CoMPASS Analysis

The RNA CoMPASS is an automated computational pipeline that seamlessly analyzes RNA-seq
data sets [28,29,35]. Briefly, to reduce the run time and random-access memory requirements incurred
during the running of the BLAST component of the pipeline, 20 million reads (around 1/3 of the
total reads) were extracted from each sample using the Unix split command. The extracted reads
were then deduplicated using an in-house deduplication algorithm to remove PCR duplication.
The deduplicated reads were subsequently aligned to the human reference genome, hg19 (Genome
Reference Consortium GRCH37), plus a splice junction database (which was generated using the make
transcriptome application from the Useq [76]; splice junction radius set to the read length minus 4) using
the Novoalign version 3.00.05 (Novocraft, Selangor, Malaysia) (-o SAM, default options) to identify
human sequences. Unmapped sequencing reads were then isolated and subjected to consecutive
BLAST (version 2.2.27 [77], default options) searches against the Human RefSeq RNA database and
then to the NCBI NT database to pinpoint reads corresponding to known exogenous organisms [78].
Results from the NT BLAST searches were then filtered to eliminate matches with an E-value of greater
than 1 × 10−5. The results were then processed by the taxonomic classifier software MEGAN 4 (version
4.70.4 [79]) for visualization of taxonomic classifications within the analyzed specimens. The RNA
CoMPASS was run in parallel on three Intel Xeon Mac Pro workstations (with dual 12-core 2.66GHz
CPUs and 64–96 GB of memory each).

4.3. Human and EBV Transcriptome Analysis

Raw sequencing reads were aligned to a reference genome containing a human genome (hg38;
Genome Reference Consortium GRCH38) plus a modified Akata-EBV genome (Akata-NCBI accession
number KC207813.1 [26]). The alignments were conducted using the Spliced Transcripts Alignment to
a Reference (STAR) aligner version 2.5.3 (-clip5pNbases 6, default options) [80] and were subjected
to visual inspection using the Integrative Genomics Viewer (IGV) genome browser [81]. Transcript
data from STAR were then analyzed using the RSEM software (version 1.3.0 [82]) for quantification of
human and EBV gene expression. Signal maps (i.e., the total number of reads covering each nucleotide
position) were generated using the IGV tools, and read coverage maps were visualized using the IGV
genome browser [81]. The EB-Seq software [40] was utilized to call statistically differentially-expressed
genes using a false discovery rate (FDR) less than 0.05.

4.4. Circular RNA (circRNA Backsplice Junction) Analysis

CircRNA candidates were identified by the back-splicing junctions. Briefly, raw sequence data
were analyzed by the find_circ pipeline [83] using a reference genome containing a human genome
(hg38; Genome Reference Consortium GRCH38) plus a modified Akata-EBV genome (Akata-NCBI
accession number KC207813.1 [26]) with default parameters.

4.5. Dimension Reduction, Correlation and Cluster Analysis of Human and EBV Expression Data

(i) Principal component analysis (PCA). PCA is a type of unsupervised dimension reduction
method. It generates latent variables that are classified as principal components (PCs). The first
principal component is a linear combination of the original variables that incorporates the greatest
sources of variation within the datasets. The second and subsequent principal components are more
latent variables which explain the greatest sources of variation that are left over beyond the first PC and
lie orthogonal to it. To evaluate the variation between samples, we have utilized the PCA package (R
version 3.4.1, the R Foundation, Vienna, Austria) (default settings), and analyzed both EBV and human
gene expression data from 4 EBV(+) NSCLC datasets. The 2D plots were generated using the plot
package (R version 3.4.1). (ii) Correlation analysis. The Pearson correlation coefficients were calculated
by comparing both the human and EBV gene expression data of EBV(+) NSCLC samples using the
correlation package (R version 3.4.1) with the default settings. Correlation plots were generated using
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the corrplot R package. (iii) Unsupervised hierarchical cluster analysis. The unsupervised hierarchical
cluster analysis was performed using the pheatmap package with the default settings. The heatmaps
and dendrograms were visualized using the pheatmap package with the default settings.

4.6. Deconvolution of Immune Cell Infiltration in the Tumor Tissue

The CIBERSORT software [47] is a linear vector regression based machine learning approach
and it is used to predict the proportions of immune cell subsets in tumor samples. Since the default
CIBERSORT matrix panel is derived from the microarray data, it is thus not ideal to deconvole the
RNA-seq data of tissue samples. To improve the accuracy of the deconvolution analyses, we utilized
the CIBRESORT algorithm to build our custom CIBERSORT matrix panel of signature gene expression
by using the gene expression data from the RNA-seq data sets of 18 immune cell subsets (NIH SRA#
ERP004883, SRP075118, ERP013700, SRP059695, SRP066152, SRP066242). The gene expression data of
EBV(+) LUSC samples were then used as input to infer proportions of 18 types of immune cells in the
tumor tissue samples.

4.7. Ingenuity Pathway Analysis (IPA)

Differentially expressed genes between the EBV-high and EBV-low lung squamous cell carcinoma
samples (false discovery rate (FDR) < 0.05) were identified by the EB-Seq software and used as input for
the IPA’s Core Analysis including both the downstream effects analyses and the upstream regulators
analyses [84]. The downstream effects analyses were used to identify the biological processes and
functions that are causally affected by the gene expression changes. The upstream regulator analyses
were used to determine the molecules upstream of the genes that explain the altered gene expression.
The Z-score is a value calculated by the Z-score algorithm of the IPA. The Z-score is utilized to predict
the direction of change for a biological function or the activation state of the upstream regulator.
The Z-score is calculated based on the uploaded gene expression pattern that is upstream to the
biological function and downstream to an upstream regulator. A biological function is increased or an
upstream regulator is activated if the Z-score is > 0. A biological function is decreased or an upstream
regulator is inhibited if the Z-score is < 0.

4.8. EBERs In Situ Hybridization

The formalin-fixed paraffin-embedded (FFPE) lung cancer tissue array was obtained (Biomax,
Derwood, MD, USA, catalog no. BC041115d). EBERs (EBER1 and EBER2) ISH was performed using
the HistoSonda EBER XISH Probes kit (American MasterTech, Lodi, CA, USA). Briefly, the FFPE
tissue sections were deparaffinized, rehydrated in a graded solution of xylene and alcohol, and
deproteinized with proteinase K. Samples were incubated with a digoxigenin EBER probe and washed
with deionized water and 1× PBS. They were incubated first with anti-digoxin antibody and anti-mouse
horse peroxidase antibody and subsequently with 3,3′-diaminobenzidine (Biocare Medical, Pacheco,
CA, USA), counterstained with hematoxylin (Sigma, St. Louis, MO, USA), and washed again with 1×
PBS. Slides were then dehydrated in a graded solution of xylene and alcohol and subsequently sealed
with the VectaMount permanent mounting medium (Vector Laboratories, Burlingame, CA, USA). Slides
were scanned with an Aperio CS2 digital pathology scanner, and images were obtained with Aperio
ImageScope software (version 12.3.2.8013, Leica, Buffalo Grove, IL, USA) with 40×magnification.

4.9. Histopathology Images of TCGA Lung Cancer Samples

Hemotoxylin and eosin (H&E) stained histopathology images of the EBV(+) lung cancer samples
of the TCGA cohort were obtained from the Genomics Data Commons (https://gdc.cancer.gov). All the
tumor samples were collected by surgical excision. Representative images were generated using the
Aperio ImageScope software (version 12.3.2.8013, Leica, Buffalo Grove, IL, USA) with 20×magnification.

https://gdc.cancer.gov
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4.10. Cell Culture

NCI-H1703 is a lung squamous cell carcinoma cell line and was purchased from the ATCC
(Catalog number CRL-5889, Manassas, VA, USA). Cells were grown in RPMI 1640 medium
(ThermoFisher Scientific, Waltham, MA, USA; catalog number SH30027) plus 10% fetal bovine
serum (FBS; Invitrogen-Gibco, Carlsbad, CA, USA; catalog number 10437-028) with 0.5% pen-strep
(Invitrogen-Gibco, Carlsbad, CA, USA; catalog number 15070-063) at 37 ◦C in a humidified 5%
CO2 incubator.

4.11. DNA Transfection

NCI-H1703 cells were seeded on either 6-well plates or chamber slides in RPMI 1640 medium
supplemented with 10% FBS 1 day before transfection. On the day of transfection, DNA plasmids
carrying either recombinant EBV M81 strain (rM81; a kind gift from Henri-Jacques Delecluse, [85]) or
B95.8 strain (rB95.8; a kind gift from Wolfgang Hammerschmidt, [86]) or control pUHD10 plasmid
were transfected into NCI-H1703 cells using the TransIT-X2 kit (Mirus, Madison, WI, USA; catalog
number MIR6003) according to the vendor’s protocols. Cells were harvested 48 h later for the
subsequent analyses.

4.12. RNA Extraction

Total cellular RNAs were isolated using the miRNeasy minikit (Qiagen, Germantown, MD, USA;
catalog number 217004) according to the vendors’ protocols and treated with RNase-free DNase (Qiagen,
Germantown, MD, USA; catalog number 79254) according to the vendor’s protocol. The quantity of
the isolated RNA was further analyzed using a NanoDrop 2000 spectrophotometer (ThermoFisher
Scientific, Waltham, MA, USA). RNA quality was examined by running RNA on a 1% agarose gel with
ethidium bromide using a BioRad gel documentation system.

4.13. Real-Time RT-PCR Analysis

Total RNA was reverse transcribed using the iScript cDNA synthesis kit for reverse
transcription-PCR (RT-PCR) (BioRad, Hercules, CA, USA; catalog number 4106228). Random hexamers
were used along with 1 µg of RNA in a 20-µL reaction volume according to the manufacturer’s
instructions. For the incubation steps (25 ◦C for 5min followed by 46 ◦C for 20 min), a T100
thermal cycler (BioRad, Hercules, CA, USA) was used. The resulting cDNA was subjected to
quantitative (real-time) PCR using sequence-specific forward and reverse primers (Integrated
DNA Technologies, Coralville, Iowa, USA). For real-time PCR, 1 µL of the resulting cDNA was
used in a 10-µL reaction volume that included 5 µL of Sybr green (BioRad, Hercules, CA, USA;
catalog number 64213937) and a 500 nM concentration each of forward and reverse primers.
Amplification was carried out using the following conditions: 95 ◦C for 3 min followed by 40
cycles of 95 ◦C for 15 s and 60 ◦C for 60 s. Melt curve analysis was performed at the end of every
qRT-PCR run. Samples were tested in triplicates. No-template controls were included in each
PCR run. PCRs were performed on a Bio-Rad CFX96 real-time system, and data analysis was
performed using CFX Manager 3.0 software (BioRad, Hercules, CA, USA). Relative detection levels
were calculated by normalizing with the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
gene as a reference gene. Primer sequences for VISTA forward, ACCACCACTCGGAGCACAGG;
reverse, TTGTAGACCAGGAGCAGGATGAGG; IDO forward, AGCCCTTCAAGTGTTTCACCAA;
reverse, GCCTTTCCAGCCAGACAAATATA; BTLA forward, CATCTTAGCAGGAGATCCCTTTG;
reverse, GACCCATTGTCATTAGGAAGCA; PD-1 forward, CGTGGCCTATCCACTCCTCA;
reverse, ATCCCTTGTCCCAGCCACTC; CTLA-4 forward, AGCCAGGTGACTGAAGTCTG;
reverse, CATAAATCTGGGTTCCGTTG; LAG3 forward, GCGGGGACTTCTCGCTATG;
reverse, GGCTCTGAGAGATCCTGGGG; EBER forward, GGACCTACGCTGCCCTAG;
reverse, CAGCTGGTACTTGACAGA; BZLF1 forward, CGACGTACAAGGAAACCACTAC;
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reverse, GAAGCCACCCGATTCTTGTAT; RPMS1 forward, CTAGTGCTGCATGGGCTCCTC;
reverse, TGCAGATATCCTGCGTCCTCT; GAPDH forward, CCAAGGTCATCCATGACAACT;
reverse, ATCACGCCACAGTTTCCC.

4.14. Fluorescence Microscopy Analysis

On the chamber slides, cells were fixed with 3.7% formaldehyde for 15 min at the room temperature.
Fixed cells were then washed with 1× PBS for 5 min for 3 times. Nuclei were then counterstained for
15 min with NucBlue reagent (ThermoFisher scientific, Waltham, MA, USA; catalog number R37605) at
the room temperature. Cells were then washed with 1× PBS for 5 min for 3 times. For fluorescence
microscopy, slides were examined with a Nikon ECLIPSE 80i microscope (Nikon, Melville, NY, USA).

5. Conclusions

Overall, our current study strongly indicates that EBV is not a major carcinogen for LC in general,
but EBV may play a critical role to promote the development of a subset of lung squamous cell
carcinoma and lung adenocarcinoma cases. Our data also led to significant insights into the EBV-host
interactions and the mechanisms through which EBV promotes lung carcinogenesis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/6/759/s1,
Figure S1: Unsupervised hierarchical cluster analysis of EBV(+) NSCLC and EBV(+) nasopharyngeal carcinoma
(NPC) data sets. Cellular gene expression data of EBV(+) NSCLC and EBV(+) NPC samples were subjected
to the unsupervised hierarchical cluster analysis using the pheatmap R package with the default settings. The
dendrogram was then visualized using the pheatmap R package with the default settings, Figure S2: The EBV
transcriptome in lung cancer. EBV genome coverage data for the four EBV(+) NSCLC. Data was displayed using
the Integrative Genomics Viewer (IGV) using the modified Akata-EBV genome. The modified EBV Akata genome
was split between the BBLF2/3 and the BGLF3.5 lytic genes rather than at the terminal repeats to accommodate
coverage of splice junctions for the latency membrane protein LMP2. The y axis represents the number of reads at
each nucleotide position. Blue features represent lytic genes, red features represent latent genes, green features
represent potential noncoding genes, aquamarine features represent microRNAs, and black features represent
non-gene features (e.g., repeat regions), Figure S3: Alternative splicing in the EBV LMP2A in EBV-high NSCLC.
RNA-seq data of the EBV-high NSCLC were analyzed using the STAR aligner and were aligned to the modified
Akata-EBV genome to obtain splice junction information. Junctions were visualized using the Integrative Genomic
Viewer (IGV). The thickness of the red junction features correlates with the number of reads for the respective
junction. The number of junction spanning reads for each junction is indicated above each junction feature. Inset:
Detailed read coverage data for the 5′ flanking region of the second exon of EBV LMP2A, Figure S4: Representative
images of hematoxylin and eosin staining of EBV(+) NSCLC and adjacent normal lung samples. Arrowheads
point to the infiltrating immune cells. Scale bar: 50 µm, Figure S5: EBV induces cellular checkpoint molecules in
lung squamous cell carcinoma cells. (A) NCI-H1703 cells were transfected with DNA plasmids carrying either
recombinant EBV M81 strain (rM81) or B95.8 strain (rB95.8) or the control pUHD10 (CNTL) plasmids. Forty-eight
hours post-transfection, cells were examined by fluorescence microscopy. Both the recombinant EBV strains rM81
and rB95.8 carry the GFP gene (Green Fluorescence Protein) which can be constitutively expressed. Nuclei were
visualized by NucBlue (Hoeschst) staining. (B and C) Total RNA was extracted from the transfected NCI-H1703
cells and subjected to the qRT-PCR analysis. GAPDH was analyzed as a reference. The expression of cellular
checkpoint molecules and EBV genes was determined by the comparative CT method (2−∆∆CT), Table S1: EBV
read counts in EBV(+) non-small cell lung cancer (NSCLC), Table S2: Type I EBV was detected in EBV(+) NSCLC.
Data sets of EBV(+) JY and EBV(+) P3HR1 cells which carry either Type I or Type II EBV strain were analyzed and
used as positive controls, Table S3: List of 184 analyzed human lung cancer cell lines from the Cancer Cell Line
Encyclopedia (CCLE) cohort.
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