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Abstract: By using the Warburg effect—a phenomenon where tumors consume higher glucose levels
than normal cells—on cancer cells to enhance the effect of photodynamic therapy (PDT), we developed
a new photosensitizer, glucose-conjugated chlorin e6 (G-Ce6). We analyzed the efficacy of PDT with
G-Ce6 against canine mammary carcinoma (CMC) in vitro and in vivo. The pharmacokinetics of
G-Ce6 at 2, 5, and 20 mg/kg was examined in normal dogs, whereas its intracellular localization,
concentration, and photodynamic effects were investigated in vitro using CMC cells (SNP cells). G-Ce6
(10 mg/kg) was administered in vivo at 5 min or 3 h before laser irradiation to SNP tumor-bearing
murine models. The in vitro study revealed that G-Ce6 was mainly localized to the lysosomes.
Cell viability decreased in a G-Ce6 concentration- and light intensity-dependent manner in the PDT
group. Cell death induced by PDT with G-Ce6 was not inhibited by an apoptosis inhibitor. In the
in vivo study, 5-min-interval PDT exhibited greater effects than 3-h-interval PDT. The mean maximum
blood concentration and half-life of G-Ce6 (2 mg/kg) were 15.19 ± 4.44 µg/mL and 3.02 ± 0.58 h,
respectively. Thus, 5-min-interval PDT with G-Ce6 was considered effective against CMC.

Keywords: photodynamic therapy; glucose-conjugated chlorin e6; canine mammary carcinoma

1. Introduction

Breast cancer is currently the most commonly diagnosed cancer and one of the deadliest diseases in
women [1]. Conventional treatments for breast cancer include surgery, radiation therapy, chemotherapy,
and hormone therapy. Photodynamic therapy (PDT) is a relatively new approach in treating cancer.
PDT, a minimally invasive cancer treatment, relies on the combination of a photosensitizer, light,
and oxygen to eliminate tumor cells or microorganisms. Although these are nontoxic individually,
when combined, they initiate a photochemical reaction that culminates in the generation of a highly
reactive species termed singlet oxygen (1O2) or radicals [2,3]. These reactive species can rapidly cause
substantial toxicity, subsequently leading to cell death via apoptosis, necrosis, or autophagy [2,3].
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Photosensitizers are selectively localized in tumors owing to the physiological differences between
tumor and normal tissues [4,5]. Selectivity is derived from both the ability of photosensitizers to
localize in neoplastic lesions and the precise delivery of light to the treated sites [2]. PDT is, therefore,
safe and effective when used to selectively eradicate malignant and abnormal tissues and avoids
systemic toxicity and side effects [2].

Porfimer sodium (Photofrin®) is a first-generation photosensitizer that weakly absorbs light at 630 nm [4].
Photofrin® has been clinically accepted in several countries to treat esophageal cancer [6,7], lung cancer [8],
and Barrett’s esophagus [7]. Treatment with porfimer sodium extends to Kaposi’s sarcoma, and head and
neck, brain, intestinal, skin, breast, cervix, urinary bladder, abdominal, and thoracic cancers [9,10]. Porfimer
sodium requires a long clearance time of 4–8 weeks after injection to avoid skin photosensitization [11].
Owing to properties such as unfavorable skin photosensitivity and low absorption in the red region of the
visible spectrum, second-generation photosensitizers have been developed. Talaporfin sodium (NPe6) is a
second-generation photosensitizer and hydrophilic chlorine agent derived from chlorophyll, with strong
absorption at 664 nm [4,12,13]. NPe6 has also been approved in Japan under the tradename Laserphyrin
(Meiji Seika Pharma, Tokyo, Japan) to treat malignant tumors such as lung cancer [14], brain tumor [15,16],
esophageal cancer [17,18], and cholangiocarcinoma [19]. NPe6 has a short clearance time (only 3–7 days
after injection) and causes minimal skin photosensitivity, unlike Photofrin® [4,11]. Second-generation
photosensitizers, however, exhibit poor body clearance and fail to exert sufficient tumor selectivity [20].
Therefore, the development of more effective photosensitizers is warranted.

Cancer cells consume more glucose via glycolytic fermentation for lactate formation than by
respiration, a characteristic known as the Warburg effect [21]. Several glycol-conjugated porphyrins
and chlorins have been synthesized and evaluated to determine their photodynamic effect [22–26].
However, these photosensitizers had drawbacks owing to their low solubility and low excretion rate
from the body. Recently, Nishie et al. reported the therapeutic effect of PDT with the newly developed
glucose-conjugated chlorin e6 (G-Ce6; Figure 1), which had improved water solubility and rapid
excretion from the body [27]. Nevertheless, this report was based on murine models, which have been
reported to have limitations [28]. Therefore, it was considered that cancer therapy should be studied in
large animal models that more closely reflect the clinical settings.
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Figure 1. Glucose-conjugated chlorin e6 (G-Ce6). (a) Chemical structure of G-Ce6. Methyl (7S,8S)-18-
ethyl-5-(2-methoxy-2-oxoethyl)-7-(3-methoxy-3-oxopropyl)-2,8,12,17-tetramethyl-13-(1-(3-
(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) thio) propoxy) 
ethyl)-7H,8H-porphyrin-3-carboxylate (G-Ce6). (b) White light image of 2 mg/mL G-Ce6 solution 
(20% Tween 80 in phosphate buffered saline). (c) Fluorescence image of 2 mg/mL G-Ce6 (excitation, 

Figure 1. Glucose-conjugated chlorin e6 (G-Ce6). (a) Chemical structure of G-Ce6. Methyl
(7S,8S)-18-ethyl-5-(2-methoxy-2-oxoethyl)-7-(3-methoxy-3-oxopropyl)-2,8,12,17-tetramethyl-13-(1-(3-
(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) thio) propoxy)
ethyl)-7H,8H-porphyrin-3-carboxylate (G-Ce6). (b) White light image of 2 mg/mL G-Ce6 solution (20%
Tween 80 in phosphate buffered saline). (c) Fluorescence image of 2 mg/mL G-Ce6 (excitation, 405 nm).
(d) UV-vis spectrum for G-Ce6 in DMSO (3 × 10−6 M). (e) HPLC spectrum for G-Ce6. Column: Kinetex
XB-C18 (2.6 µm (particle size), 4.6 mm (internal diameter), 75 mm (length), Phenomenex), 10 mmol/L
ammonium acetate/acetonitrile (35:65, v/v) as solvent, and UV detector at 254 nm were used.
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Comparative oncology has been reported to be a quickly expanding field, which examines both
cancer risk and tumor development across species [29]. Canine mammary carcinomas (CMCs) occur
spontaneously and have similar clinical presentation and pathophysiology to human cancers [29,30].
In particular, canine invasive mammary carcinomas have a short disease course; therefore, dogs are
potent, valuable, and spontaneous organisms for use as cancer models to test novel therapies [30,31].
Therefore, it was considered that studying dogs with naturally occurring cancer may provide a valuable
perspective, which is different from that obtained when studying human or rodent cancers alone [32].

In the present study, for translation research, we analyzed the cell death mechanism of PDT with
G-Ce6 in CMC cells in vitro. In addition, we evaluated the efficacy of PDT with G-Ce6 performed at
5-min and 3-h intervals to treat mice bearing CMCs. Moreover, we evaluated the pharmacokinetics of
G-Ce6 in normal dogs.

2. Results

2.1. Subcellular Localization of G-Ce6

Fluorescence micrographs of SNP cells double-stained with the photosensitizer and the
mitochondrial or lysosome probe are shown in Figures 2 and 3, respectively. The overlaid images
had yellow-green fluorescent spots, indicating an overlap of G-Ce6 (red) and the mitochondrial or
lysosome probe (green). Fluorescence of G-Ce6 was observed to localize in the lysosome of SNP cells.
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Figure 2. Subcellular localization of glucose-conjugated chlorin e6 in the mitochondria after 6 h of
incubation. The subcellular localization of glucose-conjugated chlorin e6 (G-Ce6) was characterized
using fluorescence microscopy. (a) Green fluorescence of MitoTracker Green FM stained mitochondria,
(b) red fluorescence of G-Ce6 in the same view as (a), (c) combination of (a) and (b) images, and (d)
transmission images. Scale bar, 50 µm.
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Figure 3. Subcellular localization of glucose-conjugated chlorin e6 in the lysosome after 6 h of incubation.
The subcellular localization of glucose-conjugated chlorin e6 (G-Ce6) was characterized using fluorescence
microscopy. (a) Green fluorescence of LysoTracker Yellow HCK-123 stained lysosome, (b) red fluorescence
of G-Ce6 in the same view as (a), (c) combination of (a) and (b) images, and (d) transmission images.
The images showed that G-Ce6 mainly localized in the lysosomes. Scale bar, 50 µm.

2.2. G-Ce6 and Light Induce Cytotoxicity in SNP Cells

Figure 4 shows the viability of SNP cells at 24 h after PDT with mono-L-aspartyl chlorin e6 (NPe6)
(a) and G-Ce6 (b). Values of the half-maximal inhibitory concentration (IC50) of NPe6 against SNP cells
exposed to light doses of 1, 5, and 15 J/cm2 were 75.2, 30.4, and 30.6µg/mL, respectively. For G-Ce6, the IC50

values against SNP cells exposed to the above light doses were 33.4, 10.4, and 1.7 µg/mL, respectively.
SNP cell survival was dependent on the concentration of G-Ce6, with significantly lower survival rates
at higher G-Ce6 concentrations. Cell death was not observed in cells treated with <40 µg/mL G-Ce6 in
the absence of laser irradiation. With 1.6 µg/mL G-Ce6, cell viability at 15 J/cm2 of light was significantly
lower than that at 0 J/cm2 of light (p < 0.01). With 8 µg/mL G-Ce6, cell viability at 5 J/cm2 and 15 J/cm2 of
light was significantly lower than that at 0 J/cm2 of light (p < 0.01). With 40 µg/mL G-Ce6, cell viability at
1, 5, and 15 J/cm2 of light was significantly lower than that at 0 J/cm2 of light (p < 0.01).
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Figure 4. Photodynamic cytotoxicity in SNP cells. The cells were incubated with various concentrations
of (a) mono-L-aspartyl chlorin e6 (NPe6) and (b) glucose-conjugated chlorin e6 (G-Ce6) for 24 h at
37 ◦C. After washing with fresh media, the cells were irradiated with 650-nm laser light (10 mW/cm2;
0, 1, 5, and 15 J/cm2). The viability of SNP cells at 24 h after photodynamic therapy, along with IC50

values, were determined. (a) The IC50 values of NPe6 at light doses of 1, 5, and 15 J/cm2 were 75.2, 30.4,
and 30.6 µg/mL, respectively. (b) The IC50 values of G-Ce6 at light doses of 1, 5, and 15 J/cm2 were 33.4,
10.4, and 1.7 µg/mL, respectively. IC50, half-maximal inhibitory concentration. Results are presented as
the mean ± standard deviation.
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2.3. Apoptotic versus Necrotic Cell Death

Figure 5 shows SNP cells stained with Hoechst 33342 at 4 h after PDT. Hoechst 33342 was used to
evaluate apoptosis because it allows for the visualization of nuclear condensation and fragmentation
that are characteristic of apoptosis. Signs of cell death were not visible in the control and 0 J/cm2

PDT groups. In the 1 J/cm2 PDT group, however, cells exhibited membrane blebbing. In the 5 J/cm2

PDT group, cells showed shrinkage, whereas in the 15 J/cm2 PDT groups, cell membranes were not
observed and a decrease in the number of SNP cells was evident. In the 5 and 15 J/cm2 PDT groups,
nuclear condensation of cells was indicated by Hoechst 33342 staining.
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Figure 5. Morphological changes in SNP cells 4 h after photodynamic therapy (PDT) with glucose-conjugated
chlorin e6 (G-Ce6). The cells were incubated with 10 µg/mL G-Ce6 for 24 h. After washing with fresh
media, the cells were irradiated with 650-nm laser light (10 mW/cm2; 0, 1, 5, and 15 J/cm2). (a,f) Control,
(b,g) 0 J/cm2, (c,h) 1 J/cm2, (d,i) 5 J/cm2, (e,j) 15 J/cm2. Upper panel: transmitted light images (a–e). Lower
panel: fluorescence images (f–j). The cells were stained with Hoechst 33342 dye 4 h after laser irradiation.
No signs of apoptosis were observed in the control and 0 J/cm2 PDT groups (a,b). In the 1 J/cm2 PDT group,
the cells showed membrane blebbing (c). In the 5 J/cm2 PDT group, the cells showed shrinkage (d). Cells in
the 5 and 15 J/cm2 PDT groups displayed nuclear condensation (i,j).

Figure 6 shows the images of SNP cells stained using Annexin V-FITC and EthD-III at 4 h after
PDT. In the 0 and 1 J/cm2 PDT groups, a few cells were positively stained with EthD-III, whereas
in the 5 and 15 J/cm2 PDT groups, many cells were positively stained with Annexin V or EthD-III.
This indicated the occurrence of phosphatidylserine translocation and the loss of plasma membrane
integrity, implying that the cells were either in late apoptotic or in early necrotic stages.
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of G-Ce6 (Figure 7). This was because at low G-Ce6 concentration (<0.064 μg/mL), the total green 
object integrated intensity (green calibrated unit (GCU) × μm²/image) did not increase after PDT, 
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Figure 6. Representative images of SNP cells stained with Annexin V-fluorescein isothiocyanate (green)
and ethidium homodimer III (red) following photodynamic therapy (PDT). Cells were incubated with
8 µg/mL glucose-conjugated chlorin e6 (G-Ce6) for 24 h. Following washing with fresh medium, the
cells were irradiated with 650-nm laser light (10 mW/cm2; 0, 1, 5, or 15 J/cm2). Following 4 h of PDT,
the cells were stained using the Promokine Apoptotic/Necrotic Cells Detection kit. The images depict
(a) 8 µg/mL G-Ce6 and 0 J/cm2 laser energy, (b) 8 µg/mL G-Ce6 and 1 J/cm2 laser energy, (c) 8 µg/mL
G-Ce6 and 5 J/cm2 laser energy, and (d) 8 µg/mL G-Ce6 and 15 J/cm2 laser energy. Scale bar, 100 µm.

2.4. Kinetics Experiment to Assess Apoptosis

Apoptosis induced by G-Ce6-mediated-PDT was determined using Annexin V-FITC fluorescence
in a live-cell analysis system. Apoptosis was found to be dependent on the concentration of G-Ce6
(Figure 7). This was because at low G-Ce6 concentration (<0.064 µg/mL), the total green object
integrated intensity (green calibrated unit (GCU) × µm2/image) did not increase after PDT, whereas at
0.32 µg/mL G-Ce6 concentration, GCU began to increase at 1–3 h after PDT and reached a maximum
at 10 h after PDT. Treatment with 8 µg/mL G-Ce6 resulted in apoptosis immediately after PDT and
reached a plateau at approximately 4 h. Therefore, we assessed the cells at 4 h after PDT in the following
studies. These results indicated that the GCU level is dependent on the concentration of G-Ce6.
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Figure 7. Assessment of apoptosis in the kinetics experiment. Apoptosis induced by glucose-conjugated
chlorin e6 (G-Ce6)-mediated photodynamic therapy was determined by an Annexin V-fluorescein
isothiocyanate fluorescence study using a live-cell analysis system. The cells were incubated with
various concentrations of G-Ce6 (0, 0.064, 0.32, 1.6, or 8.0 µg/mL) for 24 h at 37 ◦C. After washing
with fresh media, the cells were irradiated with 650-nm laser light (10 mW/cm2; 5 J/cm2). The x-axis
represents time (h), and the y-axis represents the total green object integrated intensity. Apoptosis was
dependent on the concentration of G-Ce6. GCU, green calibrated unit.



Cancers 2019, 11, 636 7 of 19

2.5. Analysis of Apoptosis

At 4 h after PDT with a laser energy of 1, 5, or 15 J/cm2, the apoptotic rates in the PDT (treated with
8 µg/mL G-Ce6 and then irradiated with a light dose of 1, 5, or 15 J/cm2) groups were significantly
higher than those in the control group (all p < 0.01; Figure 8). Furthermore, the percentage of apoptotic
cells following PDT increased in a light-dependent manner.
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Annexin V and Dead Cell Assay kit. The cells were incubated with 8.0 µg/mL glucose-conjugated
chlorin e6 for 24 h at 37 ◦C. After washing with fresh media, the cells were irradiated with 650-nm
laser light (10 mW/cm2; 0, 1, 5, 15 J/cm2). Data were analyzed using Dunn’s multiple comparison test
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2.6. Analysis of Reactive Oxygen Species

The percentage of reactive oxygen species (ROS) (+) cells at 4 h after PDT is shown in Figure 9.
The percentage of ROS (+) cells in the 5 J/cm2 PDT group was significantly higher than that in the control
group (p < 0.01). As cell membranes were not observed in the 15 J/cm2 PDT groups, the percentage of
ROS (+) cells remarkably decreased.Cancers 2019, 11, x 8 of 19 
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2.8. Intratumoral Localization 

Figure 11 shows the intratumoral localization of G-Ce6 in SNP tumors 5 min and 3 h after 
administration (10 mg/kg, intravenously (i.v.)). At 5 min after administration, G-Ce6 fluorescence 
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Figure 9. Reactive oxygen species assay. Reactive oxygen species (ROS) generation was assessed 4 h
after laser irradiation using the Muse® Oxidative Stress kit. The cells were then incubated with 8.0
µg/mL glucose-conjugated chlorin e6 for 24 h at 37 ◦C. After washing with fresh media, the cells were
irradiated with 650-nm laser light (10 mW/cm2; 0, 1, 5, 15 J/cm2). Data were analyzed using Dunn’s
multiple comparison test. (** p < 0.01; 5 J/cm2 vs. 15 J/cm2). The results are presented as the mean ±
standard deviation.
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2.7. Effect of a Pan-Caspase Inhibitor on G-Ce6-PDT-Induced Cell Death

SNP cells were treated with G-Ce6-PDT in the presence (10 µM) or absence of Z-VAD-FMK.
G-Ce6-PDT-induced apoptosis and cell death could not be blocked by Z-VAD-FMK (Figure 10).
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Figure 10. Cytotoxicity in the presence or absence of a pan-caspase inhibitor. SNP cells were incubated
with 8 µg/mL glucose-conjugated chlorin e6 for 24 h in the presence (+) or absence (−) of 10 µM
Z-VAD-FMK. After rinsing with fresh medium, the cells were irradiated with 650-nm laser light (10
mW/cm2; 5 J/cm2). (a) The percentage of apoptotic cells; and (b) cell viability (%). The results are
presented as the mean ± standard deviation.

2.8. Intratumoral Localization

Figure 11 shows the intratumoral localization of G-Ce6 in SNP tumors 5 min and 3 h after
administration (10 mg/kg, intravenously (i.v.)). At 5 min after administration, G-Ce6 fluorescence
was observed within the tumor blood vessel; conversely, at 3 h post administration, fluorescence was
apparent in both tumor interstitial tissue and tumor cells.Cancers 2019, 11, x 9 of 19 
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Figure 11. Intratumoral localization of glucose-conjugated chlorin e6 in SNP tumors 5 min and 3 h
after administration. (a) Glucose-conjugated chlorin e6 (G-Ce6) fluorescence was observed within the
tumor blood vessel 5 min after administration. (b) G-Ce6 fluorescence was apparent in both tumor
interstitial tissue and tumor cells 3 h following administration. Scale bar, 50 µm.

2.9. Tumor Response to PDT

Unlike in the control group, PDT induced significant tumor regrowth delay in the 5-min-interval
PDT as well as in the 3-h-interval PDT groups (p < 0.05; Figure 12). In addition, the 5-min-interval
PDT was more effective in inducing tumor regrowth delay than the 3-h-interval PDT. The mean tumor
weight on day 25 was 210.3 ± 85.0 mg and 34.0 ± 12.7 mg in the 3-h-interval PDT and 5-min-interval
PDT groups, respectively (Figure 13).
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Figure 12. Changes in tumor volume in response to photodynamic therapy (PDT). (a) The 5-min-interval
PDT (n = 4). (b) The 3-h-interval PDT (n = 3). Data were analyzed using Bonferroni’s multiple
comparison test. The results are presented as the mean ± standard deviation. Data were analyzed
using Bonferroni’s multiple comparison test (** p < 0.01).
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Figure 13. The mean tumor weight 25 days after photodynamic therapy (PDT). (a) The 5-min-interval
PDT. (b) The 3-h-interval PDT. The results are presented as the mean ± standard deviation.

2.10. Histological Examination

A histological examination of untreated tumors showed tumor cells infiltrating the dermis,
intact blood vessels at the tumor periphery, and necrotic tumor cells in the center region of tumors
(Figure 14a,d).

At 24 h after the 5-min-interval PDT, widespread tumor cells appeared necrotic, and fibrin
thrombus formation within the vessels was observed in the surrounding normal subcutaneous tissues
(Figure 14b,e). At 24 h after the 3-h-interval PDT, cells at the superficial tumor tissue appeared necrotic,
whereas deep-seated tumor cells appeared intact (Figure 14c,f).
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Figure 14. Representative hematoxylin & eosin stained images of the SNP tumors after photodynamic
therapy (PDT). (a,d) Untreated tumors. Tumor cells infiltrated the dermis and necrotic tumor cells
occupied the center region of the tumors (white arrows). (b,e) At 24 h after the 5-min-interval PDT.
Widespread tumor cells appeared necrotic (black arrows). (c,f) At 24 h following the 3-h-interval PDT.
Tumor cells at the superficial tumor tissue appeared necrotic (black arrows), whereas deep-seated tumor
cells appeared intact. Widespread tumor cells appeared necrotic. (a–c) Scale bar = 200 µm. (d–f) Scale
bar = 50 µm.

2.11. Pharmacokinetics

The mean (± standard deviation (S.D.)) plasma G-Ce6 concentration–time curve obtained after
intravenous injection fitted well to a two-compartment model (Figure 15). The data indicated a
rapid initial distribution of G-Ce6 within the central compartment, followed by an apparently slower
elimination phase.Cancers 2019, 11, x 11 of 19 
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Figure 15. The mean concentrations of glucose-conjugated chlorin e6 (G-Ce6) in the plasma after
intravenous administration of three doses of G-Ce6. The volume of G-Ce6 required to achieve the
desired doses was diluted with 0.5% saline to obtain a total injection volume of 10 mL. The full injection
volume was administered intravenously over 10 min at a rate of 60 mL/h; 2 mg/kg (n = 6), 5 mg/kg
(n = 3), and 20 mg/kg (n = 1).

In the 2 mg/kg group (n = 6), mean Cmax = 15.19 ± 4.44 µg/mL; mean T1/2 = 3.02 ± 0.58 h; mean
area under the curve (AUC) = 12.03 ± 3.18 µg/mL·h; mean Cl = 175.9 ± 45.68 mL/h·kg;
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and Vdss = 529.19 ± 188.67 mL/kg. In the 5 mg/kg group (n = 6), mean Cmax = 46.99 ± 12.22 µg/mL;
mean T1/2 = 2.84 ± 0.60 h; mean AUC = 59.66 ± 7.87 µg/mL·h; mean Cl = 84.75 ± 10.73 mL/h·kg;
and Vdss = 258.11 ± 65.57 mL/kg. In the 20 mg/kg group (n = 1), Cmax = 82.05 µg/mL; T1/2 = 2.51 h;
AUC = 234.75 µg/mL·h; Cl = 85.2 mL/h·kg; and Vdss = 284.40 mL/kg (Table 1).

Table 1. Pharmacokinetic parameters of dogs after intravenous administration of three doses of
glucose-conjugated chlorin e6.

Dose Cmax
(µg/mL)

T1/2
(h)

AUC
(µg/mL·h)

CL
(mL/h·kg)

Vdss
(mL/kg)

2 mg/kg 15.19 ± 4.44 3.02 ± 0.58 12.03 ± 3.18 175.90 ± 45.68 529.19 ± 188.67
5 mg/kg 46.99 ± 12.2 2.84 ± 0.60 59.66 ± 7.87 84.75 ± 10.73 258.11 ± 65.57
20 mg/kg 82.05 2.51 234.75 85.20 284.40

Cmax, maximum plasma concentration; T1/2, half-life of elimination; AUC, area under the curve; Cl, clearance; Vdss,
mean steady state volume of distribution; 2 mg/kg (n = 6), 5 mg/kg (n = 3), and 20 mg/kg (n = 1). The results are
presented as the mean ± standard deviation.

2.12. General Physical Examination and Blood Analysis

The dose of 2 mg/kg G-Ce6 was well tolerated by dogs in the safety examination study conducted.
There was no evidence of major skin photosensitivity or acute toxicity such as vomiting, diarrhea,
or salivation. No significant changes in serum biochemical parameters were observed following the
administration of G-Ce6 (Table 2). Nausea was observed during the administration of 5 mg/kg G-Ce6;
however, no significant changes in serum biochemical parameters were observed after administering
G-Ce6. Side effects such as vomiting and weakness were observed during the administration of
20 mg/kg G-Ce6. Increases in the levels of aspartate transaminase (AST) and alanine transaminase
(ALT) in blood was also observed. Based on the results accumulated, 20 mg/kg G-Ce6 was considered
the toxic dose level.

Table 2. Blood analysis of dogs pre- and post-intravenous administration of three doses of
glucose-conjugated chlorin e6.

Parameters Range

Dose

2 mg/kg 5 mg/kg 20 mg/kg

Pre Post Pre Post Pre Post

Glu (mg/dL) 75–128 99.5 ± 17.85 99.5 ± 17.85 98.0 ± 14.38 96.0 ± 10.88 98.0 107.0
AST (U/L) 17–44 32 ± 4.72 32 ± 4.72 36.5 ± 5.07 31.0 ± 10.47 36.0 55.0
ALT (U/L) 17–78 40 ± 7.17 40 ± 7.17 42.0 ± 11.1 59.0 ± 9.52 41.0 135.0
ALP (U/L) 47–258 154 ± 59.69 154 ± 59.69 136.5 ± 34.97 141.0 ± 47.04 87.0 134.0
GGT (U/L) 5–14 1.5 ± 2.35 1.5 ± 2.35 5.5 ± 1.71 5.0 ± 1.63 8.0 14.0

BUN (mg/dL) 9.2–29.2 15.8 ± 4.20 15.8 ± 4.20 13.2 ± 2.85 13.4 ± 5.05 8.3 8.6
Cre (mg/dL) 0.4–1.4 0.5 ± 0.09 0.5 ± 0.09 0.5 ± 0.05 0.5 ± 0.13 0.5 0.5

Glucose (Glu), aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase
(ALP), γ-glutamyltranspeptidase (GGT), blood urea nitrogen (BUN), and creatinine (Cre); 2 mg/kg
(n = 6), 5 mg/kg (n = 3), and 20 mg/kg (n = 1). The results are presented as the mean± standard deviation.

3. Discussion

We developed a new PDT approach with G-Ce6, which showed improved water solubility and
rapid excretion from the body [27]. However, a solvent, such as Tween 80, was required to resolve
G-Ce6. Upregulation of glucose transporters (GLUTs) has been reported in numerous cancer types [33]
as they enable the sustenance of the energy demand required by tumor cells for various biochemical
programs. GLUTs may, therefore, serve as promising anticancer targets. It has been reported that three
glucose transporters (GLUT1, GLUT3, and GLUT4) might play crucial roles in the cellular uptake of
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glucose-conjugated chlorin (5,10,15,20-tetrakis[4-[b-D-glucopyranosylthio-2,3,5,6-tetrafluorophenyl]
2,3,[methano[N-methyl] iminomethano] chlorin) into GIST-T1 cells [24]. In addition, PDT with G-Ce6
has been reported to show very strong antitumor effects in murine colorectal cancer-bearing mice [27].

In the in vitro study, G-Ce6 was observed to primarily accumulate in the lysosomes.
The accumulation of photosensitizers in cell organelles is dependent on the charge of the sensitizer.
Cationic compounds accumulate in the mitochondria, whereas anionic compounds accumulate in the
lysosomes [4]. As G-Ce6 is uncharged, the accumulation of G-Ce6 in the cell might not be related to
the charge of the photosensitizer.

The cells were incubated with various concentrations of G-Ce6 for 1 h. After washing with
fresh media, the cells were irradiated with 650-nm laser light (10 mW/cm2; 0, 1, 5, and 10 J/cm2).
No cytotoxicity was observed at 1 J/cm2 (data not shown). To evaluate the IC50 values at a light dose
of 1 J/cm2, the cells were incubated with various concentrations of G-Ce6 for 24 h. G-Ce6-mediated
PDT-induced cell death in SNP cells was dependent on the photosensitizer dose and the light dose.
Dark cytotoxicity of G-Ce6 was not observed. We also evaluated the cytotoxicity of PDT with G-Ce6
compared to NPe6, a hydrophilic chlorin agent derived from chlorophyll. The IC50 values of NPe6
against SNP cells were 75.2, 30.4, and 30.6 µg/mL at light doses of 1, 5, and 15 J/cm2, respectively.
The IC50 values of G-Ce6 against SNP cells were 33.4, 10.4, and 1.7 µg/mL at light doses of 1, 5,
and 15 J/cm2, respectively. G-Ce6-mediated PDT at 15 J/cm2 induced a 30-fold greater cytotoxicity than
NPe6. It has been reported that the IC50 value of G-Ce6 against murine colon cancer cells was 1.35 nM
at a light dose of 16 J/cm2 (1.2 µg/mL) [27]. Thus, the in vitro antitumor effects of PDT with G-Ce6 was
superior to that with NPe6. G-Ce6-mediated PDT also increased the percentage of Annexin V- and
ROS-positive SNP cells in a light dose-dependent manner. However, the percentage of ROS-positive
cells at 15 J/cm2 was lower than that at 5 J/cm2. Cells treated at 15 J/cm2 were severely destroyed;
therefore, we were unable to accurately measure the number of ROS-positive cells. Cells treated with
10 µg/mL G-Ce6 and a light dose of 15 J/cm2 underwent either late apoptosis or early-stage necrosis
(Figure 6). Z-VAD-FMK is a specific general inhibitor of caspase; nevertheless, this inhibitor did not
influence the number of Annexin V-positive cells and the cytotoxicity induced by G-Ce6-mediated PDT.
The mechanism underlying cell death induced by G-Ce6-mediated PDT might, therefore, be necrosis
induced by ROS production.

The biological target of PDT is dependent on the interval between the injection of drug (photosensitizer)
and the light irradiation. PDT with a short drug–light interval targets tumor vasculature (vascular-targeting
PDT), whereas PDT with a long drug–light interval targets cellular compartments (cellular-targeting
PDT) [34]. We used vascular-targeting PDT (5-min-interval PDT) when G-Ce6 was primarily localized to
the tumor vasculature (Figure 11a) or used cellular-targeting PDT (3-h-interval PDT) when G-Ce6 was
primarily localized to the tumor cells (Figure 11b) in an in vivo study. Both PDT treatments inhibited tumor
growth, with the 5-min-interval PDT being more effective than the 3-h-interval PDT. To confirm the effects
of G-Ce6-mediated PDT, we performed histological examination of the tumor tissues. At 24 h following
the 3-h-interval PDT, cells in the superficial tumor tissue appeared necrotic; however, deep-seated tumor
cells appeared intact. The treatments were initiated when the average tumor volume reached about
100 mm3 (height: about 4 mm) in the tumor model. Penetration of light is 3–8 mm for a wavelength of
630–800 nm [35]. Hence, light could sufficiently penetrate the entire tumor in this study. Although the
concentration of G-Ce6 at the surface and bottom of tumor was not quantified, G-Ce6 was considered
to be heterogeneously distributed within tumors. Therefore, the efficacy of the 3-h-interval PDT varied
based on the different parts of the tumor.

In contrast, widespread tumor cells appeared necrotic at 24 h after the 5-min-interval PDT.
Vascular-targeting PDT has been reported to induce blood flow impairment and blood vessel destruction,
resulting in tissue hypoxia, nutrient deprivation, and tumor destruction [34,36,37]. It was also reported
that vascular-targeting PDT using benzoporphyrin derivative monoacid ring A could induce long-term
tumor regression [37,38]. Therefore, the 5-min-interval PDT using G-Ce6 more effectively induced
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tumor growth delay than the 3-h-interval PDT with G-Ce6. Further studies are required to assess the
effects of PDT with G-Ce6 against canine endothelial cells.

We analyzed the pharmacokinetics of G-Ce6 using healthy dogs as animal models for translational
research. Based on the results of the pharmacokinetics and safety examination, 2 mg/kg G-Ce6
was identified as the optimal dose, which did not cause any adverse effects. After intravenous
administration of G-Ce6 at a dose of 2 mg/kg to healthy beagle dogs, drug distribution occurred in the
first hour, followed by an elimination phase with a mean T1/2 of 3.02 ± 0.58 h; the AUC of G-Ce6 at a
dose of 2 mg/kg was 12.03 ± 3.18 µg/mL·h. In contrast, the T1/2 and AUC of porfimer sodium were
44.22 ± 8.10 h and 1670.2 ± 71.6 µg/mL·h, respectively [39]. Intravenously administered G-Ce6 was
rapidly cleared from the plasma unlike porfimer sodium; therefore, laser light had to be irradiated
within a short time after photosensitizer administration to induce vascular-targeting PDT effects.
Moreover, it was considered that the light shielding duration of G-Ce6 could be a few days.

Nishie et al. reported the therapeutic effect of PDT with G-Ce6 using a murine model [27].
However, to our knowledge, the present study is the first using G-Ce6 for CMC and pharmacokinetic
studies of G-Ce6 using healthy dogs. PDT using G-Ce6 was effective for CMCs and G-Ce6 was rapidly
cleared from the plasma. These results suggested that CMCs are useful for preclinical research in
comparative oncology and would be an optimal design for human clinical trials.

4. Materials and Methods

4.1. Cell Culture

The SNP CMC cells were established by the author [40]. SNP cells were cultured in 250 mL tissue
culture flask (Corning Incorporated, Corning, NY, USA) containing RPMI 1640 medium (Invitrogen;
Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (Nichirei Biosciences, Tokyo, Japan) and PSN (5 mg/mL penicillin, 5 mg/mL streptomycin,
and 10 mg/mL neomycin) solution (Invitrogen), then incubated in 5% CO2 at 37 ◦C. The cells
were washed with phosphate-buffered saline for subculturing, then harvested from near-confluent
cultures via a brief exposure to a solution containing 0.25% trypsin and 1 mmol/L tetrasodium
ethylenediaminetetraacetic acid with phenol red (Invitrogen). Trypsinization was terminated using
RPMI 1640 medium containing 10% fetal bovine serum. Trypsinized cells were transferred to a new
tissue culture flask.

4.2. Photosensitizer

Methyl (7S,8S)-18-ethyl-5-(2-methoxy-2-oxoethyl)-7-(3-methoxy-3-oxopropyl)-2,8,12,17-tetramethyl
-13-(1-(3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) thio)
propoxy) ethyl)-7H,8H-porphyrin-3-carboxylate (G-Ce6, MW: 893.06) was synthesized and provided
by the laboratory at Osaka Prefecture University (Osaka, Japan). For the in vitro and in vivo studies,
G-Ce6 was dissolved in 20% Tween 80 (Polyoxyethylene(20) Sorbitan Monooleate, Wako Pure Chemical
Co., Osaka, Japan) in phosphate buffered saline (Figure 1b,c). For intravenous administration to
healthy dogs, G-Ce6 was dissolved in 2.5% Kolliphor (Sigma-Aldrich, St. Louis, MO, USA) and 97.5%
saline. Figure 1d shows a UV-vis spectrum for G-Ce6 in DMSO (3 × 10−6 M). Figure 1e shows a HPLC
spectum for G-Ce6. NPe6 was obtained from Meiji Seika Kaisha (Tokyo, Japan).

4.3. Subcellular Localization of G-Ce6

We cultured 1 × 105 cells in a 35-mm Petri dish (Thermo Fisher Scientific, Waltham, MA, USA).
Cells were then incubated with G-Ce6 at a final concentration of 10 µg/mL in complete cell culture
medium for 6 h, followed by co-incubation with 50 nM MitoTracker Green FM (Invitrogen) and 50 nM
LysoTracker Yellow HCK-123 (Invitrogen) for an additional 30 min at 23 ◦C in the culture medium
before fluorescence microscopy. The fluorescence of G-Ce6 was detected with a filter (excitation, 405 nm;
emission, 640 nm) using an all-in-one fluorescence microscope (BZ-X800, Keyence Co, Osaka, Japan).
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A BZ-X filter GFP (excitation, 470 nm; emission, 525 nm) was used to observe the mitochondria and
lysosome; green and red images were combined to form an overlay image.

4.4. Evaluation of the Cytotoxic Effects of G-Ce6 and Light in SNP Cells

We seeded 1 × 104 SNP cells into each well of 96-well plates (Corning Inc., New York, NY, USA)
followed by overnight incubation. Cells were then incubated with various concentrations of G-Ce6 for
24 h at 37 ◦C. After washing with fresh media, the cells were irradiated with 650-nm light emitted by a
semiconductor laser (Osada Electric Co., Ltd., Tokyo, Japan), using an optical fiber with a micro-lens
delivery attachment (Pioneer Optics, Inc., Windsor Lock, CT, USA). PDT was performed at 10 mW/cm2

in cells exposed to six concentrations of NPe6 and G-Ce6 (0, 0.064, 0.32, 1.6, 8.0, or 40.0 µg/mL) using
four light doses (0, 1, 5, or 15 J/cm2). The cells were then incubated for 24 h in the dark prior to
examining cell viability using the Cell Counting Kit-8 (Dojindo, Kumamoto, Japan), according to the
manufacturer’s instructions.

4.5. Analysis of Cell Death

We seeded 5 × 104 SNP cells in 35-mm Petri dishes containing 2 mL of cultivation medium.
After 24 h of incubation, the dishes were divided into the following four groups: 1) control group
(no treatment); 2) 0 J/cm2 PDT group (treated with 8 µg/mL G-Ce6 and irradiated with light dose of
0 J/cm2); 3) 1 J/cm2 PDT group (treated with 8 µg/mL G-Ce6 and irradiated with light dose of 1 J/cm2);
4) 5 J/cm2 PDT group (treated with 8 µg/mL G-Ce6 and irradiated with light dose of 5 J/cm2); and 5)
15 J/cm2 PDT group (treated with 8 µg/mL G-Ce6 and irradiated with light dose of 15 J/cm2).

The cells were incubated with 8 µg/mL G-Ce6 for 24 h. After washing with fresh media, the cells
were irradiated with 650-nm laser light (10 mW/cm2; 1, 5, and 15 J/cm2) emitted by a semiconductor
laser using an optical fiber with a microlens delivery attachment. After 4 h of PDT, the cells were
stained using the Promokine Apoptotic/Necrotic/Healthy cell detection kit (PromoKine, Heidelberg,
Germany), according to the manufacturer’s instructions. The cells were then stained with Hoechst
33342 at 24 h after laser irradiation. Nuclear morphology was examined using an Olympus BX51
(Olympus Co., Tokyo, Japan). To assess apoptosis and necrosis, the cells were stained with Annexin
V-fluorescein isothiocyanate (FITC) and ethidium homodimer III (EthD-III) at 24 h after laser irradiation.
Nuclear morphology was examined using an Olympus Fluoview FV1000 (Olympus Co., Tokyo, Japan).
The cells were analyzed using fluorescence microscopy using FITC and Texas Red filter setting.

4.6. Kinetics Experiment to Assess Apoptosis

SNP cells were seeded at a density of (1–2) × 104 cells/well in 96-well plates and incubated for 24 h.
The cells were then incubated with various concentrations of G-Ce6 (0, 0.064, 0.32, 1.6, or 8.0 µg/mL)
for 24 h at 37 ◦C. After washing with fresh media, the cells were irradiated with 650-nm laser light
(10 mW/cm2, 5 J/cm2) emitted by a semiconductor laser, using an optical fiber with a microlens delivery
attachment. The cells were then stained with IncuCyte® Annexin V (Essen BioScience Inc., Ann Arbor,
MI, USA) immediately following PDT, and incubated in a 5% CO2 atmosphere at 37 ◦C for 24 h.
Images were automatically captured every 1 h for 24 h in phase-contrast and fluorescence modes using
the IncuCyte® S3 system; phase contrast and green-phase images were obtained from the system.
The total green object integrated intensity (green calibrated unit (GCU) × µm2/image) in an image was
determined by object counting with IncuCyte® S3 Software according to the manufacturer’s protocol.
In the present study, object counting is defined as the total sum of the intensity of Annexin V Green
fluorescence in the image.

4.7. Analysis of Apoptosis and Reactive Oxygen Species

SNP cells were seeded at a density of 5 × 104 cells/well in 35-mm petri dishes containing 2 mL
culture medium. Following 24 h of incubation, the cells were divided into the following groups: control
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(no treatment); laser (irradiated with a light dose of 15 J/cm2); G-Ce6 (treated with 8 µg/mL G-Ce6);
and PDT (treated with 8 µg/mL G-Ce6, and then irradiated with a light dose of 1, 5, or 15 J/cm2).

The cells were incubated with 8 µg/mL G-Ce6 for 24 h. After washing with fresh media, the cells
were irradiated with 650-nm laser light (10 mW/cm2; 1, 5, and 15 J/cm2) emitted by a semiconductor
laser, using an optical fiber with a microlens delivery attachment. Apoptosis was assessed 4 h after
laser irradiation using the Muse Annexin V and Dead Cell Assay kit (EMD Millipore Co., Billerica, MA,
USA), according to the manufacturer’s protocols. Annexin V was used to detect phosphatidylserine on
the external membrane of apoptotic cells.

Reactive oxygen species (ROS) generation was assessed 4 h after laser irradiation using the Muse
Oxidative Stress kit (EMD Millipore Co.), according to the manufacturer’s protocols; this kit determines
the percentage of cells that are negative (healthy cells) and positive for ROS (cells containing ROS).

Single-cell suspensions were then loaded onto the Muse Cell Analyzer (EMD Millipore Co.).

4.8. Effect of a Pan-Caspase Inhibitor on G-Ce6-PDT-Induced Cell Death

SNP cells were incubated with 8 µg/mL G-Ce6 for 24 h in the presence (10 µM) or absence
of Z-VAD-FMK (Medical & Biological Laboratories Co. Ltd., Aichi, Japan), which is a pan-caspase
inhibitor. After washing with fresh media, the cells were irradiated with 650-nm laser light (10 mW/cm2,
5 J/cm2) emitted by a semiconductor laser, using an optical fiber with a microlens delivery attachment.
Apoptosis was assessed at 4 h after laser irradiation using the Muse Annexin V and Dead Cell Assay kit.

4.9. Tumor Models

Six-week-old female NOD/ShiJic-scidJcl mice (CLEA Japan, Tokyo, Japan) were maintained in
isolators under specific pathogen-free conditions. All SCID mice were housed and handled under
clean conditions using a Jic rack (Jic Co., Kanagawa, Japan), sterilized water, cages, beddings, and food
(CL-2; CLEA Japan, Tokyo, Japan). Food and water were given ad libitum. SNP cells were inoculated
subcutaneously in the shaved lower dorsum of mice at a density of 1 × 106 cells in 0.1 mL phosphate
buffered salts (Nacalai Tesque Inc., Kyoto, Japan) per mouse using a 26-gauge syringe. The treatments
were initiated when the average tumor volume reached about 100 mm3 in tumor model. The use of
animals and the procedures employed in this study were approved by the Animal Research Committee
of Tottori University (project number: 15-T-48).

4.10. Intratumoral Localization

To determine the intratumoral localization of G-Ce6, tumors were excised either 5 min or 3 h after
G-Ce6 (10 mg/kg, i.v.) administration. Samples were immediately mounted in Tissue-Tek® O.C.T.
compound (Sakura® Finetek., Tokyo, Japan) and snap-frozen in dry ice with acetone. Cryostat cross
sections (10-µm slices) were taken from the center of each tumor. Each section was examined using the
all-in-one fluorescence microscope with a filter (excitation, 405 nm; emission, 640 nm).

4.11. Photodynamic Therapy of the Tumor

We examined the following two experimental groups: (i) a 3-h-interval PDT group (G-Ce6
administered 3 h before laser irradiation) and (ii) a 5-min-interval PDT group (G-Ce6 administered
5 min before laser irradiation). Tumor-bearing mice were intravenously administered approximately
0.1 mL of G-Ce6 stock solution to achieve a dose of 10 mg/kg body weight; they were irradiated with
677-nm laser light emitted by a diode laser (Osada Electric Co., Ltd., Tokyo, Japan). Light was delivered
to the mice through a quartz fiber fitted with a microlens and expanded onto the tumor at a 2–4 mm
skin margin. The tumors were exposed at a fluence rate of 250 mW/cm2, at a light dose of 100 J/cm2.

The resulting treatment effect was assayed by changes in tumor volume. The tumor size was
regularly measured after PDT using a caliper. Tumor volume was calculated using the following
formula: tumor volume (V) = (a × b × c) × π/6, where a, b, and c are three orthogonal diameters of the



Cancers 2019, 11, 636 16 of 19

tumor. The experiment was terminated on day 25. All mice were sacrificed via cervical dislocation,
and the tumors were harvested.

4.12. Histological Examination

To examine PDT-induced histological changes in the tumor tissue and surrounding normal tissue,
animals were sacrificed via cervical dislocation, and the tumors were harvested at 24 h after PDT.
The tumor tissues were fixed in 10% buffered formalin and embedded in paraffin. Tumor sections
were cut at a thickness of 4 µm, stained with hematoxylin & eosin (H&E), and examined under a light
microscope (Olympus BX51).

4.13. Analysis of Pharmacokinetics

The animal protocol using healthy beagle dogs was approved by the Animal Research Committee
of the Tottori University (project number: 17-T-3). For the pharmacokinetic crossover study, 6, 3,
and 1 healthy beagle dogs were intravenously administered G-Ce6 at a dose of 2, 5, and 20 mg/kg,
respectively. The ages of the healthy dogs (3 males and 3 females) ranged from 6–12 years old (mean and
median, 8.6 and 7.5 years, respectively); the dogs weighed 8.7–11.2 kg (mean and median, 10.2 and
10.5 kg, respectively).

The volume of G-Ce6 required to achieve the desired doses was diluted with 0.5% saline to obtain
a total injection volume of 10 mL. The full injection volume was intravenously administered over
10 min at a rate of 60 mL/h using an appropriate syringe pump.

Blood samples were collected at 0, 10, and 30 min, and 1, 3, 6, and 24 h after the end of G-Ce6
injection. The samples were mixed with heparin in plastic tubes and centrifuged at 600 × g for 5 min at
4 ◦C; 0.2 mL of plasma from each centrifuged sample was transferred to Eppendorf tubes. The collected
plasma samples were kept in the dark to avoid light exposure until assay initiation. For fluorescence
measurement, plasma was read on a Fluorescence Spectrometer SH-9000Lab (excitation, 405 nm and
emission, 665 nm; Hitachi High-Technologies Co., Tokyo, Japan). The concentration of G-Ce6 was
determined by comparison with appropriate standards. The concentrations of G-Ce6 in the plasma
were fitted to a two-compartment model and analyzed with a pharmacokinetic analysis program
(http://www.pharm.kyoto-u.ac.jp/byoyaku/Kinetics/download.html). The pharmacokinetic parameters
were calculated as follows: half-life (T1/2) = ln 2/β, where β is the slope of the elimination phase;
volume of distribution at steady state (Vdss) = dose (A/α2 + B/β2)/((A/α) + (B/β))2, where A and B are
the intercepts of the distribution and elimination phases, respectively; α is the slope of the distribution
phase; and clearance (CL) = dose/AUC, where AUC is the area under the curve, which was calculated
using the trapezoidal method.

4.14. General Physical Examination and Blood Analysis

A general physical examination was performed on all dogs before and after PDT. Serum biochemistry
analysis of glucose (Glu), AST, ALT, alkaline phosphatase (ALP), γ-glutamyltranspeptidase (GGT),
blood urea nitrogen, and creatinine (Cre) was also performed for all dogs immediately before and 1 day
after G-Ce6 administration.

4.15. Statistical Analysis

For the in vitro study, data were analyzed using Tukey’s multiple comparison test and Dunn’s
multiple comparison test following two-way analysis of variance. For the in vivo study, data were
analyzed using Bonferroni’s multiple comparison test following two-way analysis of variance. Statistical
analyses were performed using GraphPad Prism version 6 (GraphPad Software Inc., La Jolla, CA,
USA). A p-value < 0.05 indicated statistical significance. The results are presented as the mean ± S.D.

http://www.pharm.kyoto-u.ac.jp/byoyaku/Kinetics/download.html
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5. Conclusions

In summary, G-Ce6-mediated PDT-induced cell death in SNP cells was dependent on the
photosensitizer dose and light dose. The 5-min-interval PDT using G-Ce6 may be beneficial in the
treatment of dogs with mammary carcinoma and may shorten treatment time. However, there is a
limitation associated with the in vitro cytotoxicity assay. In the present study, the incubation time of
G-Ce6 in the in vitro cytotoxicity assay was 24 h. Considering the results of the in vivo study, the
in vitro cytotoxicity assay needed to assess the photocytotoxicity of the SNP cells that were incubated
with G-Ce6 for a short time. In the future, we will perform PDT with G-Ce6 in dogs with CMCs.
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