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Abstract: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer, and is the
third leading cause of cancer-related deaths each year. It involves a multi-step progression and
is strongly associated with chronic inflammation induced by the intake of environmental toxins
and/or viral infections (i.e., hepatitis B and C viruses). Although several genetic dysregulations
are considered to be involved in disease progression, the detailed regulatory mechanisms are not
well defined. Homeobox genes that encode transcription factors with homeodomains control cell
growth, differentiation, and morphogenesis in embryonic development. Recently, more aberrant
expressions of Homeobox genes were found in a wide variety of human cancer, including HCC.
In this review, we summarize the currently available evidence related to the role of Homeobox genes
in the development of HCC. The objective is to determine the roles of this conserved transcription
factor family and its potential use as a therapeutic target in future investigations.
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1. Epidemiology

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is ranked
as the second leading cause of cancer-related mortality worldwide [1]. The global annual death
as a result of HCC was reported to be 700,000 patients [2]. Intriguingly, its incidence worldwide
differs from heterogeneous prevalence of risk factors. The highest incidence of HCC has been
reported in East/Southeast Asia and Africa and the lowest in South/Central Asia and Europe [3].
Commonly mentioned risk factors for HCC include chronic viral hepatitis (i.e., hepatitis B virus (HBV)
and hepatitis C virus (HCV)), chronic alcohol use, environment pollutants, obesity, and diabetes
mellitus. Chronic hepatitis B and exposure to aflatoxin are major risk factors for the occurrence of
HCC in sub-Saharan Africa and East Asia, whereas chronic hepatitis C is the major risk factor in the
USA, Europe, and Japan [4]. In recent years, nonalcoholic fatty liver disease (NAFLD) has gradually
emerged as a leading cause of HCC in Western and Asian populations [5].

2. Etiologies

Various possible mechanisms, which link these risk factors to hepatocarcinogenesis, have been
proposed. HBV—an enveloped DNA virus—belongs to the Hepadnaviridae family and includes eight
genotypes (i.e., A to H), which have their respective geographical distribution [6]. Studies have shown that
the HBV X protein (HBx) is a 154-amino acid polypeptide that plays an essential role in the development of
HCC. HBx may directly promote hepatocytes transforming into tumor-initiating cells through the activation
of Wnt/β-catenin signaling [7]. HCV is a single-stranded positive RNA virus belonging to the Hepacivirus
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genus in the family Flavivaridae, including seven major genotypes [8]. HCV-induced progressive liver
cirrhosis is a well-known risk factor for the development of HCC. Of note, HCC can occur more than
10 years after eradication of HCV, with an annual rate of 1% [9]. Liver cirrhosis is an established risk
factor for HCC; it represents the final stage of liver fibrosis and usually develops in response to chronic
liver injuries [10]. Chronic alcohol consumption and consequent liver cirrhosis play a causative role in
the development of HCC. The consumption of contaminated animal and plant products may expose
individuals to aflatoxins, another common risk factor for the development of HCC. Aflatoxin B1 (AFB1) is
the most potent liver carcinogen among the four aflatoxins (i.e., B1, B2, G1, and G2). p53 gene mutations are
associated with high exposure to AFB1. These mutations, such as codon 249 transversion, appeared in 50%
of HCC cases [11]. NAFLD encompasses a spectrum of pathological changes characterized by different
degrees of fat accumulation in the hepatocytes. This condition is attributable to overnutrition and is strongly
associated with metabolic syndrome. Nonalcoholic steatohepatitis (NASH) is a severe subtype of NAFLD,
with the histologic features of lobular inflammation and hepatocyte ballooning. Patients with NASH are
predisposed to liver fibrosis, cirrhosis, and HCC [12]. Several mechanisms, including increased levels of
tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and leptin, have been correlated with carcinogenesis
from NASH.

3. Treatments

In the past, HCC was usually diagnosed at an advanced stage, following the development of
symptoms and impairment of liver function. At that point, treatment was often futile with poor median
survival rates (i.e., <3 months) [13]. Currently, a substantial proportion of HCC patients continues
to have a poor liver reserve and/or compromised portal vein flow. Thus, these untreated cases of
HCC are associated with poor prognosis. With advancements in early HCC detection technology and
surveillance programs, the curative treatment has improved the five-year survival rates, ranging from
50% to 75% [14]. Despite the availability of several therapeutic options for HCC (i.e., hepatic resection,
liver transplantation, locoregional therapies, and systemic therapies), the treatment strategy must be
individualized for each patient. The Barcelona Clinic Liver Cancer staging system is widely used
worldwide to establish the prognosis and most appropriate treatment strategy for patients at different
stages [15]. Although the so-called curative treatments (i.e., surgical resection, liver transplantation,
and radiofrequency ablation) have greatly improved the outcomes of HCC, disease recurrence and
intrahepatic metastasis continue to pose challenges in the treatment of these patients. The Barcelona
Clinic Liver Cancer algorithm suggests systemic treatment for advanced HCC. Sorafenib—an oral
multikinase inhibitor of cell proliferation through a strong inhibition of the serine/threonine kinase
RAF—is the first approved systemic medication for the treatment of advanced HCC [16,17]. The efficacy
of sorafenib has been demonstrated in several clinical studies [18]. However, although sorafenib is
currently considered the best option for treating advanced HCC, it only increases life expectancy
by a few months. In the recent years, certain limitations of radiotherapy for HCC treatment, such
as inability to deliver a tumoricidal dose, have been overcome. In patients who are not candidates
for orthotopic liver transplantation or resection, the tumor can be precisely targeted to deliver the
appropriate dose through modern liver-directed radiotherapy, including three-dimensional conformal
radiotherapy, charged particle radiotherapy, and stereotactic body radiotherapy [19]. HCC develops
several immunosuppressive mechanisms to evade the immunological surveillance system and progress
further. The immune checkpoint regulation and its associated molecules have led to advancements
in cancer treatment. Among the different types of molecules involved in the immune checkpoints,
programmed death-ligand 1 (PD-L1), found on the surface of cancer cells and stromal cells; programmed
cell death 1 (PD-1); and cytotoxic T lymphocyte-associated protein 4, found on the surface of T cells
have been shown to participate in the crucial steps for the suppression of T-cell function by cancer
cells [20,21]. Active efforts toward immunotherapy for HCC include the development of monoclonal
antibodies against molecules of the immune checkpoint [22].
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4. Homeobox Genes

Homeobox genes, which are master regulatory genes controlling the development of each segment,
were firstly discovered in the fruit fly Drosophila melanogaster [23]. In flies, three Homeobox genes
(Ubx, Abd-A, and Abd-B) belong to the bithorax complex and the other five Homeobox genes (Lab,
Pb, Dfd, Scr, and Antp) belong to the antennapedia complex. Homeobox genes specify the regional
identity from the anterior to the posterior of the body segments of the fly [24]. The concept that a
cluster of regulatory genes may control the development of segments is conserved in a wide range of
organisms (from Caenorhabditis elegans to humans) [25]. In humans, the Homeobox genes are classified
into four clusters (i.e., A to D) and located at 7p15, 17q21.2, 12q13, and 2q31. On the basis of sequence
similarity and relative position of the cluster, each cluster is identified with 13 paralog groups with
9–11 protein-coding genes [26]. The Homeobox gene has a consensus element with 180 bps, and its
sequence encodes approximately 60 amino acids conserved homeodomain, which is a DNA-binding
globular domain. This domain contains a stable three-helix bundle preceded by a flexible N-terminal
arm [27]. On the basis of the evolutionary tree, Homeobox genes can be classified into 11 classes
(i.e., ANTP, PRD, LIM, POU, HF, SINE, TALE, CUT, PROS, ZF, and CERS), containing approximately
250 Homeobox genes in humans [26]. The increasing numbers of Homeobox genes are as a result
of two extra rounds of genome duplication, and subsequent loss of paralogs has been discovered
in humans [23]. The Homeobox genes are involved in various processes ranging from the earliest
stages of development, embryonic stem cells [28], to patterning (particularly the Homeobox genes).
Notably, mutations in the Homeobox genes cause developmental defects [29]. An increasing number of
studies have demonstrated the aberrant expression of Homeobox genes in tumorigenesis, suggesting
that, besides developmental regulation, these genes play a critical role in the development of cancer [30].
In this review, we will focus on the role of the Homeobox genes in the generation of HCC, including
tumor-initiating stem-like cells (TICs), epithelial to mesenchymal transition (EMT), immunotolerance,
and viral infection (Figure 1), and list the promoting or repressing function of Homeobox genes in
HCC (Tables 1 and 2).
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Figure 1. Homeobox genes participate in the generation of hepatocellular carcinoma (HCC).
The Homeobox genes positively and negatively regulate in tumorigenesis of HCC, including
tumor-initiating stem-like cells, epithelial to mesenchymal transition, immunotolerance, and viral
infection (hepatitis B virus (HBV) and hepatitis C virus (HCV)). The altered transcriptional regulation
of Homeobox genes that we assigned in the figure dramatically rearranges the downstream genes’
expression, which participates in promotion of HCC tumorigenesis.
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Table 1. Homeobox genes suppress hepatocellular carcinoma (HCC) progression.

Homeobox Gene Experiment Model Function in HCC Ref.

aristaless-like homeobox
4 (ALX4) cell lines: Huh7, HepG2, and HCCLM3 Overexpression of ALX4 inhibits the

proliferation, invasion, and EMT. [31]

BARX homeobox 1
(BARX1)

cell lines: HepG2, Huh7, Hep3B,
SMMC7721, MHCC97L, MHCC97H,

HCCLM3, and HCCLM6
mouse model
HCC tissues

1. Low expression of BARX1 correlates with
poor prognosis.

[32]2. BARX1 suppresses invasion and metastasis
by inhibiting MGAT5 and MMP9 transcription.

BARX homeobox 2
(BARX2) HCC tissues Low expression of BARX2 is correlated with

tumor metastasis. [33]

caudal-type homeobox 1
(CDX1) HCC tissues Low expression of CDX1 is associated with

poor prognosis. [34]

growth arrest-specific
homeobox (Gax)

cell lines: HepG2, Huh7, and HCCLM3
HCC tissues

Gax expression inhibits NF-kappa B signal,
and its expression negatively regulated by
miR-301a.

[35]

hematopoietically
expressed homeobox

protein (Hhex)

cell line: Hepa1-6
mouse model
HCC tissues

1. Overexpression of Hhex resulted in decreases
expression of c-Jun and Bcl2, and increases
expression of P53 and Rb. [36]
2. Hhex expression attenuates tumorigenicity in
nude mice.

homeobox D10
(HOXD10)

cell lines: MHCC97H, MHCC97L,
and HepG2

HOXD10 is downregulated by miR-224
repression that causes cell migration
and invasion.

[37]

NK2 homeobox 8
(NKX2.8)

cell lines: PLC and Hep3B
HCC tissues

NKX2.8 expression is downregulated in HCC,
and low NKX2.8 expression is negatively
correlated with poor survival in patients.

[38]

NK3 homeobox 1
(NKX3.1)

cell lines: SMMC-7721, Li7, Huh7,
HCCLM3 MHCC-97L, HCCLY10, PLC5,

and SK-Hep1
mouse model
HCC tissues

NKX3.1 suppresses tumor proliferation and
invasion by up-regulating Foxo1 expression. [39]

paired related homeobox
1 (PRRX1)

cell lines: Huh7, Hep3B, HepG2,
SMMC7721, and PLC5

HCC tissues

1. Hepatic cancer-stem cell properties are
disrupted by PRRX1 overexpression.

[40,41]2. PRRX1 overexpression induces HCC
apoptosis via the p53-signaling.

EMT—epithelial to mesenchymal transition.

Table 2. Homeobox genes promote HCC progression.

Homeobox Gene Experiment Model Function in HCC Ref.

caudal-related homeobox
2 (CDX2) cell lines: MHCC97L and Hep3B CDX2 binds to CDH17 promoter and

modulates its expression. [42]

distal-less homeobox 2
(DLX2)

cell lines: Huh7, HepG2, Hep3B,
SMMC7721, MHCC97H,

and MHCC97L
HCC tissues

1. Overexpression of DLX2 in HCC tissues is an
indicator of poor prognosis.

[43]2. DLX2 increases sorafenib resistance by
promoting the ERK pathway and EMT.

distal-less homeobox 4
(DLX4)

cell line: Hep3B
HCC tissues

1. DLX4 is up-regulated in HCC tissues.
[44]2. miR-122 binds 3′UTR of DLX4 for

down-regulated its expression.

goosecoid (GSC)

cell lines: MHCC97L, MHCC97H,
HCCLM3, SMMC7721, Hep3B,

and HepG2
HCC tissues

GSC expression is associated with metastasis
and EMT in patients. [45]

homeobox HB9 (HLXB9)
cell lines: HLE, HLF, Huh7, HepG2,

and Hep3B
HCC tissues

HLXB9 upregulation is observed in poorly
differentiated HCC with a pseudoglandular
pattern.

[46]

homeobox A13
(HOXA13)

cell lines: SNU-449 and HepG2
HCC tissues

1. High HOXA13 expression is positively
correlated with tumor size, microvascular
invasion, pathological grade, tumor capsula
status, AFP level, metastasis, and
microvessel density.

[47,48]

2. Overexpression of HOXA13 increases colony
formation on soft agar and migration,
and reduces sensitivity to sorafenib.
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Table 2. Cont.

Homeobox Gene Experiment Model Function in HCC Ref.

homeobox B7 (HOXB7)

cell lines: SMMC-7721, MHCC97L,
MHCC97H, HCCLM3, PLC, HepG2,

and Huh7
mouse model
HCC tissues

1. High HOXB7 expression is associated with
larger tumor size and a higher rate of biliary
invasion.

[49–51]
2. HOXB7 promotes c-Myc and Slug expression
through AKT activation, resulting in HCC
progression.
3. HOXB7 promotes proliferation, migration,
and invasion through activation of the
MAPK/ERK axis.

homeobox B9 (HOXB9)
cell lines: BEL-7402, BEL-7404,

BEL-7405, HepG2, Hep3B, and SNU475
HCC tissues

HOXB9 regulates TGF-β1 and ZEB1 signaling
to promote EMT and cancer metastasis. [52,53]

iroquois homeobox3
(IRX3) cell lines: HepG2 and SMMC7721

IRX3 induces proliferation, migration,
and invasion, but its expression is repressed by
miR-377.

[54]

intestine-specific
homeobox (ISX)

cell lines: HepG2 and Huh7
mouse model
HCC tissues

1. ISX is a regulator in HCC progression as a
prognostic and therapeutic target in HCC.

[55–57]
2. Cyclin D1 and E2F1 are downstream target
genes of ISX in HCC.
3. ISX involves kynurenine–AHR axis and
immunosuppression effect of PD-L1 and
CTLA-4 for immune escape by HCC.

NANOG

cell lines: Huh7, MHCC97L, HepG2,
and SMMC7221

mouse model
HCC tissues

1. NANOG expression is required for TICs of
HCC.

[58–67]

2. Nanog maintains TICs through the
insulin-like growth factor pathway in HCC.
3. Nanog promotes EMT through
Stat3-dependent Snail activation.
4. HCV-NS5A induces TLR4–NANOG axis,
promoting the formation of liver TICs.

POU class 5 homeobox 1
(POU5F1 or OCT4)

cell lines
mouse model
HCC tissues

OCT4 expression is required for TICs. [67–69]

pre-B-Cell leukemia
homeobox 3 (PBX3)

cell lines: HepG2 Huh7, QGY-7701,
and BEL-7402
Chick model
HCC tissues

miR-33a-3p suppresses the cell growth,
spreading, and invasion by inhibiting PBX3
expression.

[70]

prospero-related
homeobox 1 (PROX1)

cell lines: Hep3B, Huh7, HepG2,
BEL-7402, QGY7701, QGY7703,

SMCC7721, and MHCC97H
mouse model
HCC tissues

1. PROX1 is required for hepatocyte migration.

[71–73]

2. High PROX1 expression is associated with
poor survival and tumor recurrence of HCC.
3. PROX1 promotes HCC metastasis by
induction and stabilization of HIF1a.
4. MAZ contributes to Prox1 isoform
expressions in HCC.
5. PROX1 positively regulate HCC
proliferation and sorafenib resistance by
enhancing β-catenin signaling.

short stature homeobox 2
(SHOX2)

cell lines: HepG2, Huh7, and SMMC772
HCC tissues SHOX2 gene is associated with poor prognosis [74]

sineoculis homeobox
homolog 1 (SIX1)

cell lines: HepG2
HCC tissues

The expression status of SIX1 is associated with
the five-year survival rate duration of patients
with early stage (I-II) of HCC, but not the
advanced stage (III–IV) of HCC

[75]

zinc finger E-box binding
homeobox 1/2 (ZEB1/2)

cell lines: Huh-7, HepG2, SMMC7721,
Hep3B, SNU449, MHCC97H, HCCLM3,

BEL-7402 QGY-7701, PLC5,
and SK-Hep1
mouse model
HCC tissues

ZEB1/2 is a transcription factor as a hub that
promotes tumor invasion and metastasis by
inducing EMT (detail in the text)

[76–97]

ERK—extracellular signal-regulated kinase; AFP— alpha-fetoprotein; AKT—protein kinase B; MAPK—mitogen-activated
protein kinase; CTLA-4—T-lymphocyte-associated protein 4; TICs—tumor-initiating stem-like cells; TGF-β—transforming
growth factor-β; AHR—aryl hydrocarbon receptor; PD-L1—programmed death-ligand 1; MAZ—MYC-associated zinc
finger protein; HCV—hepatitis C virus.
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5. Homeobox Genes (Oct4 and Nanog) in TICs of HCC

TICs have been known to be capable of recapitulating the primary tumor heterogeneity owing to
their self-renewal, differentiation, and tumor-initiation capacities [98,99]. One of the main properties
of TICs is their self-renewal ability, which has been identified through performing sphere formation
assays in vitro and through transplantation experiments with limiting dilution in mice [100,101].
Several cell-surface antigens have been discovered on liver TICs, including PROM1 (CD133), THY1
(CD90), epithelial cell adhesion molecule (EpCAM), and CD24 [102]. Increasing evidence indicates that
liver TICs play a critical role in hepatocarcinogenesis [66,103]. In Homeobox genes, octamer-binding
transcription factor 4 (Oct4) and Nanog reportedly control the self-renewal and pluripotency of
pluripotent stem cells [104,105]. Moreover, both of them were identified as critical non-cell-surface
markers in TICs of various types of tumors [106,107]. Therefore, it is essential to investigate the
mechanism through which the Homeobox genes are regulated in TICs. The elucidation of this
mechanism may assist treating physicians in achieving improved clinical outcomes for patients
with HCC. MiR-429 has been identified as an oncogene in HCC by promoting the self-renewal,
tumorigenicity, and chemoresistance of EpCAM-positive TICs. MiR-429 promotes the transcription
of Oct4 by reducing the expression of retinoblastoma-binding protein 4, which otherwise inhibits
the E2F1 transactivation of Oct4 transcription [68]. The HCC cells with high Nanog expression,
which have stem-cell-like characteristics, are characterized by a high capacity for tumor invasion and
metastasis and are resistant to treatment with sorafenib and cisplatin [62]. These cells are required for
Nanog to promote the expression of insulin-like growth factor (IGF) 2 and IGF 1 receptor (IGF1R) for
self-renewal [62], and the NODAL/SMAD3 signaling pathway for tumor invasion [63]. It has been
reported that EMT-associated transcription factors Snail and Slug or the androgen/androgen receptor
axis directly regulate the expression of Nanog under transforming growth factor-β (TGF-β) signaling in
TICs [58,59,64]. Interestingly, chromatin immunoprecipitation-sequencing analyses of Nanog showed
that it regulates the expression of mitochondrial metabolic genes required in CD133-positive TICs.
Moreover, it represses mitochondrial oxidative phosphorylation genes to prevent the reactive oxygen
species (ROS) induction and induce oxidation of fatty acid for self-renewal and drug resistance
of TICs [66]. Nevertheless, in murine nonalcoholic steatohepatitis model, Nanog contribute to the
reprogramming of hepatic progenitor cells in driving these cells to TICs [60].

Increasing studies have also focused on signaling pathways that can manipulate the Nanog
expression to alter the properties of TICs. Receptor for activated C kinase1 (RACK1) was first
discovered through interactions between the activated form of protein kinase C, which positively
regulates self-renewal and chemoresistance of CD13, and CD133 double-positive HCC cells by directly
binding with Nanog. Its binding abrogated the recruitment of E3 ubiquitin ligase FBXW8 and
degradation of proteasome to promote stemness and chemoresistance [108]. Myeloid cell leukemia-1
(Mcl-1) promotes HCC stemness and self-renewal by regulating the level of Nanog, Sox2, and KLF4 [109].
Transforming acidic coiled-coil protein 3 (TACC3), which is involved in cell mitosis and transcriptional
activity, is required for Wnt/β-catenin and PI3K/AKT signaling pathways to maintain stem cell
transcription factors, including Bmi1, c-Myc, and Nanog [110]. In addition, negative regulators of
Nanog expression in TICs have been identified; for example, the GATA transcription factor 5 (GATA5)
negatively regulates the expression of Oct4, Nanog, Klf4, c-myc, and EpCAM in TICs by binding
with β-catenin and inhibiting β-catenin nuclear translocation [111]. Levels of Atonal homolog 8
(ATOH8), a basic-helix-loop-helix (bHLH) transcription factor, are reduced in HCC patients, and loss
of ATOH8 increases the transcription of OCT4, NANOG, and CD133 and reduces chemo-sensitivity to
5-fluorouracil and cisplatin [112].

6. Homeobox in EMT of HCC

EMT is described as a conversion process of adherent epithelial cells into migratory mesenchymal
cells with highly invasive properties. In HCC, EMT are endowed with HCC progression by inhibiting
apoptosis and senescence, escaping immune reactions, and gaining chemoresistance [113–115], and are
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also involved in the early stages of tumor transformation into aggressive malignancies by increasing
the potential for invasiveness and metastasis. Typically, cells undergoing EMT are characterized by
decreased levels of E-cadherin, increased levels of N-cadherin and vimentin, and translocation of
β-catenin from the membrane to the nucleus. An increasing number of studies have shown that
Homeobox genes can positively or negatively regulate EMT in HCC as follows.

Zinc finger E-box binding Hox 1 (ZEB1) and ZEB2 are master transcription factors that positively
regulate invasion and metastasis by promoting EMT in cancer cells [116]. Both ZEB1 and ZEB2 comprise
two zinc finger domains at the N- and C-terminals and the Smad interaction domain, homeodomain,
and CtBP interaction domain at the central region. In breast cancer, ZEB1 and ZEB2 have been shown to
directly bind to the E-box located in the E-cadherin promoter [117], recruiting the CtBP transcriptional
co-repressors [118] and/or the SWI/SNF chromatin remodeling protein BRG1 [119]. This results in
repression of E-cadherin expression and promotion of EMT. In HCC patients, ZEB1 expression has
been associated with low expression of E-cadherin, venous invasion, and tumor/node/metastasis
(TNM)stage. Patients expressing high levels of ZEB1 and low levels of E-cadherin are associated with
poorer prognosis [78].

In recent years, several regulations have been identified upstream of ZEB1 or ZEB2. Depletion of
thrombomodulin, a natural anticoagulation factor, induces HCC cell migration by induction of
ZEB1 and reduction of E-cadherin [76]. Moreover, 14-3-3e—a protein belonging to the highly conserved
in eukaryotic cells 14-3-3 protein family—suppresses the expression of E-cadherin via regulation
of ZEB1 [77]. It has been shown that this regulation increases the risk of metastasis and decreases
the survival rates in HCC patients. Previous studies have shown that MYC-associated zinc finger
protein (MAZ) promotes the expression of c-Myc, Ras, VEGF, and podoplanin and represses that
of p53, Sp4, and endothelial nitric oxide synthase in tumor development. MAZ was also shown to
promote EMT and metastasis in HCC patients [85]. Depletion of the minus-end-directed motor protein
kinesin family member C1 [87]—also termed HSET—downregulates ZEB1 to reduce EMT in HCC.
Numerous studies have shown that mutations of the liver kinase B1 cause cancer (i.e., lung, mammary
gland, ovarian, melanoma, and HCC). In addition, it is involved in liver carcinogenesis by promoting
ZEB1 expression-associated EMT [89]. Forkhead box Q1, a forkhead transcription factor, induces EMT
in HCC by up-regulating the expression of ZEB2 [92].

Regulatory proteins can manipulate the levels of ZEB1 and ZEB2 in EMT. However, there
are numerous microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) that participate in
ZEB1-mediated EMT [120,121]. For example, miR-139-5p, which suppresses EMT in HCC by binding
to ZEB1 and ZEB2 mRNA, was downregulated in HCC tissue [94]. In addition, MiR-101 binds to the
3′-untranslated region of ZEB1 to silence and disrupt the EMT in HCC. However, this regulation can
be reversed by small nucleolar host gene 6 transcript, acting as a competing endogenous RNA [81,84].
MiR-211-5p and miR-154 targeting ZEB2 suppress HCC metastasis and tumor growth [93,97]. Gα12 gep
is an oncogene that generates G-protein-coupled receptors sensing the increasing levels of ligands in
tumor microenvironments. The activated Gα12 promotes EMT through the induction of ZEB1 and
reduction of miRNAs (i.e., miR-192, miR-215, and miR-200a), which target ZEB1 and ZEB2 [80,90].
Long non-coding RNA activated by TGF-β (lncRNA-ATB) promotes EMT under TGF-β stimulation by
binding with the miR-200 family, which directly targets ZEB1 and ZEB2 mRNA [79]. Another lncRNA
ZFAS1 also up-regulated the expression of ZEB1 by binding competitively to miR-150, consequently
inducing EMT and invasion [82]. An increasing number of studies have shown that upstream antisense
transcription controls the transcription of the corresponding genes [122]. Interestingly, a non-coding
antisense transcript, ZEB1 antisense 1, is located in physical contiguity with ZEB1. ZEB1 antisense
1 promotes HCC invasion, metastasis, and EMT by targeting ZEB1 [83]. A similar regulation mechanism
has also been found between ZEB2 and ZEB2 antisense 1 [95]. Recent studies showed that lncRNAs
competitively bind with miRNAs that maintain the expression of ZEB1 and EMT, including lncRNA
MALAT1 and miR-143-3p, lncRNA TUG1, and Mir-142-3p [86,88].
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7. Homeobox Genes and Immunotolerance in HCC

Liver sinusoids are involved in the central immunological functions of the liver [123]. With this
system, the liver has the capacity to remove different microbes, microbe-associated molecules,
and DAMPs, which continuously circulate from the gut to the liver. The diverse innate and adaptive
immune cells residing in the liver to detect and clear bloodborne infections include Kupffer, natural
killer, natural killer T, and CD4+/8+ T cells. These immune cells respond to large and diverse
cell-surface ligands expressed by infected, damaged, or transformed cells, leading to the changes in
the innate and adaptive immune reactions through the production of different potent cytokines [124].
Sinusoidal endothelial cells, stellate cells, and hepatocytes participate in the maintenance of balance
between immunotolerance and immune activation to prevent liver damage from non-pathological or
continuous inflammatory stimuli or systemic immunotolerance [125]. Deregulation of the precisely
regulated immunological network promotes the development of HCC, possibly owing to chronic
infection (e.g., infection with HBV or HCV), fat accumulation (i.e., NASH), or DAMPs generated as a
result of toxic liver damage (alcoholic liver disease) [126].

Rare reports focus on Homeobox gene and immune suppression in tumor cells. One example is that of
the intestine-specific Homeobox transcription factor (ISX), which has a consensus homeodomain (Figure 1),
and is a proto-oncogene involved in HCC development [55–57]. Recently, our lab demonstrated that ISX
is involved in a positive feedback loop, including inflammation, tryptophan catabolism, and immune
suppression. IL-6 induces the transcriptional activation of ISX to promote the production of tryptophan
catabolic enzymes tryptophan 2,3-dioxygenase and indoleamine 2,3-dioxygenase 1 in HCC. Both enzymes
increase the level of tryptophan catabolite, kynurenine, and aryl hydrocarbon receptor (AhR) and activate
the kynurenine/AHR axis. Its activation promotes a positive feedback mechanism to increase ISX associated
proliferation, tumorigenesis, and immunotolerance. Apart from the AHR-dependent immunotolerance,
overexpression of ISX induced level of genes encoding the immune modulators CD86 (B7-2) and PD-L1 and
presented a repressed CD8+ T-cell response.

8. Homeobox Genes in HBV- and HCV-Associated HCC

Clinical and epidemiological studies have linked chronic hepatic inflammation to the pathogenesis
of HCC [127]. The chronic HBV- and HCV-induced inflammation contributes to the development of
HCC [128]. Notably, this tumorigenesis was associated with the regulation of numerous Homeobox
genes [30]. The Hox-A13 protein is induced in liver stem-like cells and HBV or HCV-infected HCC,
but not in hepatocytes and bile duct epithelia [129]. The function of the prospero-related Hox
protein 1 in the progression of HCC is debatable [73,130–133]. However, it represses HBV antigen
expression and genome replication through repression of the enhancer II/core promoter, preS1 promoter,
and enhancer I/X promoter of HBV [134]. In HBV-infected HCC cells, IL-6 increases IGF1R and result
in the stemness-related properties that evaluate the Oct4/Nanog, which confers poor prognosis [69].
Furthermore, the HBx encoded by the HBV X gene has been shown to be associated with HCC
development. The HBX with C-terminally truncation causes more malignant HCC by promoting
metastasis and tumorigenicity. The reason is that HBx-∆C1 is involved in the regulation of the
properties of liver cancer stem cells by up-regulating the expression of Homeobox and NANOG through
the stat3 pathway [135]. The regulation of HCV by Homeobox promotes TICs. Overexpression of
HCV non-structural protein NS5A and induction Toll-like receptor 4 (TLR4) by alcohol-induced
endotoxemia in hepatocyte synergistically generates liver damage and tumor development, resulting in
the generation of Nanog-positive TICs from the mice model [65,136]. Of note, TLR4/Nanog-dependent
TICs are also found in HCC patients. Research has identified a TLR4/Nanog-mediated activation of
YAP1 and IGF2BP3, which are novel molecules responsible for the inhibition of the TGF-β pathway and
the development of chemoresistance [102]. Using a high-cholesterol/high-fat diet, it was shown that a
higher proportion of hepatocyte-specific NS5A transgenic mice developed liver tumors containing
TICs. This was attributed to the activation of TLR4-Nanog and pSTAT3 signaling pathways through an
exaggerated EMT via the induction of Twist1 [65].
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9. Conclusions

Dysregulated expression of Homeobox genes is wildly identified in different aspects of HCC
development, including HBV and HCV infection, TICs, EMT, and immunotolerance. Homeobox genes
are discovered in both positive and negative regulation in HCC progression; however, transcriptional
regulatory networks of Homeobox genes in HCC remain unclear. Integrating single cell RNA
sequencing in HCC to build a systemic interaction network of Homeobox genes in HCC is noteworthy.
It can provide more information for the cell type specific mechanism of the regulation of Homeobox
genes in the tumor microenvironment and for the design of more efficacious therapy of HCC patients.

In recent years, Homeobox genes have been identified at different stages of the progression
of HCC; thus, Homeobox genes are the potential therapeutic targets, but some questions remain
to be answered. One of the strategies is regulating the expression or stability of Homeobox genes,
but more effort is required to identify the cohesive signaling regulation for using a specific inhibitor
and activator or to develop the drug for specific targets. Second, the structure of the homeodomain
is not suitable for the development of a small molecular drug to block the DNA-binding ability of
Homeobox. The conservation of homeodomain increases the difficulties regarding the specificity of
drug and needs to be solved by structure identification. Third, it has been known that the expressions
of Homeobox genes in HCC patients are diverse; thus, development of a high-throughput screening
method for detecting aberrant expressions of Homeobox genes would be valuable to develop a precise
medicine tailored to individual needs. Therefore, more and more basic and clinical studies are required
to enhance the knowledge regarding Homeobox genes in HCC patients.
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Hepatocellular carcinoma (HCC) transforming growth factor-β (TGF-β)
nonalcoholic fatty liver disease (NAFLD) reactive oxygen species (ROS)
hepatitis B virus (HBV) Receptor for activated C kinase1 (RACK1)
hepatitis C virus (HCV) Myeloid cell leukemia-1 (Mcl-1)
HBV X protein (HBx) Transforming acidic coiled-coil protein 3 (TACC3)
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programmed death-ligand 1 (PD-L1) Zinc finger E-box binding Hox 1 (ZEB1)
programmed cell death 1 (PD-1) MYC-associated zinc finger protein (MAZ)
tumor-initiating stem-like cells (TICs) microRNAs (miRNAs)
mesenchymal transition (EMT) long non-coding RNAs (lncRNAs)
epithelial cell adhesion molecule (EpCAM) Long non-coding RNA activated by TGF-β (lncRNA-ATB)
octamer-binding transcription factor 4 (Oct4) intestine-specific homeobox transcription factor (ISX)
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