Supplementary Materials: LC/MS-Based Polar Metabolite Profiling Identified Unique Biomarker Signatures for Cervical Cancer and Cervical Intraepithelial Neoplasia Using Global and Targeted Metabolomics

Imran Khan, Miso Nam, Minji Kwon, Sang-soo Seo, Sunhee Jung, Ji Soo Han, Geum-Sook Hwang and Mi Kyung Kim

Figure S1. PCA score plots with quality control (QC) cluster. Plots show spectra of metabolites in (**A**) positive ($R^2X = 0.652$, and $Q^2 = 0.488$) and (**B**) negative ($R^2X = 0.699$, and $Q^2 = 0.482$) modes of UPLC-QTOF-MS. CIN1: cervical intraepithelial neoplasia 1, CIN2/3: cervical intraepithelial neoplasia 2 or 3, CX CAN: cervical cancer.

Figure S2. Construction of the altered metabolism pathways using MetPA. (**a**) Alanine, aspartate and glutamate metabolism (colored metabolites C00049: aspartate, C00152: asparagine, C00041: alanine, C00022: pyruvate, C00064: glutamine, C00025: glutamate); (**b**) Arginine and proline metabolism (colored metabolotes: C00300: creatine, C00791: creatinine, C00062: arginine, C00049: aspartate, C00064:

glutamine, C00327: citrulline, C00077: ornithine, C00025: glutamate, C00148: proline, C00022: pyruvate); (c) Taurine and hypotaurine metabolism (colored metabolites C00245: taurine, C00041: alanine, C00022: pyruvate); (d) Pyruvate metabolism (colored metabolites C00149: malate, C00186: lactate, C00022: pyruvate). Colors of the metabolites from yellow to red represent different level of significance, whereas light blue color represents that these metabolites are not in data set and are used as background for enrichment analysis.

Figure S3. Results of hierarchical cluster analysis (**a**. positive, **b**. negative mode). The red squares represent clusters.

Figure S4. Construction of altered metabolic pathways using MetPA analysis for targeted metabolites: (**a**) normal and CIN2/3, (**b**) normal and cervical cancer, (**c**) CIN1 and CIN2/3, (**d**) CIN1 and cervical cancer, (**e**) normal, CIN1 and CIN2/3, cervical cancer. ① Alanine, aspartate and glutamate metabolism, ② arginine and proline metabolism, ③ pyruvate metabolism, ④ aminoacyl-tRNA biosynthesis, ⑤ D-Glutamine and D-glutamate metabolism, N: normal, CIN1: cervical intraepithelial neoplasia 1, CIN2/3: cervical intraepithelial neoplasia 2 or 3, CX CAN: cervical cancer.

Figure S5. Alanine, aspartate and glutamate metabolism (C00049: asparate, C00025: glutamate). Colors of the metabolites from yellow to red represent different level of significance, whereas light blue color represents that these metabolites are not in data set and are used as background for enrichment analysis.

Compound	Retention	Ionization	Precursor ion	Collision	MRM ion
	time (min)	Mode	(m/z)	energy (eV)	transitions (m/z)
AMP	3.02	+	348	20	136
Aspartate	0.8	+	134	14	74
Glutamate	0.74	+	148	16	84
Hypoxanthine	1.49	+	137	20	110
Lactate	1.32	-	89	1	89
Proline	0.75	+	116	16	70
Pyroglutamate	2.16	+	130	12	84

Table S1. Retention times and multiple reaction monitoring transitions of plasma metabolites quantified by UPLC-TQ-MS.

AMP: Adenosine monophosphate, MRM: multiple reaction monitoring.

Metabolites	C1 1	p a –	AUC					
	Cluster		N vs. CX CAN	N vs. CIN2/3	CIN1 vs. CIN2/3	CIN1 vs. CX CAN	N+CIN1 vs. CIN2/3+CX CAN	
Positive mode ($n = 19$)								
Phenylalanine	1	0.00673	0.663756614	0.532275132	0.582304527	0.562757202	0.566974823	
Isoleucine	1	0.0283	0.65	0.621164021	0.514403292	0.563100137	0.592348544	
Proline	2	0.01357	0.652380952	0.602116402	0.530864198	0.542866941	0.577399685	
Creatine	2	0.01255	0.612962963	0.685185185	0.670781893	0.596021948	0.622344611	
Hypoxanthine	3	< 0.0001	0.806878307	0.594708995	0.667352538	0.836762689	0.746164437	
AMP	3	< 0.0001	0.795238095	0.711640212	0.7050754	0.7750343	0.7512785	
Glutamate	3	< 0.0001	0.774338624	0.592063492	0.579561043	0.75308642	0.696990559	
sn-glycero-3-Phosphocholine	3	< 0.0001	0.753703704	0.67777778	0.3600823	0.7098765	0.7015146	
Aspartate	3	< 0.0001	0.742857143	0.555026455	0.606310014	0.785322359	0.691483084	
Nonanoylcarnitine	3	< 0.0001	0.730952381	0.552380952	0.4876543	0.7184499	0.6661094	
Inosine	3	< 0.0001	0.721693122	0.607407407	0.3607682	0.7451989	0.6865657	
Caffeine	3	0.00139	0.693121693	0.604232804	0.549382716	0.659807956	0.650177026	
Pipecolic acid	3	0.00413	0.678571429	0.619047619	0.425925926	0.62037037	0.639752164	
Taurine	3	0.00176	0.652645503	0.615873016	0.655006859	0.686213992	0.64781668	
Alanine	3	0.04372	0.643650794	0.50952381	0.524005487	0.607681756	0.576514555	
Hippuric acid	3	0.02244	0.639417989	0.640740741	0.562414266	0.5781893	0.615460268	
Fructose 6-phosphate	3	0.00882	0.590740741	0.634920635	0.6934156	0.5325789	0.484166	
Carnitine (C5) 2	3	0.04605	0.486772487	0.562433862	0.579561	0.6210562	0.5235051	
3-Indolepropionic acid	3	0.01759	0.338359788	0.425925926	0.5260631	0.621056241	0.6184107	
Negative mode ($n = 16$)								
Pyroglutamate	1	< 0.0001	0.768656716	0.585959093	0.427983539	0.721193416	0.694090265	
Glutamate	1	< 0.0001	0.759535655	0.602542841	0.592592593	0.727709191	0.698745193	
Aspartate	1	< 0.0001	0.752072968	0.566058596	0.59122085	0.756515775	0.697632058	
Inosine	1	< 0.0001	0.750967385	0.383637369	0.289437586	0.80521262	0.738413277	
Ribose 5-phosphate	1	< 0.0001	0.717799889	0.632393588	0.679012346	0.743141289	0.706233556	
Malate	1	0.00073	0.705638474	0.490878939	0.542524005	0.657407407	0.617891115	
Taurine	1	< 0.0001	0.701216142	0.661691542	0.691358025	0.736282579	0.705322809	
Dimethylglycine	1	0.00106	0.696517413	0.565505804	0.574759945	0.679698217	0.652094718	
3-Hydroxybutyric acid	1	0.02014	0.65726921	0.410724157	0.447187929	0.621399177	0.621635296	
Gluconic acid	1	0.00342	0.640961857	0.524599226	0.49382716	0.687242798	0.60736693	
Hippuric acid	1	0.03224	0.639579878	0.637368712	0.56515775	0.574759945	0.603825137	
Histidine	1	0.02751	0.556937535	0.559977888	0.547325103	0.656378601	0.558894961	
3-Indolepropionic acid	1	0.04526	0.355721393	0.426755113	0.534979424	0.610768176	0.599979761	
Lactate	2	< 0.0001	0.769209508	0.617468214	0.598765432	0.740397805	0.709674155	
Phenylalanine	3	0.00148	0.691265893	0.53620785	0.581618656	0.586762689	0.594312892	

Table S2. AUC values of significantly altered metabolites (*p* value < 0.05) in given HCA clusters.

S6 of S6

Tryptophan	3	0.04146	0.532338308	0.592592593	0.557613169	0.595336077	0.496255819

AMP: Adenosine monophosphate, CIN1: cervical intraepithelial neoplasia 1, CIN2/3: cervical intraepithelial neoplasia 2 or 3, CX CAN: cervical cancer. ^a Kruskal-Wallis test in continuous variables and chi-square test in categorical data.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).