## **Supplementary Materials**



**Figure S1.** Correlative activation and increment of  $\beta$ -catenin and RAS protein level in GC tissue microarrays. Representative images showing the relationship between  $\beta$ -catenin and pan-RAS are presented. Low pattern = L, high pattern = H. Correlations of the activation of  $\beta$ -catenin and pan-RAS were analyzed by *chi*-squared test. The number and percentage of specimens in each category is given below each representative photomicrograph. Scale bar = 200 µm, and boxes show images at 400 × magnification.



**Figure S2.** The upregulated levels of  $\beta$ -catenin and Ras proteins as well as CSC markers in gastric tumors of  $Apc^{1638N}$  mice compared with those in adjacent normal tissue. Formaldehyde-fixed paraffin sections from gastric tissue of  $Apc^{1638N}$  mice were subjected to IHC staining with the indicated antibodies specific for  $\beta$ -catenin, pan-Ras, CD44, ALDH1A3, or Ki67. Nuclei were counterstained with Mayer's hematoxylin. Scale bar = 500 µm.



**Figure S3.** The effects of FOLFOX on the *in vivo* growth of GC patient's PDX. (**A**) Subcutaneous tumor volumes were measured by using calipers. The percentage change in tumor volume was calculated for each animal (n = 8 vehicle and n = 9 FOLFOX mice in each treatment group). Error bars represent means  $\pm$  s.e.m. *P*-values were calculated by two-tailed *t*-test unless otherwise indicated. (**B**) The weights of the PDX tumors treated with vehicle or FOLFOX (P = 0.0539).





**Figure S4.** Components of the Wnt/ $\beta$ -catenin pathway are enriched in AR-PDX tumors compared with vehicle tumors. Pathway analysis using PANTHER databases. The significantly differentially expressed genes (DEGs) in "Veh vs. AR" described in Figure 3C, D were used for pathway analysis via PANTHER 10.0 pathway annotation. The most enriched pathways with statistical significance are shown. The x-axis shows the minus log 10 scale of *p*-values, whereas the y-axis shows each Gene Ontology term.



**Figure S5.** Effects of KYA1797K on degradations of β-catenin and pan-Ras, proliferation and transformation of GC cells. NCI-N87 or MKN74 GC cells were cultured as described in the Methods section. (**A**) The cells were cultured and treated with KYA1797K for 24 h. Whole-cell lysates (WCLs) were immunoblotted with the indicated antibodies. (**B**) NCI-N87 and MKN74 cells were treated with 5  $\mu$ M or 25  $\mu$ M KYA1797K. Cell proliferation was quantified using the MTT assay (*n* = 3). (**C**–**E**) The cells treated with KYA1797K were subjected to colony formation assay for 14 days. The foci in (**D**) and (**E**) were photographed and quantified from three independent experiments (mean ± s.d; *n* = 3). \* *P* < 0.05, \*\* *P* < 0.005, \*\*\* *P* < 0.0005 versus control by Student's *t*-test. (**F**) IB analyses in NCI-N87 cells treated with vehicle, or with FOLFOX (5-FU at 10 µg/mL and oxaliplatin at 1 µg/mL), KYA1797K (25 µM) or both. IB analyses using WCLs were performed by using the indicated antibodies.



**Figure S6.** Effects of FOLFOX and KYA1797K on the formation of tumoroids from *Apc* <sup>1638N</sup> mice. Magnified images of  $\beta$ -catenin and pan-Ras in Figure 5D for clarifying the localizations of each markers. Nuclei were counter stained with DAPI.



**Figure S7.** The images of PDX tumors treated with vehicle, paclitaxel, KYA1797K, or co-treatment of paclitaxel and KYA1797K. Tumor images were captured at the time of sacrifice. Scale bar = 1 cm.

|             | β-catenin            |                        |         | pan-Ras               |                        |                 |
|-------------|----------------------|------------------------|---------|-----------------------|------------------------|-----------------|
|             | Low ( <i>n</i> = 63) | High ( <i>n</i> = 693) | p-vaiue | Low ( <i>n</i> = 125) | High ( <i>n</i> = 631) | <i>p</i> -value |
| Age (years) |                      |                        | 0.8606  |                       |                        | 0.1088          |
| 60≥         | 32 (50.8%)           | 360 (51.9%)            |         | 73 (58.4%)            | 319 (50.6%)            |                 |
| 60<         | 31 (49.2%)           | 333 (48.1%)            |         | 52 (41.6%)            | 312 (49.4%)            |                 |
| Sex         |                      |                        | 0.0882  |                       |                        | 0.0464 *        |
| Male        | 35 (55.6%)           | 459 (66.2%)            |         | 72 (57.6%)            | 422 (66.9%)            |                 |
| Female      | 28 (44.4%)           | 234 (33.8%)            |         | 53 (42.4%)            | 209 (33.1%)            |                 |
| Lauren      |                      |                        | 0.1212  |                       |                        | <0.0001 *       |
| Intestinal  | 27 (42.9%)           | 345 (49.9%)            |         | 41 (32.8%)            | 331 (52.5%)            |                 |
| Diffuse     | 36 (57.1%)           | 322 (46.5%)            |         | 82 (65.6%)            | 276 (43.8%)            |                 |
| Mix         | 0 (0%)               | 25 (3.6%)              |         | 2 (1.6%)              | 23 (3.7%)              |                 |
| pTstage     |                      |                        | 0.8268  |                       |                        | 0.0013 *        |
| pT1         | 0 (0.0%)             | 2 (0.3%)               |         | 2 (1.6%)              | 0 (0.0%)               |                 |
| pT2         | 12 (19.0%)           | 106 (15.3%)            |         | 12 (9.6%)             | 106 (16.8%)            |                 |
| pT3         | 24 (38.1%)           | 261 (37.7%)            |         | 56 (44.8%)            | 229 (36.3%)            |                 |
| pT4         | 27 (42.9%)           | 324 (46.8%)            |         | 55 (44.0%)            | 296 (46.9%)            |                 |
| pNstage     |                      |                        | 0.9749  |                       |                        | 0.2231          |
| pN0         | 17 (27.0%)           | 180 (26.0%)            |         | 43 (34.4%)            | 154 (24.4%)            |                 |
| pN1         | 13 (20.6%)           | 128 (18.5%)            |         | 20 (16.0%)            | 121 (19.2%)            |                 |
| pN2         | 12 (19.0%)           | 145 (20.9%)            |         | 25 (20.0%)            | 132 (20.9%)            |                 |
| pN3         | 12 (19.0%)           | 125 (18.0%)            |         | 20 (16.0%)            | 117 (18.5%)            |                 |
| pN4         | 9 (14.3%)            | 115 (16.6%)            |         | 17 (13.6%)            | 107 (17.0%)            |                 |
| TNM stage   |                      |                        | 0.4477  |                       |                        | 0.0257 *        |
| Stage I     | 4 (6.3%)             | 62 (8.9%)              |         | 8 (6.4%)              | 58 (9.2%)              |                 |
| Stage II    | 24 (38.1%)           | 214 (30.9%)            |         | 52 (41.6%)            | 186 (29.5%)            |                 |
| Stage III   | 35 (55.6%)           | 417 (60.2%)            |         | 65 (52.0%)            | 387 (61.3%)            |                 |

| Table S1. Patient characteristics and $\beta$ -catenin or pan-Ras expression |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

Analysis by chi-square criterion or Fisher's exact test. \* P < 0.05.