

Supplementary Materials: Annexin A2 Regulates AKT upon H₂O₂-Dependent Signaling Activation in Cancer Cells

Stéphanie Anais Castaldo, Tom Ajime, Gisela Serrão, Fábio Anastácio, Joana Teixeira Rosa, Carman Anthony Giacomantonio, Alison Howarth, Richard Hill and Patrícia Alexandra Madureira

Figure S1. ANXA2 depleted cancer cells show enhanced AKT phosphorylation/activation upon EGF treatment compared to control cells. (**a**) A549, or (**b**) MDA-MB-231 cancer cells depleted of ANXA2 (ANXA2 shRNA1) or controls (ANXA2 scramble) were serum starved for 16 h and either not treated (NT) or treated with 15 nM EGF for the times indicated. After what cells were lysed and 20 μ g of each protein extract was subjected to SDS-PAGE, transferred onto nitrocellulose membranes and analyzed by western blotting with the antibodies indicated. Results are representative of three independent experiments (*N* = 3).

Figure S2. ANXA2 depleted cells show higher proliferation rate compared to matched control cells following EGF treatment. MDA-MB-231 ANXA2 shRNA2 (KD) and scramble (scr); HT1080 ANXA2 shRNA2 (KD) and scramble (scr); or A549 ANXA2 shRNA2 (KD) and scramble (scr) cells were serum starved for 16 h, after what they were either not treated (NT) or treated with 15 nM of EGF for 24 h. Cell proliferation was determined by using the CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (Promega) according to the manufacturer's instructions. Error bars represent the standard deviation obtained from three independent experiments. Statistical analysis was evaluated

ANXA2

actir

using two-tailed Student's *t*-test. In every case a *p*-value of less than 0.05 (*), less than 0.01(**) and 0.001 (***) was considered statistically significant.

Figure S3. Analysis of ANXA2 shRNAs cancer cell lines. HT1080 (left lanes); MDA-MB-231 (middle lanes) or A549 (right lanes) ANXA2 shRNA1; ANXA2 shRNA2 or ANXA2 scramble cell lines were plated in 60 mm plates for 48 h. After what cells were lysed and 20 μ g of each protein extract was subjected to SDS-PAGE, transferred onto nitrocellulose membranes and analyzed by western blotting with the antibodies indicated. Results are representative of three independent experiments (*N* = 3).

Figure S4. Analysis of intracellular ROS levels in ANXA2 depleted versus control cells. HT1080 ANXA2 shRNA2 (KD) and scramble (scr); MDA-MB-231 ANXA2 shRNA2 (KD) and scramble (scr); or A549 ANXA2 shRNA2 (KD) and scramble (scr) cells were incubated with 50 μ M of DCF-DA for 30 min at 37 °C, 5% CO2. After what fluorescence was measured (Excitation: 488 nm, Emission: 535 nm) using a fluorometer plate reader. Error bars represent the standard deviation obtained from three independent experiments. Statistical analysis was evaluated using two-tailed Student's t-test. In every case a *p*-value of less than 0.05 (*), less than 0.01 (**) and 0.001 (***) was considered statistically significant.

Figure S5. Analysis of PRDX2 expression in ANXA2 KD cancer cells. (**a**) HT1080, (**b**) MDA-MB-231, (**c**) A549 cancer cells depleted of ANXA2 (ANXA2 shRNA1, ANXA2 shRNA2) or controls (ANXA2 scramble) were serum starved for 6 h (HT1080) or for 16 h (MDA-MB-231) and either not treated (NT) or treated with 15 nM EGF for the times indicated; (**d**) HT1080 or (**e**) MDA-MB-231 ANXA2 knockdown (KD) and control (scr) cells expressing H-RasV12 or the empty vector pBABE were grown in serum free media for 6 h or 16 h, respectively. After what cells were lysed and 20 μ g of each protein extract was subjected to SDS-PAGE, transferred onto nitrocellulose membranes and analyzed by western blotting with the antibodies indicated. Results are representative of at least three independent experiments.

Figure S6. HT1080 and MDA-MB-231 ANXA2 knockout cells show enhanced PRDX2 expression compared to control cells. (**a**) HT1080 or (**b**) MDA-MB-231 cells were transfected with p36 gRNA-pX459 V2.0 CRIPR/Cas9 plasmids, selected with puromycin and serial dilutions were performed for selection of sub-populations. After what cells were lysed and 20 µg of each protein extract was subjected to SDS-PAGE, transferred onto nitrocellulose membranes and analyzed by western blot with the antibodies indicated.

Figure S7. PRDX2 depleted cancer cells show identical levels of ANXA2 expression compared to control cells. (a) MDA-MB-23, (b) HCT 116, or (c) MCF7 cancer cells depleted of PRDX2 (PRDX2 shRNA1) or controls (PRDX2 scramble) were plated in a 60 mm plate containing DMEM complete media for 48 h. After what cells were lysed and 20 µg of each protein extract was subjected to SDS-

PAGE, transferred onto nitrocellulose membranes and analyzed by western blotting with the antibodies indicated.

Figure S8. Immunofluorescence staining of ANXA2 and PRDX2 in colon clinical samples. Tumor clinical samples were flash frozen and sectioned using a cryostat. Samples were then fixed with methanol and immuno-stained with the antibodies indicated, followed by immunofluorescence staining with secondary antibodies (ANXA2-green; PRDX2-red). (a) ANXA2 and PRDX2 staining; (b) ANXA2 and hnRNP A2/B1 (nuclear marker) staining; (c) ANXA2 and S100A10 staining.

Table S1. Analysis of ROS related genes in ANXA2 depleted versus control cancer cells. HT1080 ANXA2 KO #1; ANXA2 KO #2 or WT or MDA-MB-231 ANXA2 shRNA1; ANXA2 shRNA2 or ANXA2 scramble cells were plated in 100 mm plates for 48 h. After what RNA extraction was performed using the RNeasy mini kit (QIAGEN) according to the manufacturer's instructions. A panel of 86 ROS dependent genes was analysed using the RT² Profiler[™] PCR Array Human Oxidative Stress (Qiagen) according to the manufacturer's instructions in a LightCycler 96 instrument (Roche). Results are expressed as fold induction compared to controls (HT1080 WT and MDA-MB-231 ANXA2 scramble, respectively).

	HT1080		MDA MB 231	
GENE	ANXA2 KO #1	ANXA2 KO #2	ANXA2 shRNA1	ANXA2 shRNA2
ALB	1.6596	3.5991	2.6579	0.5932
ALOX12	0.5908	0.3836	0.8952	1.6319
AOX1	0.7427	0.6819	0.8952	1.0186
APOE	0.5908	1.7996	0.7902	0.6015
ATOX1	1.3955	1.4119	1.0212	0.9244
BNIP3	0.8832	0.8752	0.6463	0.5932
CAT	1.4751	2.0106	0.5626	0.7303
CCL5	7.4685	5.1253	0.7476	0.0876
CCS	0.785	1.7871	1.0945	1.5546
CYBB	0.5908	0.3836	0.6072	0.7252
CYGB	2.2358	2.9437	0.9661	0.26
DHCR24	1.0798	1.5558	0.4034	0.6814
DUOX1	0.5908	0.3836	0.2003	0.1463
DUOX2	0.5908	0.3836	0.7847	0.6184
DUSP1	1.6481	0.0113	0.889	1.3347
EPHX2	0.1936	0.1257	0.7847	0.6184
EPX	0.5908	0.4376	0.525	0.7303
FOXM1	0.9868	0.9984	1.0499	1.3255
FTH1	1 7664	1 5558	0 7793	0 7613
GCLC	0.7478	0.4957	0.9728	0.9636
GCLM	1 2149	0.9846	0.9462	0 7881
GPX1	1 249	1 6219	0.8952	1 4108
GPX2	0.865	1.0219	0.5286	2 2138
GPX3	0.5908	0.4346	0.603	0.6227
GPX4	1 1414	1 085	0.8587	0.8745
GPX5	0.5908	0.3836	0 7847	0.6184
GPX6	0.5908	0.3836	0.7847	0.6184
GPX7	0.5908	0.3836	0.7793	0.3968
GSR	0.6601	0.8166	0.5511	2 0091
GSS	0.9466	1 345	1.395	2 3239
GSTP1	0.8591	1.3544	1 1894	1 5439
GSTZ1	0.8472	2 7088	1 4951	2 1533
GTF2I	0.9937	1 2291	0.8528	0.9703
HMOX1	0.8241	1.3544	0.4602	1 1459
HSPA1A	0.5143	1 1078	0.8647	1 2453
KRT1	0.5908	0.3836	0.7847	0.6184
LPO	0.5908	0.3836	0.7847	0.6184
MB	0.5362	0.4468	1.3289	0.5651
MBL2	0.5908	0.3836	0.7847	0.6184
MGST3	1,0006	1 255	0.9661	0.9839
MPO	0.5908	0.3836	0.7847	0.6184
MPV17	1 2149	1 5666	0.9728	1 4206
MSRA	0.5868	1.5600	0.7476	1.7858
MT3	0.5908	0.3836	0 7847	0 7936
NCF1	3 8127	1 4924	0.457	0.8991
NCF2	0.2873	0.4316	0.4476	0.0991
NOS2	0.5908	0.3836	0 7847	0.4900
NOX4	0.871	0.0000	0 5397	0.0104
NOX5	0 5908	0.3836	3 2722	1 7012
N001	1 3763	1 3829	1 0646	0.756
11201	1.0700	1.0027	1.0010	0.700

Table S1. Cont.

NUDT1	1.0006	1.8247	1.395	2.4226
OXR1	1.3574	1.0553	0.7322	0.8745
OXSR1	0.9598	0.6587	0.8012	0.7456
PDLIM1	0.5707	0.4755	1.0283	1.3347
PNKP	1.2577	2.3257	0.8181	1.5546
PRDX1	1.1179	0.8223	1.2572	1.1069
PRDX2	1.7787	1.6107	0.9864	1.344
PRDX3	0.9665	0.5774	0.6975	0.6314
PRDX4	0.9532	0.7833	0.9204	1.04
PRDX5	0.7905	1.3544	0.8352	1.0841
PRDX6	0.8356	1.0408	1.0572	1.2982
PREX1	2.5683	1.889	0.7847	0.6184
PRNP	0.7796	1.4821	0.9796	1.0766
PTGS1	0.5908	0.3836	0.8352	2.3892
PTGS2	0.2854	0.2887	1.0355	0.7991
PXDN	0.1191	0.1014	1.4047	1.6319
RNF7	0.6929	1.3733	1.1253	1.4913
SCARA3	1.0287	1.5238	0.2366	0.1172
VIMP	1.1102	1.4316	0.7072	0.957
SEPP1	0.6202	0.3836	1.1731	1.3072
SFTPD	0.5908	0.3836	0.7847	0.6184
SIRT2	0.9868	1.6331	0.7271	1.1302
SOD1	1.0145	0.6587	1.0499	0.6314
SOD2	0.9271	0.6772	0.8647	0.7827
SOD3	0.5908	0.3836	0.4538	0.4719
SQSTM1	1.8287	2.2002	0.5323	0.8867
SRXN1	1.1899	2.4244	0.9268	1.749
STK25	1.3859	1.9287	0.9268	1.2982
TPO	0.5908	0.3836	0.7847	0.6184
TTN	0.5908	1.1955	0.7847	0.6184
TXN	1.1025	0.7833	1.0427	0.7202
TXNRD1	1.4854	1.5132	0.7793	1.3347
TXNRD2	1.2404	1.9154	0.8528	1.1146
UCP2	0.5908	0.3836	0.5397	0.5891

Cancers **2019**, 11, x

S7 of S8

Plasmid Name	5′-oligo	3'-oligo	Plasmid Backbone
pSUPER-retro-puro-	5'-GAT CCC CCC TGG TTC AGT GCA TTC AGT TCA	5'-AGC TTA AAA ACC TGG TTC AGT GCA TTC AGT CTC TTG	pSUPER-retro-puro
ANXA2 shRNA1	AGA GAC TGA ATG CAC TGA ACC AGG TTT TTA-3'	AAC TGA ATG CAC TGA ACC AGG GGG-3'	(Oligoengine)
pSUPER-retro-puro-	5'-GAT CCC CGT GCA TAT GGG TCT GTC AAT TCA	5'-AGC TTA AAA AGT GCA TAT GGG TCT GTC AAT CTC TTG	pSUPER-retro-puro
ANXA2 shRNA2	AGA GAT TGA CAG ACC CAT ATG CAC TTT TTA-3'	AAT TGA CAG ACC CAT ATG CAC GGG-3'	(Oligoengine)
pSUPER-retro-puro-	5'-GAT CCC CGT GCA TAT GGG TCT GTC CAT TAG	5'-AGC TTA AAA AGT GCA TAT GGG TCT GTC AAT CTC TCT	pSUPER-retro-puro
ANXA2 scramble	AGA GAT TGA CAG ACC CAT ATG CAC TTT TTA-3'	AAT GGA CAG ACC CAT ATG CAC GGG-3'	(Oligoengine)
pSUPER-retro-neo-	5'-GAT CCC CCC TGG TTC AGT GCA TTC AGT TCA	5'-AGC TTA AAA ACC TGG TTC AGT GCA TTC AGT CTC TTG	pSUPER-neo-puro
ANXA2 shRNA1	AGA GAC TGA ATG CAC TGA ACC AGG TTT TTA-3'	AAC TGA ATG CAC TGA ACC AGG GGG-3'	(Oligoengine)
pSUPER-retro-neo-	5'-GAT CCC CGT GCA TAT GGG TCT GTC AAT TCA	5'-AGC TTA AAA AGT GCA TAT GGG TCT GTC AAT CTC TTG	pSUPER-neo-puro
ANXA2 shRNA2	AGA GAT TGA CAG ACC CAT ATG CAC TTT TTA-3'	AAT TGA CAG ACC CAT ATG CAC GGG-3'	(Oligoengine)
pSUPER-retro-neo-	5'-GAT CCC CGT GCA TAT GGG TCT GTC CAT TAG	5'-AGC TTA AAA AGT GCA TAT GGG TCT GTC AAT CTC TCT	pSUPER-neo-puro
ANXA2 scramble	AGA GAT TGA CAG ACC CAT ATG CAC TTT TTA-3'	AAT GGA CAG ACC CAT ATG CAC GGG-3'	(Oligoengine)
pANXA2-gRNA1- px459-V2	5'-CAC CGC TAC ACC CCC AAG TGC ATA T-3'	5'-AAA CAT ATG CAC TTG GGG GTG TAG C-3'	px459-V2 (Addgene: 62988)
pANXA2-gRNA2- px459-V2	5'-CAC CGC TCA GCA TCA AAG TTA GTA T-3'	5'-AAA CAT ACT AAC TTT GAT GCT GAG C-3'	px459-V2 (Addgene: 62988)

Table S2. List of shRNA and CRISPR/Cas9 plasmids. Plasmids were constructed by cloning the following double stranded oligos into the backbone plasmids indicated.

Target Protein	Reference	Company	Procedure	
ANXA2 (D1/274.5)		Produced In house	Western blotting	
DTEN (A2R1)	sc 7074	Santa Cruz Biotechnology	Western blotting	
1 TEN (A2D1)	SC-7974	(SCBT)	western blotting	
PRDX1	sc-7381	SCBT	Western blotting	
PRDX2 (N-13)	sc-23967	SCBT	Western blotting;	
	sc-23907	5601	Immunofluorescence-IF	
P-AKT Ser 473	sc-7985-R	SCBT	Western blotting	
P-AKT Thr 308	9275	Cell Signaling Technology	Western blotting	
AKT	9272	CST	Western blotting	
P-FRK 1/2	sc-16982	SCBT	Western blotting	
ERK 1/2 (MK1)	sc-135900	SCBT	Western blotting	
H-Ras	sc-520	SCBT	Western blotting	
GAPDH	sc-25778	SCBT	Western blotting	
ß-tubulin	sc-5286	SCBT	Western blotting	
actin (C-11)	sc-1615	SCBT	Western blotting	
p-4EBPI (62.Ser 65)	sc-293124	SCBT	Western blotting	
SOSTM1 (D-3)	sc-28359	SCBT	Western blotting	
MTH1 (H-1)	sc-271082	SCBT	Western blotting	
catalase (H-9)	sc-271803	SCBT	Western blotting	
SOD-1 (G-11)	sc-17767	SCBT	Western blotting	
Trx (A-5)	sc-166393	SCBT	Western blotting	
GSR (C-10)	sc-133245	SCBT	Western blotting	
GPX-3	sc-58361	SCBT	Western blotting	
TrxRD (B-2)	sc-28321	SCBT	Western blotting	
GFP (FL)	sc-8334	SCBT	Immunoprecipitation (IP)	
Rabbit IgG	NI01-100UG	Merk	IP	
ANXA2	ab41803-100	AbCam	IF	
S100A10 (4E7E10)	sc-81153	SCBT	IF	
hnRNP A2/B1 (B-7)	sc-374053	SCBT	IF	
anti-mouse 488 Alexa Fluor	A-11001	Molecular Probes	IF	
anti-rabbit 488 Alexa Fluor	A-11008	Molecular Probes	IF	
anti-goat 488 Alexa Fluor	A-11055	Molecular Probes	IF	
anti-mouse 546 Alexa Fluor	A-11003	Molecular Probes	IF	

Table S3. Antibodies list.

Table S4. qRT-PCR primers list.

Gene	Forward Primer	Reverse Primer
PRDX2	5'-GTC CTT CGC CAG ATC ACT GT-3'	5'-ACG TTG GGC TTA ATC GTG TC-3'
EPHX2	5'-GTG TTC ATT GGC CAT GAC TG-3'	5'-CTC AGT GAC CAT CCT GCT GA-3'
SrxN1	5'-GGG CTG GAC CCA CTG TAG TA-3'	5'-CCA GGG ACT CTT GGT TTT CA-3'
NUDT1	5'-AAG AAG GAG AGA CCA TCG AGG AT-3'	5'-TGC AGG GCG TCC ACT GT-3'
CATALASE	5'-TGA CCG AGA GAG AAT TCC TGA-3'	5'-CCT TTG CCT TGG AGT ATT TGG-3'
SCARA-3	5'-TGC GGA TTC TTT ACC TCT TCC T-3'	5'-TCT TCG GAG AGA GAG TCC ACT TTT-3'
TxnRD1	5'-TTC ACC TCA GTT TTC TTC ACT CC-3'	5'-TCT GCC CTC CTG ATA AGC AA-3'
TxnRD2	5'-GGT GGA CTA CGT GGA ACC TT-3'	5'-TCT GCC ATC TTC CTC CAG TCA-3'
RPLP0	5'-AGA CAA TGT GGG CTC CAA GCA GAT-3'	5'-GCA TCA TGG TGT TCT TGC CCA TCA-3'

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).