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Abstract: The tumor microenvironment (TME) is shaped by cancer and noncancerous cells,
the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix,
soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME
may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor
a productive immune response against tumor cells, or it may even favor conditions suited to hijacking
the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen,
reactive oxygen species (ROS), ATP, Ca2+, H+, growth factors, or cytokines. Ca2+ plays a prominent
role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis,
or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai
channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in
many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates
to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about
the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose
new hypotheses how TME, ROS, and Orai channels influence each other.

Keywords: Orai; STIM; calcium; reactive oxygen species; H2O2; tumor microenvironment

1. Introduction

The tumor microenvironment (TME) (Figure 1) has a significant influence on carcinogenesis
(tumor development). The TME is generated by cancer and noncancerous cells, including immune
cells, cell–cell interactions, the extracellular matrix, and soluble factors. Soluble factors include
oxygen; nutrients; reactive oxygen species (ROS); reactive nitrogen species (RNS); ATP; Ca2+, H+,
and other ions; growth factors; chemokines; cytokines; or waste products [1–4]. The intracellular
Ca2+ concentration ((Ca2+)int) is a key regulator of (cancer) cell proliferation and apoptosis and, thus,
should play an important role in tumor growth and development. Ca2+ influx across the plasma
membrane is a major mechanism to shaping (Ca2+)int in all cells, including cancer and immune
cells [5–9]. Stromal-interaction molecules (STIM)-activated Orai channels represent the main Ca2+

channel type in most electrically unexcitable cells including immune cells [6,7,9] but also many cancer
cells [5,10,11]. Their expression in cancer cells is found to be correlated with metastatic progression,
a poor prognosis, and a shorter survival. Since malignant cells exhibit a strong dependence on Ca2+

flux for proliferation, Orai channels could be considered a potential therapeutic target to inhibit
cancer growth.
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Figure 1. An overview of the tumor microenvironment (TME): The TME is composed by a diverse 
range of cell types, including tumor cells, immune cells, epithelial cells, and stromal cells. Areas of 
low nutrients and O2 result in necrotic regions. The TME controls tumor growth by diverse 
mechanisms that are further discussed in the text. 

ROS have recently been in the focus of TME research because, depending on their 
concentrations, ROS may be decisive for the life and death of cancer cells [12,13]. Since Orai1 and 
Orai2 but not Orai3 channels are strongly regulated by ROS [14–16], Orai channels are interesting 
targets to integrate Ca2+ influx and ROS signaling in the TME. In this review, we focus on the 
interactions of Orai channels and ROS in the TME and on their potential relevance for TME 
development. We propose a scenario where redox changes alter Orai function and Ca2+ influx in both 
malignant and nonmalignant cells, such as immune cells, resulting in changes in (Ca2+)int with a direct 
impact on tumor fate. 

2. The Tumor Microenvironment (TME) 

According to the World Health Organization (WHO), cancer is “the second leading cause of 
death globally and is estimated to account for 9.6 million deaths in 2018” (World Health 
Organization). The process of cancer development and progression is called carcinogenesis and is 
divided into 3 to 4 distinct steps called initiation, promotion, progression, and metastasis [17]. 

In solid tumors, the tumor mass is formed by a diverse milieu which is composed of malignant 
and nonmalignant cells such as endothelial cells, cancer-associated fibroblasts, immune cells, adipose 
cells, and neuroendocrine cells in addition to vascular and lymphatic networks and the extracellular 
matrix (ECM) [1]. This dynamic and complex multicellular environment is known as the tumor 
microenvironment (TME) (Figure 1). The TME has long been considered an important factor for 
tumor growth: The first publications are from the 19th century [18]! In the past few years, the TME 
and noncancerous cells have been recognized as major players for tumor growth [19,20] and, 
therefore, as potential targets for drug actions. However, due to its complexity, the TME and its 
cancer-type specific features still remain an obstacle for efficient cancer therapy [3]. Many of the 
molecular mechanisms of signaling pathways within the TME are not well-understood and the 
complex interactions between cellular and non-cellular TME components are not well-defined. A 
detailed understanding of the TME and its interactions would allow for better pharmacological 
treatment and a better tumor prognosis. 

Figure 1. An overview of the tumor microenvironment (TME): The TME is composed by a diverse
range of cell types, including tumor cells, immune cells, epithelial cells, and stromal cells. Areas of low
nutrients and O2 result in necrotic regions. The TME controls tumor growth by diverse mechanisms
that are further discussed in the text.

ROS have recently been in the focus of TME research because, depending on their concentrations,
ROS may be decisive for the life and death of cancer cells [12,13]. Since Orai1 and Orai2 but not Orai3
channels are strongly regulated by ROS [14–16], Orai channels are interesting targets to integrate Ca2+

influx and ROS signaling in the TME. In this review, we focus on the interactions of Orai channels and
ROS in the TME and on their potential relevance for TME development. We propose a scenario where
redox changes alter Orai function and Ca2+ influx in both malignant and nonmalignant cells, such as
immune cells, resulting in changes in (Ca2+)int with a direct impact on tumor fate.

2. The Tumor Microenvironment (TME)

According to the World Health Organization (WHO), cancer is “the second leading cause of
death globally and is estimated to account for 9.6 million deaths in 2018” (World Health Organization).
The process of cancer development and progression is called carcinogenesis and is divided into 3 to 4
distinct steps called initiation, promotion, progression, and metastasis [17].

In solid tumors, the tumor mass is formed by a diverse milieu which is composed of malignant
and nonmalignant cells such as endothelial cells, cancer-associated fibroblasts, immune cells, adipose
cells, and neuroendocrine cells in addition to vascular and lymphatic networks and the extracellular
matrix (ECM) [1]. This dynamic and complex multicellular environment is known as the tumor
microenvironment (TME) (Figure 1). The TME has long been considered an important factor for tumor
growth: The first publications are from the 19th century [18]! In the past few years, the TME and
noncancerous cells have been recognized as major players for tumor growth [19,20] and, therefore,
as potential targets for drug actions. However, due to its complexity, the TME and its cancer-type
specific features still remain an obstacle for efficient cancer therapy [3]. Many of the molecular
mechanisms of signaling pathways within the TME are not well-understood and the complex
interactions between cellular and non-cellular TME components are not well-defined. A detailed
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understanding of the TME and its interactions would allow for better pharmacological treatment and
a better tumor prognosis.

Depending on the cellular and non-cellular composition, the local milieu can be highly variable
between different tumors or even within the same tumor (Figure 1). The metabolism of different
cell types, cell–cell interactions, the architecture of TME formed by remodeling of ECM proteins
(which create a stiff fibrotic matrix), and the blood supply together create an environment composed
of oxygen; nutrients; reactive oxygen species (ROS); reactive nitrogen species (RNS); ATP; Ca2+, H+,
and other ions; growth factors; chemokines; cytokines; or waste products (Figure 1). This environment,
together with locally secreted molecules from different cells, leads to pH gradients, differences in
oxygen tension, and interstitial pressure across the tumor [2,4,21]. These parameters have an impact
on the metabolism of surrounding cells and consequently cellular function, where the environment is
constantly changing and adapting according to new challenges and interactions with the host.

It has been shown that the TME can promote cancer growth and metastasis as a result of
bidirectional interactions between cancer cells, noncancerous cells, and the surrounding environment.
In the worst scenario, the TME forms a niche favorable to tumor growth and less favorable to other
cells that could eliminate or limit tumor cell proliferation. In fact, it has been shown that most of
the nonmalignant cells within the TME often adopt a tumor-promoting phenotype after the local
milieu modifies their cellular functions [22]. Such alterations include changes in gene expression
and cellular activity. For example, hypoxia, which develops at the beginning of tumor growth and
induces cell necrosis (Figure 1), leads to the activation of hypoxia-responsive genes in malignant
and nonmalignant cells. It also promotes the recruitment and survival of immune cells that are
mainly glycolytic, such as macrophages, which produce large amounts of ROS [3]. This has drastic
consequences for the cells present in this niche, as they need to adapt to be able to survive in this highly
oxidative environment. Increased ROS also activates pathways in leukocytes to secrete more cytokines
that favor tumor growth, leads to new cellular mutations, and may, therefore, transform other cells
and induce apoptosis. Regions that undergo cycling hypoxia are also present in the TME. Cycling
here refers to situations of fluctuating oxygen levels, going from deep hypoxia to moderate hypoxia
states, similar to the reoxygenation of blood vessels in the human heart after ischemia, which bares the
risk of ischemia-reperfusion injury [23]. Cycling hypoxia can affect cells near blood vessels, which are
not efficiently perfused, contrary to hypoxic regions which are normally far from blood vessels [24].
Cells exposed to cycling hypoxia need to deal with and to adapt to two conditions: a lack of oxygen and
sudden reoxygenation, which leads to very high amounts of ROS. All these changes can create different
sub-microenvironments within the TME, each of them having distinct characteristics, populated by
different cells, and exposed to different molecules.

3. STIM/Orai Channels in Cancer

Like all cells, cancer cells of the TME express a whole range of different ion channels. Considering
the importance of Ca2+ for cell signaling including proliferation, migration, and apoptosis in
combination with the strong dependence of cancer growth on these mechanisms, Ca2+ channels
should play a very important role in the TME. Among Ca2+ channels, Orai channels have a prominent
role in many electrically unexcitable cells [6,7,9]. They represent the main Ca2+ channel in most
immune cells in which they were initially discovered [25], but they are also highly expressed in cancer
cells and correlate with metastatic progression, a poor prognosis, and a shorter survival [5–8,10,11].
Since malignant cell functions depend on Ca2+ flux, considerable interest has emerged in the
therapeutic potential of inhibiting Orai for many cancer types.

3.1. Short Introduction to STIM and Orai

Store-operated Ca2+ entry (SOCE) is the major Ca2+ entry pathway including cancer and immune
cells [5–8,10,11]. Its well-known activation mechanism is depicted in Figure 2. The two known SOCE
activators, STIM1 and STIM2, sense the ER Ca2+ store content and activate Orai channels in the
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plasma membrane. STIMs are known to form homomultimers (as depicted in Figure 2) but may also
form heteromultimers [26]. STIM1 is less sensitive to ER luminal Ca2+ compared to STIM2 [27] but
activates Orai channels significantly stronger [28]. There are three known isoforms of the tetraspanning
hexameric Orai channels, Orai1, Orai2, and Orai3 (Figure 2), with characteristic properties [29,30].
All of them are activated after the depletion of Ca2+ from the ER, possess a high selectivity for Ca2+,
are inwardly rectifying, and show a Ca2+-dependent inactivation (CDI) [30].
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/endoplasmic reticulum Ca2+ ATPases (SERCAs) export Ca2+ from the cytosol. 
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through ER stress and causes the permanent activation of SOCE in these cells, inducing chromosome 
instability, aneuploidy, and anchorage-independent growth [31]. However, more in vivo studies and 
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Orais and STIMs are expressed in the vast majority of tumors [5,10]. Their expression levels seem 
to correlate with metastatic progression, a poor prognosis, and a shorter survival in studies using 
patient specimens. Colorectal cancer patients with a positive expression of STIM1 [32] or/and with a 
high Orai1 expression had poorer prognoses and shorter overall survival rates [33]. Comparable 
results for Orai1 were also shown for non-small cell lung cancer [34], esophageal squamous cell 
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Figure 2. Store-operated Ca2+ entry (SOCE) by stromal-interaction molecule (STIM)/Orai channels in
cancer cells: Following the stimulation of G protein- or tyrosine kinase-coupled (G/T) receptors
(R), phospholipase C (PLC) hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol
trisphosphate (IP3). The latter binds to its receptor, a Ca2+ release channel in the endoplasmic
reticulum (ER) membrane and opens it, which induces the Ca2+ depletion of ER Ca2+ stores. A drop of
(Ca2+)ER activates luminal Ca2+ sensor proteins, the STIMs. Activated STIMs oligomerize and move
to the plasma membrane where they bind and open Orai channels, leading to a Ca2+ influx across
the plasma membrane. Plasma membrane Ca2+ ATPases (PMCAs), Na+–Ca2+ exchangers (NCX),
and sarco-/endoplasmic reticulum Ca2+ ATPases (SERCAs) export Ca2+ from the cytosol.

3.2. STIM/Orai in Tumor Initiation and Promotion

Initiation is the first step in cancer development where normal cells undergo irreversible changes,
transform, escape the immune surveillance, undergo continuous unregulated proliferation, and are
able to form tumors at the end. The loss of growth control involves a whole range of critical mutations
and is the sum of the accumulated abnormalities in a cell’s regulatory systems. Whether changes in
(Ca2+)int are relevant for cancer initiation is currently not clear [5].

A mechanistic link between Ca2+ homeostasis and chromosome instability was recently proposed
in hepatocytes with Hepatitis B viral (HBV) infection, as the driver of hepatocellular carcinoma [31].
The hepatocytes carry a gain-of-function mutation in the preS2 region of a large surface antigen (LBHS),
one of two HBV-encoded oncoproteins, that is linked to the early onset of hepatocellular carcinoma.
The preS2 mutation promotes ER-plasma membrane (PM) connections through ER stress and causes
the permanent activation of SOCE in these cells, inducing chromosome instability, aneuploidy,
and anchorage-independent growth [31]. However, more in vivo studies and direct evidence are
necessary to prove or disprove a role of SOCE and, thus, Ca2+ as cancer initiators or drivers.
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3.3. STIM/Orai in Tumor Proliferation/Growth

Orais and STIMs are expressed in the vast majority of tumors [5,10]. Their expression levels seem
to correlate with metastatic progression, a poor prognosis, and a shorter survival in studies using
patient specimens. Colorectal cancer patients with a positive expression of STIM1 [32] or/and with
a high Orai1 expression had poorer prognoses and shorter overall survival rates [33]. Comparable
results for Orai1 were also shown for non-small cell lung cancer [34], esophageal squamous cell
carcinoma [35], and gastric cancer [36]. Additionally, Orai3 expression was increased in tumor
tissues of lung adenocarcinoma [37], prostate cancer [38], and breast cancer [39] and correlated with
overall survival and metastasis-free survival [37]. Interestingly, an analysis of a microarray from
McAndrew and colleagues revealed a significantly poorer prognosis [40] for breast cancer patients
with a STIM1-high and STIM2-low phenotype. Considering that not only the ratio between STIM1,
STIM2, Orai1, Orai2, and Orai3 but also the discovery of STIM2 splice variants [41,42] are highly
relevant for Ca2+ channel activity [43–47], the relative composition of STIMs and Orais needs to be
carefully addressed not only in tumors.

Cell proliferation is dependent on the cell cycle and transitions between different phases (G0/G1,
S phase, and G2/M phase) which are tightly controlled through Ca2+-dependent checkpoints (reviewed
in Reference [48]). SOCE alters cancer cell proliferation in vitro [49–51] and also in vivo [33,35,36,52–54].
However, how Ca2+ controls distinct checkpoints is not well-understood. Increases in the basal or
transient fluctuation of Ca2+ are involved, but also (Ca2+)ext needs to be considered. Cell cycle arrest in
the G0/G1 phase in U251 cells [53], in neck squamous cell carcinoma cell lines [54], and at the S and
G2/M phases in cervical cancer cells [52] by STIM1-silencing has been reported. A pro-proliferative
role of STIM1 in vivo using U251 human glioma xenograft model in mice revealed that knocking
down STIM1 in xenografts demonstrated a diminished growth [53]. In contrast, an elevated Orai1
and/or STIM1 expression can promote cell proliferation [36,54]. In non-small lung cancer cells,
nicotine promotes cell proliferation by upregulating Orai1 expression and therefore by enhancing
SOCE and increasing basal Ca2+ concentration [55]. In esophageal squamous cell carcinoma zinc
is able to inhibit Orai1-mediated SOCE, Ca2+ oscillations, and subsequent cell proliferation [56].
The pharmacological inhibition or knocking down of Orai channel could block human esophageal
squamous cell carcinoma proliferation in vitro and tumor growth in vivo [35]. Another study shows
that high Ca2+ diet in a mouse model of slowly evolving prostate cancer accelerated its progression
by promoting proliferation [57] indicating the importance of (Ca2+)ext. Growth factors as fibroblast
growth factor 4 (FGF4) may also have an impact on Orai1 expression, resulting in increased SOCE,
and may promote epithelial-mesenchymal transition and enhanced cell proliferation [58]. One of the
most important and interesting cascades in this context is the mTOR (mechanistic target of rapamycin)
pathway (reviewed in Reference [59]). As the catalytic subunit of two distinct protein complexes
(mTORC1 and C2), this serine/threonine protein kinase plays a central role for the cell perception of
the environment in the regulation of metabolism, cell cycle, and growth. It is, thus, essential for the
adaptability of cells to specific changes and needs as in the TME. A recent study showed an interesting
relationship between mTORC1 and STIM1 expression as a novel potential therapeutic approach for
patients with tuberous sclerosis complex (TSC) tumors [60].

Not only the main players of SOCE, STIM1 and Orai1, but also the slightly “neglected” STIM2 and
Orai3 are involved in proliferation and growth of tumor cells [61]. The overexpression of STIM2
inhibits cell proliferation and tumor growth in colorectal cancers in vivo [62] but promotes cell
migration in primary melanoma in vivo [63], implicating the contribution of STIM2 signaling at
different stages of tumor progression. Furthermore, the high Orai1 and STIM2 expression found in
melanoma biopsies at the rim of invading tumors are linking their possible role in tumor invasion
and/or metastasis in vivo [63]. In human carcinoma cells versus normal mucosa cells, STIM2 protein
was nearly depleted in contrast to an upregulation of STIM1 and all three Orai proteins [64].
The involvement of Orai3 in the machinery of tumorigenesis has been reported, including breast,
prostate, and lung cancer [38,65–67]. By using mice xenograft models, it was shown that Orai3 plays
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a crucial role in prostate cancer development in vivo [38]. The knockdown of Orai3 significantly
reduced SOCE and inhibited proliferation by arresting non-small cell lung cancer cell lines in the
G0/G1 phase [67]. Orai3 transcripts are differentially expressed in the different subtypes of breast
cancer and regulated by estrogen receptor alpha (ERα). The silencing of ERα causes a decreased
expression of Orai3 and cell proliferation in vitro [65]. The same study places Orai3 as an important
player in tumorigenesis in vivo, since the growth of breast tumors was significantly reduced by
Orai3 knockdown before the transfer to the recipient mice with severe combined immunodeficiencies
(SCID) [65]. Orai3 expression seems to be regulated positively and negatively by miRNA and to
act directly on Orai3 3′UTR [68]. Another interesting finding places Orai1–Orai3 channel complexes
in the center of attention in a variety of prostate cancer cells [38]. The study reports an oncogenic
switch in which cells, especially those exposed to tumor microenvironmental factors (here, arachidonic
acid), change from homologous Orai1 complexes to more heterogeneous Orai1–Orai3 complexes by
upregulating Orai3 expression. This switch could be an excellent adaptation, where a shift from
a pro-apoptotic to more pro-proliferative phenotype is beneficial for cell proliferation and growth [38].

3.4. STIM/Orai in Tumor Survival/Apoptosis

A well-controlled balance between cell proliferation and cell death is necessary to avoid excessive
proliferation leading to cancer development. In cancer, a scenario with too little apoptosis dominates,
causing the expansion of malignant cells that are resistant to apoptosis. Despite being part of the
problem, apoptosis is a popular target in cancer treatment. Therefore, a better understanding of the
complex underlying mechanism of apoptosis is the key to developing more specific targets to execute
the lethal hit against cancer cells. Ca2+ plays a pivotal role in the mechanistic induction of apoptosis.
During apoptosis, (Ca2+)int is dramatically increased, and as a consequence, mitochondria take up
large amounts of it and induce apoptosis. Interrupting the prolonged Ca2+ influx through SOCE by
knocking down Orai/Stim or blocking it with specific inhibitors can counteract cell apoptosis.

Human colon carcinoma cells show increased Orai and STIM1 expression, but STIM2 is
almost depleted [64]. In noncancerous cells, the knockdown of STIM2 decreases SOCE while it
promotes apoptosis resistance. This finding suggests that the loss of STIM2 contributes to apoptosis
resistance in tumor cells. In addition, the blockage of STIM1-mediated SOCE can significantly
enhance chemotherapy-induced apoptosis in lung and pancreatic cancer cells [69,70]. In a pancreatic
adenocarcinoma cell line, a siRNA-mediated knockdown of Orai1 and/or STIM1 increases apoptosis
induced by chemotherapy drugs 5-fluorouracil or gemcitabine [70]. In addition, Orai1 downregulation
has been shown to contribute to the formation of an apoptosis-resistant phenotype in prostate cancer
cells [71]. Furthermore, the presence of an increased Orai3 expression, leading to the assembly of
more Orai1/Orai3 channel complexes can increase the resistance to apoptosis, as has been suggested
in the context of pancreas carcinoma [38]. Similar results are found in breast cancer cells where the
downregulation of Orai3 arrests cell-cycle progression and induces apoptosis but not in normal breast
epithelial cells [39].

A recent study placed Bcl-2 as a SOCE regulator to modify ER stress-induced apoptosis [72].
The Bcl-2 family plays a major role in the regulation of apoptosis. Its pro- or anti-apoptotic members
act mainly at the mitochondria level. Bcl-2 is the first identified anti-apoptotic protein capable of
preventing apoptosis in a Ca2+-dependent manner [73]. A mutant of Bcl-2 used in the study increased
the expression of SOCE components and depleted Ca2+ in the ER lumen, causing a massive Ca2+ influx
leading to caspase activation and apoptosis [72]. Additionally, several anticancer drugs that are used
to induce cancer cell apoptosis function through the dysregulation of Ca2+ signaling, for example,
in colon cancer cells or triple-negative breast cancer [74,75].

3.5. STIM/Orai in Epithelial-to-Mesenchymal Transition (EMT)/Cancer Progression

Changes in cell phenotypes, defined as epithelial-to-mesenchymal transition (EMT), are important
for tumor metastasis [76,77]. This transition is associated with an improvement in migratory and
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invasive properties. The list of EMT inducers is long, including growth factors secreted by the tumor
environment, cytokines, hypoxia, and metabolic changes. Additionally, the indispensable change
in gene expression is activated by complex regulatory networks, involving transcriptional control,
transcriptional factors, miRNAs, alternative splicing, posttranslational regulation, protein stability,
and subcellular localization [78]. Several studies already reported that an altered SOCE is linked to
EMT in prostate cancer [79], colon cancer [32], and gastric cancer [36]. Transforming growth factor
β1 (TGF-β1) in MCF7 breast cancer cells enhanced SOCE. Silencing the transcription factor Oct4
or significant inhibition via TGF-β1 upregulated the expression of STIM1 and Orai1 and promoted
invasion and metastasis by inducing EMT [80]. TGF-β-induced EMT seems to be differently regulated
by the expression of STIM2 (regulating non-store-operated Ca2+ entry) and by the expression of
STIM1 (regulating store-dependent Ca2+ entry) [81]. Another study describes the Orai3 and STIM1
requirement for TGF-β-dependent Snai1 transcription, a transcription factor upregulated during
EMT [82]. A similar study in lung adenocarcinoma cell lines shows that FGF4 was also able to induce
EMT by elevating Ca2+ entry via the expression of Orai1 channels [58].

3.6. STIM/Orai in Tumor Metastasis/Angiogenesis

Cell motility is partly mediated by a (Ca2+)int gradient [83,84], and several components of
migration mechanisms, such as cytoskeleton remodeling, leading edge guidance, and matrix
degradation, are Ca2+ sensitive [85]. Over the last ten years, in vitro and in vivo evidence
has accumulated that SOCE components are involved in cell motility, invasion, and tumor
metastasis [86]. The inhibition of SOCE or their components inhibit metastasis of breast
cancer [57,87,88], melanoma [63,89], colorectal cancer [32], prostate cancer [51], and gastric cancer [36].
Consistently, the overexpression of STIM1 enhances cell migration in cervical cancer [52] and colorectal
cancer [49]. Cell motility and, thus, metastasis are regulated by dynamic interactions between
cytoskeleton, myosin II and focal adhesions [90], which assemble and disassemble to mediate
cell migration [91]. STIM1-dependent signaling regulates focal adhesion turnover [52,87] required
for leading edge protrusion and trailing tail retraction and regulates actomyosin contractility [92].
Furthermore, silencing STIM1 significantly alters podosome dynamics, reduces cell invasiveness [93],
and regulates the dephosphorylation of focal adhesion kinase (FAK) by modulating focal adhesion
turnover [94,95] and the recruitment and association of active pTyr397-FAK and talin at focal
adhesions [92]. Similar results were found in breast cancer cells in a murine tumor metastasis
model [87], in colorectal cancer following a destabilization of STIM1 [96], and in glioma cell lines [95].

One important pathway to modulate cell migration, invasiveness, and metastasis is the
PI3K/Akt/mTOR signaling pathway. Akt plays a central role by phosphorylating many proteins
involved in the stabilization of actin cytoskeleton and by promoting migration via remodeling. SOCE is
positively regulated by the PI3K/Akt pathway, and this effect might be suppressed by targeting
receptor tyrosine kinases (RTK) [97]. The RTK protein family includes epidermal growth factor
receptors (EGFRs), FGF receptors, and vascular endothelial growth factor receptors (VEGFRs) [98]
which are heavily involved in cell migration [98] and angiogenesis. Upregulated VEGF production
by a high STIM1 expression in human cervical cancer cells regulates the focal-adhesion dynamics
of migratory cells [52]. Accordingly, the inactivation of PI3K/Akt signaling pathway by STIM1
knockdown reduced the migration and invasion of prostate cancer cells [51]. Furthermore, a lipid raft
SK3/TRPC1/Orai1 complex promotes cell migration in metastatic colorectal cancer. The formation
of this complex is favored by the phosphorylation of STIM by epidermal growth factor (EGF) and
the activation of Akt [99]. A SK3-Orai1 complex also plays a critical role in cell migration and bone
metastasis [88,99].

The proliferation and motility of cells are critical steps in angiogenesis. Due to continuous and
fast growth, tumors rely on the formation of new blood vessels to ensure an adequate supply of
oxygen and nutrients [100]. Low oxygen tension (hypoxia) promotes metastasis and is considered
as the key driver in angiogenesis [101,102]. Hypoxia is sensed by the tissue and triggers the
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cellular production of hypoxia-inducible factor 1 (HIF-1), a transcription factor that activates many
downstream pathways [103] including the expression of VEGF, TGF-β, and platelet-derived growth
factor (PDGF-β) [104]. Hypoxia is a common feature of the TME of most solid tumors, and hypoxic
cancer cells secret VEGFs to initiate tumor angiogenesis [100,105]. Interestingly, VEGF and FGF (and
others) increase (Ca2+)int. However, molecular mechanisms underlying SOCE-mediated angiogenesis
remain poorly understood.

In colon cancer [106] and in triple-negative breast cancer [107], hypoxia leads to the upregulation
of Orai1 by the Notch1 pathway. These data are in line with the findings that Notch1 signaling
pathways activate NFκB [108] and that NFκB regulates the expression of Orai1 and STIM1 [109].
Orai1 upregulation potentiates SOCE and activates the nuclear factor of activated T cells, NFAT4,
contributing to hypoxia-induced invasion and angiogenesis [106,107]. Hypoxia leads to the
accumulation of hypoxia-inducible factor 1-alpha (HIF-1α), a subunit of the transcription factor HIF,
which responds to alterations of available oxygen [110]. The hypoxia-induced accumulation of HIF-1α
was found to correlate with the overexpression of STIM1 in human and murine hepatocarcinoma
cells (HCCs) [111]. The increase in STIM1 expression is a consequence of a direct HIF-1α binding to
the promoter of STIM1 and leads to an increase in SOCE in HCCs promoting tumor growth [111].
During hypoxia, HIF-1α is stabilized and induces many genes like VEGF for a better adaptation
to this condition [112]. Since the production of ROS is augmented under hypoxic conditions [113]
and ROS inhibits the SOCE mediated by STIM1 and Orai1 or Orai2 [14–16], the overexpression of
STIM1 might be a countermeasure of the HCCs to provide the necessary Ca2+ signals for vital cell
functions. Furthermore, the expression of STIM2 was also reported [114] under hypoxic conditions.
In rat pulmonary arterial smooth muscle cells, hypoxia-related STIM2 overexpression is accompanied
by an increased SOCE and proliferation [114]. Apart from the hypoxia-induced induction of Orai1 and
STIMs, it was recently also reported that Orai3 expression was induced by HIF1α in MDA-MB-468 ERα
negative cells [115]. Unlike in ERα positive MCF-7 breast cancer cells [65,66] where Orai3 silencing
reduces SOCE, the upregulation of Orai3 did not contribute to SOCE in ERα negative cells [115].
However, since the Orai3 expression in breast cancer is highly dependent on the ERα expression itself,
one might speculate that the Orai1 complexes contribute significantly to Ca2+ signals in ERα negative
cells. These results place the channels and sensors as new targets in regulating hypoxia.

4. ROS Production and Elimination

As mentioned before, reactive oxygen species (ROS) are one of the key factors to influence the
TME, and they also modulate Orai channels (see below). In the following section, we summarize the
most common pathways and mechanisms in ROS metabolism with specific regard to the TME inspired
by two reviews [116,117].

ROS comprise a group of molecules that are generated via the partial reduction of O2 and establish
high chemical reactivity [116–118]. The one-electron reduction of oxygen leads first to the formation of
superoxide anion radical (•O2¯), which in turn is dismutated and further reduced to hydrogen peroxide
(H2O2) which is finally either fully reduced to water or partially reduced and split to hydroxyl radical
(OH•) and hydroxyl anion (OH¯) [119]. ROS is mainly produced by mitochondria, NADPH oxidases
(NOX), and other enzymes like xanthine oxidase and cytochrome P450 [116,117,120,121] (Figure 3).

Very high ROS levels can be produced in mitochondria when •O2¯ molecules are released during
ATP generation in the electron transport chain (ETC) [116,122]. Several endogenous and exogenous
factors influence mitochondrial ROS production, including mitochondrial membrane potential [123],
hypoxia, and nutrient metabolites but also cancer- and immune-related factors like TNF-α and Toll-like
receptors [117,124–127].

NOX complexes also produce very high levels of ROS (Figure 3). The production of ROS via the
NOX family occurs during the catalysis of electron transfer from NADPH to O2 and thereby produces
•O2¯ [117]. NOX-dependent ROS production requires the functional assembly of the NOX complex,
which can be mediated by different signaling molecules such as growth factors and, again, TNF-α and
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Toll-like receptors [117,128,129]. Similar to the mitochondrial ROS production, the release of •O2¯ is
dependent on the location of the NOX molecules. NOX comprises NOX1-5 and Duox1/2 [116] which
are present in the plasma membrane and intracellular membranes of the nucleus, mitochondria and
the endoplasmatic reticulum (ER) [117]. The specific isoforms at particular sites can lead to ROS release
either to the intracellular or extracellular spaces [117,121].Cancers 2019, 11, x 9 of 27 
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enzymes include xanthine oxidase (XO) and cytochrome P450 (CYP450) that directly form superoxide
in the cytoplasm. Superoxide dismutases (SODs) can convert •O2¯ to H2O2. SOD1 is located in the
cytoplasm, SOD2 is located in the mitochondrial matrix, and SOD3 is located in the extracellular space.
The further elimination of H2O2 via catalase, GPX/GSH, and/or PRX/TRX can either be initiated
directly in the mitochondrial matrix or in the cytoplasm upon the transport of H2O2 via aquaporins.
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ROS have long been considered to be solely deleterious for cells causing oxidative damage
in different molecules like DNA, lipids, or proteins. However, moderate ROS levels are also
important for various physiological cellular functions, including intracellular signaling, cell survival,
proliferation and immune responses [117,122,130,131]. Hence, a unique redox homeostasis is
required to control the balance between production and elimination [117]. ROS elimination,
or “antioxidant defense”, is mainly performed by four enzymatic systems: superoxide dismutases
(SODs), peroxiredoxin (PRX)/thioredoxin (TRX) system, glutathione peroxidase (GPX)/glutathione
(GSH) system, and catalase (Figure 3).
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The quantification of ROS levels is a challenging task. Table 1 summarizes the most commonly
used approaches.

For more comprehensive overviews over certain technologies, we acknowledge the following
reviews which are also relevant for the conceptual design of Table 1: references [132–150].

Table 1. A summary of the most commonly used tools and probes to measure various ROS.

Technique or Method Tools and Examples Specificity (Potential) Applications

Fluorescence-
based assays

Dihydroethidium (DHE) •O2¯, if used with HPLC

in vitro, extra- and
intracellular,

cell suspensions

Dihydrorhodamine (DHR) not specific

2′,7′-dichlorodihydrofluorescein
(DCFH2) not specific

Amplex Red, Amplex UltraRed H2O2

Hydroxyphenyl Fluorescein (HPF) not specific

Aminophenyl Fluorescein (APF) not specific

Genetically
encoded fluorescent

probes

roGFP2 EGSH

in vivo and in vitro,
intracellular, single cells,

tissues, subcellular
compartments

roGFP2 coupled to glutaredoxins EGSH

roGFP2 coupled to peroxidases or
peroxiredoxins H2O2

HyPer (different variants
including HyPer-Red) H2O2

Chemiluminescence
assays

Lucigenin

not specific in vitro, cell suspensionsLuminol

Isoluminol

Enzymatic assays
Cytochrome C, Superoxide

dismutase (SOD), Horseradish
Peroxidase (HRP)

•O2¯ in vitro, cell suspensions

Chemical assays

Prussian Blue, Paraquat
(1,1′-Dimethyl-4,4′bipyridium
dichloride), FOX (containing

xylenol orange)

H2O2, peroxides and
others in vitro, cell suspensions

Electrochemical assays

Electrodes of various types and
sizes (macro-, mini-, micro-

ultramicro- and nanoelectrodes),
arrays, chips; additional redox

mediators

•O2¯, H2O2 and other
ROS

in vitro; single cells,
cell suspensions, extra-

and intracellular

Electron paramagnetic
resonance (EPR)

spectroscopy using spin
probes

DMPO (5,
5-dimethyl-1-pyrroline-N-oxide)

•O2¯, OH•

in vitro and in vivo,
cell suspensions, extra-

and intracellular

DEPMPO
[5-(diethoxyphosphoryl)-5-methyl-

1-pyrroline-N-oxide]

•O2¯, OH•

Horseradish Peroxidase assay
(enzymatic using cyclic

hydroxylamines)
H2O2

in vivo EPR with different
functional spin traps and probes Various ROS

5. Impact of Reactive Oxygen Species (ROS) in the Tumor Microenvironment (TME)

ROS likely plays a dual role in cancer, both as initiating factors as well as downstream signaling
molecules as a result of malignant transformations. In the literature, numerous reviews are available
that deal with cancer and ROS, but it is often hard to distinguish between cancer development and
progression and between “good” and “bad” ROS, although these differences play important roles in
the whole topic [116].
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5.1. How Can ROS Support Carcinogenesis?

The first step of carcinogenesis is called initiation and refers to the alteration, change, or mutation
of genes that develop either spontaneously or due to an exogenous source [17]. ROS can induce
detrimental DNA damage via base modifications; inter-strand, intra-strand and DNA-protein
crosslinks; and the induction of double strand breaks [151] (Figure 4). The promotion of cancer
(cells) is considered a clonal expansion and accumulation of the pre-neoplastic cells that result from the
initiation process, while progression already refers to a malignant conversion of the cells into invasive
carcinoma [17,152]. Once tumors are initiated, there are several ways that ROS can drive promotion
and expansion. These can be roughly divided into 3 subgroups: the impairment of transcription
factors, signaling pathways, and epigenetics (Figure 4). We discuss the mechanisms most frequently
involved in the majority of cancer subtypes but cannot acknowledge every mechanism in-depth.
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Figure 4. ROS in the TME: Non cancer-related ROS can be deleterious for healthy tissue and thereby
lead to tumor initiation and promotion via DNA damage and the impairment of signaling pathways,
transcription factor expression, and epigenetic changes. After the tumor initiation upregulation of
oncogenes, the loss of tumor suppressor genes, mitochondria mutations, and hypoxic conditions can
lead to further elevated tumor-related ROS levels. In a positive feedback loop system, rising ROS
levels in the TME can in turn support tumor progression, angiogenesis, invasion, and metastasis via
an amplification of the pathways involved in initiation and promotion. Finally, to protect against
threshold-crossing toxic ROS levels, tumor cells initiate the upregulation of antioxidant defense
mechanisms in order to prevent from ROS-related deleterious events like apoptosis or necroptosis.

The invasion of newly synthesized blood vessels to the network of tumor cells (angiogenesis)
is an important event in carcinogenesis which is responsible not only for the supply with nutrients,
immune cells, and oxygen but also for the disposal of waste products as well as tumor spreading
(metastasis) [153] (Figure 4). One of the most prominent pro-angiogenic factors is the vascular
endothelial growth factor (VEGF), which has been shown to be a key regulator in cancer angiogenesis
upon stimulation via several pathways, factors, and conditions [154]. One of the transcription factors
that leads to increased VEGF expression is HIF-1α [155]. Elevated ROS levels can suppress HIF-1α
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degradation, finally leading to an increased VEGF expression and subsequent angiogenesis in distinct
cancer types such as prostate and ovarian cancer and fibrosarcoma [116,156]. Another important
transcription factor in cancer is the nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) [157]. Besides its well-known role in immune and inflammatory responses, cell proliferation,
and apoptosis [158], NF-κB can also promote tumor proliferation [116,117]. Interestingly, mitochondrial
ROS have been shown to activate NF-κB with the subsequent upregulation of the EGF receptor in
pancreatic cancer, inducing the formation of pre-neoplastic lesions [117].

Another ROS-sensitive transcription factor involved in cell transformation, proliferation,
and apoptosis is activator protein 1 (AP-1) [116,159]. In human colon cancer cells, the upregulation
of AP-1 due to H2O2 has been documented, leading to increased MMP7 levels that are involved in
tumor metastasis [160]. Furthermore, activated AP-1 enhances the expression of genes involved in
growth stimulation like cyclin D1 but suppresses genes involved in the growth inhibition of cell cycle
inhibitor p21, finally leading to an increased cell proliferation [116,161,162]. The tumor suppressor
gene p53 is a key regulator of anti-proliferative cellular responses and is mutated in many tumor cells,
resulting in a deleterious loss of function [163]. The ROS-dependent impairment of p53 expression
and its activation/inactivation are controversially discussed in the literature. It is evident that ROS can
directly inactivate p53 via the oxidation of cysteine residues in its DNA-binding domain [164], but the
downstream effects of this inactivation remain ambivalent. In general, the inactivation of p53 will
most likely leads to the loss of anti-proliferative effects, which are part of its tumor suppressor gene
function. On the other hand, elevated ROS levels can promote apoptosis, senescence, and DNA-repair
in a p53-dependent manner, finally leading to a reduced malignant transformation [116,165–168].
Of note, an impaired p53 expression can, in turn, have effects on ROS production itself, and functional
p53 can enhance the expression of antioxidants like GPX, catalase, and SOD2 [116]. This downstream
effect can be lost upon the mutation and absence of p53, finally leading to ROS accumulation and
a pro-tumorigenic phenotype [116,169]. Again contradictorily, p53 has been shown to maintain
mitochondrial health and to subsequently limit ROS generation and tumor development [116,170].
In summary, ROS-dependent p53 impairment and downstream effects are variable and seem to react
in feedback loop systems that can be both pro- and anti-tumorigenic.

ROS can further influence other signaling pathways that are important for cancer progression
such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) protein kinase B (Akt) pathway
(PI3K/Akt) which plays an important role in cell metabolism, growth, proliferation, and survival [171].
Enhanced ROS levels have also been shown to inactivate negative regulators of this pathway (e.g.,
PTEN: phosphatase and tensin homolog and PTP1B: protein tyrosine phosphatase 1B) via cysteine
oxidation [116,117,172,173].

Another possibility of how ROS can affect tumor development and progression is through
epigenetic regulation. Epigenetic alterations in the TME are usually linked to DNA methylation
or acetylation in the promoter regions of genes that are crucial for cancer cell proliferation or
migration. In this regard, ROS can, for example, increase histone H3 acetylation of the promoter
region of the Snai2 gene, which leads to an increased slug transcription factor expression and the
subsequent enhancement of cell proliferation and migration [116,174]. Another study demonstrated
a H2O2-dependent downregulation of E-cadherin in hepatocellular carcinoma cells that was described
as a result of a hypermethylation in the promoter region upon the recruitment and ROS-dependent
upregulation of histone deacetylase 1 (HDAC1) and DNA methyltransferase 1 (DNMT1). In turn,
the loss of E-cadherin has been associated with epithelial-mesenchymal transition (EMT) that is favored
by Slug and Snail expression, resulting in metastatic cancer [116,175,176]. Furthermore, DNA oxidation
itself may lead to both hypermethylation and hypomethylation and subsequently inactivate tumor
suppressor genes or activate oncogenes, respectively [116,177–179].



Cancers 2019, 11, 457 13 of 28

5.2. Sources of ROS in The Tumor Microenvironment

The importance of ROS for carcinogenesis immediately leads to the question of if there are ROS
sources in the TME (Figure 4). Already 30 years ago, it was shown that cancer cells can induce
pathologically increased ROS release [180]. However, analyzing ROS in the TME remains to be difficult,
despite the fact that more and more techniques to measure different ROS are being developed (Table 1).
A big challenge is that the unique TME is disrupted during preparation, leading to errors in analyses,
in particular with regard to tumor cell metabolism. Furthermore, finding proper controls for in vitro
studies is likewise challenging, as fast proliferating tumor cells can establish different ROS levels
already due to their diverse metabolic state and not necessarily due to malignant transformation [181].
Nevertheless, several reliable studies have been performed to analyze ROS formation in the TME as
reviewed in Reference [182]. The activation of oncogenes, the loss of tumor suppressor genes as well
as mitochondrial DNA mutations and hypoxia may lead to an enhancement of ROS levels in tumor
cells that further support carcinogenesis and malignancy [182]. Other publications further describe the
same mechanisms to be responsible for the NOX-dependent ROS release by tumor cells [183,184].

As mentioned earlier, the cellular environment of a tumor includes several noncancerous cell
types that are recruited upon tumor formation, such as cytokine-secreting T cells, macrophages,
neutrophils, and fibroblasts. Cytokines are very important drivers of ROS production in the TME and,
thus, further contribute to the mechanisms described in the section above. The exposure of tumor cells
to certain important cytokines like IFNγ, TNFα, and IL-1 was shown to increase ROS production by
tumor cells themselves in various cancer types [185], while the elevated ROS levels were attributed to
NOX elevation or mitochondria activity [186]. In addition, neutrophils and macrophages are known
to induce a rapid burst of superoxide formation during their killing activity, finally leading to the
enhanced production of hydrogen peroxide in the TME [185,187,188].

In summary, several studies revealed the existence of both tumor cell-related and noncancerous
sources of ROS that are available in a solid TME (Figure 4). Together, they build up a complex network,
partially influencing each other and thereby further amplifying ROS formation in the TME. However,
since each tumor has a distinct metabolic state, it is nearly impossible to make predictions on ROS
levels in a given TME. The prediction of ROS levels is further complicated by the fact that the tumor is
able to initiate an antioxidant defense upon a continuous exposure to high ROS concentrations.

5.3. What Are The Downstream Effects of Increased ROS in The Tumor Microenvironment?

Tumor-induced ROS release can further activate the signaling pathways discussed before, i.e.,
the modulation of transcription factors or epigenetic changes, which are involved in tumor initiation,
promotion, and progression. This might induce a positive feedback loop system beneficial for tumor
growth. In contrast, very high ROS levels may be toxic and may induce tumor cell death. To avoid this,
tumor cells activate a defense mechanism to escape cell death [117]. This is of particular importance in
metastatic tumors where cancer cells, detached from the extracellular matrix, are exposed to elevated
ROS levels, for example, in oxidizing environments like blood and viscera [117,189,190]. Antioxidant
pathways upregulated upon elevated ROS levels include nuclear factor erythroid 2 (Nrf2) upregulation,
the activation of the JNK/p38 pathway, and GSH and NADPH elevation.

It is of great importance to distinguish between “good” and “bad” ROS with regard to cancer
initiation and progression. In general, low ROS levels seem to be beneficial for tumor cells in
order to support the proliferative and invasive properties, but upon crossing a distinct threshold,
ROS can be toxic for tumor cells. Of note, some studies revealed that even low ROS levels
can induce anti-tumorigenic signaling in cancer, leading, for example, to cell cycle arrest and
senescence [116]. As an example, gene deletions in NOX4 have been documented in association
with the hepatocellular carcinoma of a high tumor grade, and NOX4 knockdown studies showed
an elevated proliferative capacity of liver tumor cells in vitro [191]. Several pathways are involved in
anti-tumorigenic ROS-related signaling, finally leading to downstream tumor cell apoptosis, autophagy,
or necroptosis [12].
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Hence, tumor cells might exhibit an adaptive behavior in order to deal with different stages of
ROS elevation. Apparently, tumor cells are able to distinguish between “good” and “bad” ROS and to
subsequently induce either prooxidant or antioxidant mechanisms. Although various studies already
proved antioxidant drugs to reduce cancer risk and progression [192], the application of this therapy
needs to be reviewed intensely prior to prescription in order to ensure a clear benefit of the treatment.

6. Impact of ROS on STIM/Orai Channels

6.1. Impact of ROS on Orai

In addition to the ROS-TME interactions outline above, which have received a lot of attention in
TME research, Orai channels are a relatively novel ROS target (Figure 5) but may play an important
role in integrating Ca2+ and ROS signaling in the TME. ROS modulates the function of Orai channels,
thereby modulating (Ca2+)int, which is of high relevance for tumor growth as discussed above. Bogeski
et al. showed that endogenous and overexpressed Orai1 channels are inhibited by H2O2 with an IC50

of 34µM [15]. The same was found for HEK cells overexpressing Orai2. In contrast, HEK cells solely
overexpressing Orai3 were not inhibited by H2O2 (Figure 5), indicating a ROS-sensitivity for Orai1
and Orai2 but not Orai3 [15].
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Figure 5. ROS interferes with STIM and Orai: Orai1 and Orai2 are blocked by ROS due to an oxidation
of C195. Since Orai3 has no cysteine but a glycine on amino acid position 195 (G195), Orai3 channels
are ROS-insensitive. ROS have an activating effect on STIM1. An S-glutathionylation (SG) of C56
renders STIM1 constitutively active. This has been reported to activate Orai channels without prior
store-depletion (see text for details). R: receptor; G/T: G protein/tyrosine kinase; PLC: phospholipase
C; PIP2: phosphatidylinositol 4,5-bisphosphate; IP3: inositol trisphosphate; ER: endoplasmic reticulum.

Major targets of ROS are reactive cysteine residues [193]. Orai1 and Orai2 both contain three
cysteine residues at amino acid positions 126, 143, and 195. Orai3 shares the first two cysteines but lacks
the cysteine at position 195, which is replaced by a glycine. The substitution of Cys-195 with a serine
in Orai1 conferred a partial resistance to H2O2, whereas the insertion of a cysteine in Orai3 at the
respective position rendered Orai3 H2O2 sensitive. Together, these experiments indicate a prominent
role for Cys-195 in the redox-sensitivity of Orai channels [15]. If Orai channels were already coupled
to and opened by a STIM protein, H2O2 did not block the Orai channels, indicating that STIM-Orai
binding might mask Cys-195. This finding is particularly interesting for the STIM1 splice variant
STIM1L primarily found in skeletal muscle cells [194]. In contrast to STIM1, STIM1L is coupled to
Orai1 at resting Ca2+ concentrations without prior store-depletion which would leave STIM1L-Orai1
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clusters insensitive to H2O2-mediated SOCE inhibition. The mode of action of the inhibition of Orai1
with H2O2 was attributed to an intramolecular interaction between the oxidized Cys-195, located in
transmembrane helix 3 with a serine at amino acid position 239, located in transmembrane helix 4,
causing the Orai channel to be in a closed conformation [14].

Considering the differences in redox-sensitivity between Orai1, Orai2, and Orai3 (Figure 5),
the ratio between the isoforms might be an interesting factor regulating Ca2+ signals under oxidative
stress conditions during pathophysiological situations like cancer. For primary human CD4+ T cells,
it was indeed shown that naïve cells increase their Orai3 to Orai1 ratio when differentiating into effector
cells, thereby reducing the channel’s redox-sensibility [15]. Since effector T cells are recruited to sites
of inflammation, like the TME, where ROS concentrations are increased, increasing the Orai3 to Orai1
ratio could represent an adaptation mechanism to maintain Ca2+ signals necessary for proliferation
and the production of cytokines. An Orai3 to Orai1 ratio change was also observed for monocytes
in response to a bacterial peptide and following the bronchoalveolar lavage of S. aureus infected
C57BL6/J mice [16]. Monocytes kill bacteria by rapid exocytosis of H2O2, which is produced by NOX2
in a SOCE-dependent manner [121,195]. Therefore, the switch to a less redox-sensitive composition of
hexameric Orai channels would be beneficial to counter the H2O2-mediated inhibition of SOCE and
a discontinuation of the killing pathway.

Not only immune cells but also cancer cells change the Orai3 to Orai1 ratio, thereby changing the
H2O2 dependence of Orai-based Ca2+ entry. However, the findings are more complicated. Whereas in
prostate cancer [196,197] and in basal breast cancer [115] the Orai3–Orai1 ratio was decreased, it was
increased in another prostate cancer study [38], in estrogen receptor-positive breast cancer [65,115,198]
and in non-basal breast cancer [115].

6.2. Impact of ROS on STIM

As discussed above, STIM1 and STIM2 differ in their sensitivity to luminal Ca2+ and their
efficiency to gate Orai channels. STIM1 contains two cysteines at amino acid positions 49 and 56
which were reported to be redox sensitive [199,200] (Figure 5). Prins et al. [200] stated that under
oxidizing conditions, a disulfide bond between Cys-49 and Cys-56 is formed. In contrast, Hawkins et
al. [199] were not able to detect this disulfide bond formation but showed that the luminal Cys-56 is not
oxidized by H2O2 but rather is S-glutathionylated under oxidizing conditions. This S-glutathionylation
near the protein’s Ca2+ binding domain (formed by an EF-hand motive) rendered STIM1 constitutively
active, thereby inducing SOCE independent of the Ca2+ filling state of the ER [199].

STIM2 is often described as the less abundant isoform because, in most tissues, STIM1 expression
prevails [61,201,202]. However, in the brain, STIM2 is reported to be dominant, and neurons of
STIM2-deficient mice are protected from apoptosis under oxidative stress, indicating a protective role
for STIM2 [203].

7. Interactions between TME, Orai, and ROS: Promoting or Inhibiting Tumor Progression

Tumorigenesis usually starts by mutations of driver genes [204–208] such as RAS, BRAF, or NF-1.
As tumors progress and the microenvironment develops, cells adapt to survive in this new environment,
characterized by different levels of oxygen, nutrients, ROS, ATP, Ca2+, H+, cytokines, or waste products.

It is obvious from the analysis of publications in this review including
references [5,10,52,79,86,209–211] that the expression of STIM-activated Orai channels is enhanced in
most cancer types. In agreement with the finding that the amplitude of Ca2+ influx correlates very well
with cell proliferation [212], it is expected that higher levels of STIM and/or Orai are beneficial for
cancer growth and metastasis. On the other hand, it should not be neglected that there are no hints up
to now that STIM and/or Orai channels work as cancer driver genes [5]. Nevertheless, the inhibition
of Orai channels should inhibit cancer growth, and thus, the blockage of Orai1 and 2 by H2O2 [14–16]
in the TME should inhibit cancer growth (see the Graphical abstract).
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In several cancers, the upregulation of Orai3 was reported [38,39,65–68]. An increase of Orai3
would increase the Orai3–Orai1 ratio, thereby generating H2O2-insensitive heteromultimeric Orai
channels (see the Graphical abstract). This, in turn, would allow enough Ca2+ entry in cancer cells to
promote proliferation, metastasis, invasion, and survival. Thus, higher ROS levels in this case would
be considered pro-tumorigenic, whereas in case the Orai3–Orai1 ratio is low and where mostly Orai1
homomultimers are formed, ROS levels would be considered anti-tumorigenic, resulting finally in
cancer cell death. The dual role of ROS for cancer growth has indeed been reported [12] and many
studies point to a beneficial role of a slightly oxidizing environment for tumor development, growth,
and metastasis.

The efficient cytotoxicity of immune cells against cancer cells is a key factor to eradicating
a tumor. Cytotoxic immune cells like cytotoxic T cells (CTL) or natural killer (NK) cells of the
immune system also rely on Ca2+ influx through STIM-activated Orai channels to fulfill their cytotoxic
functions [8,213–216]. Interestingly, a very low (Ca2+)int is optimal for the high cytotoxic efficiency of
CTL (and to a lesser amount also of NK cells) against cancer cells [216]. Thus, the inhibition of Ca2+

entry through Orai1 and Orai2 channels by slightly increased ROS in the TME may increase immune
cell cytotoxicity against a tumor. In addition, CD4+ T cells and monocytes were found to increase their
Orai3–Orai1 ratio upon activation [15,16]. This increase should protect immune cells against high ROS
concentrations (in particular H2O2) in the TME to enable them to fulfill their cytotoxic functions (see
the Graphical abstract). In general, the relative expression of STIMs and Orais and their respective
ratios is of high importance for cell functions [41–47], and this should also be the case in cancer cells.

Another theory for the susceptibility of different cancers to ROS is the threshold concept, proposed
two decades ago [217]. As a result of the elevated ROS concentrations in the TME, cancer cells are closer
to the cytotoxic threshold of ROS than noncancerous cells. Consequently, the further application of ROS
or the inhibition of antioxidants should lead to an imbalance in the interplay between ROS and the cell’s
antioxidant system, leading to cell death or an increased sensitivity to additional therapeutics [217].

To better understand and predict the interplay between ROS and (Ca2+)int, local parallel
measurements in the TME are necessary (see Table 1 for techniques to determine ROS levels) but not
easy to achieve. For instance, the concentration dependence of ROS (and mainly of H2O2) regarding
cancer cell proliferation or apoptosis and regarding CTL or NK cell cytotoxicity is unfortunately not
well-defined. If different between cancer and immune cells, this would open up interesting therapeutic
options. One pitfall to date is that, for many years, ROS measurements have relied on small chemical
probes or cellular markers, which lack specificity and are prone to artifacts. It is now clear that redox
changes are compartmentalized, pointing to the need of subcellular measurements and not only to rely
on whole cell or even population measurements. Local effects and a lack of good redox probes are
probably the reasons why there are many contradictions regarding the role of redox changes in cancer
initiation, progression, metastasis, and therapy. First used as anticancer drugs [218,219], antioxidants
have been shown to increase lung cancer progression [220] and melanoma metastasis in mice [221].
The same disappointing result occurred in the clinical trial SELECT, where dietary supplementation
with vitamin E significantly increased the risk of prostate cancer among healthy men [222]. This clearly
shows that, as expected, redox modulation in tumors is complex.

With the development of new methods using genetically encoded ratiometric redox sensors, it is
now possible to identify ROS sources and different redox species within tumors even at subcellular
levels [139,223,224]. The group of Dick et al. has expressed these sensors in a mouse model of non-small
lung cancer xenograft and has observed different regions of mitochondrial redox state within the
same tumor, varying from a very oxidized core, where a high percentage of necrotic cells was present
to very reduced areas and regions of highly heterogeneous redox levels [223]. If most tumors are
heterogeneous regarding their redox status as suggested by different O2, pH, and nutrient levels [3],
the function of antioxidants (or oxidants) in the TME is not easy to predict.
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8. Conclusions

STIM-activated Orai channels are likely important players in the TME to integrate Ca2+- and
ROS-dependent functions in both cancer and immune cells (see the Graphical abstract). Considering
the importance of local ROS and Ca2+ signaling in the TME, we need to better understand how/why
these different tumor regions develop and, mainly, what their impact is on local cellular cancer and
immune cell functions. Combining genetically encoded redox and Ca2+ sensors to analyze localized
ROS concentrations and (Ca2+)int in parallel in tumor tissues (if possible, in vivo) is important to test
the relevance of ROS-modulated Orai channels in the TME in a quantitative manner and to allow
reasonable predictions to target them pharmacologically.

Author Contributions: All authors designed and cowrote the article.

Funding: We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) and Saarland University within the funding programme Open Access Publishing. This work
was supported by the DFG by LI 1750/4–2 (to A.L.), by HO 2190/4-2 and by the collaborative research centers
SFB 894 (to L.P.R and M.H.), SFB 1027 (to M.H.), and SFB/TRR 219 (to L.P.R.).

Acknowledgments: Figures 1 and 2 were prepared with the help of Smart PPT (https://smart.servier.com/).
We acknowledge Monika Bozem, Reinhard Kappl, and other all lab members for their helpful discussion and
input. We apologize to all colleagues whose papers are not cited because of space limitations or because we
overlooked them.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci. 2012, 125,
5591–5596. [CrossRef]

2. Califano, A.; Alvarez, M.J. The recurrent architecture of tumour initiation, progression and drug sensitivity.
Nat. Rev. Cancer 2017, 17, 116–130. [CrossRef]

3. Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27,
5904–5912. [CrossRef] [PubMed]

4. Xing, Y.; Zhao, S.; Zhou, B.P.; Mi, J. Metabolic reprogramming of the tumour microenvironment. FEBS J.
2015, 282, 3892–3898. [CrossRef]

5. Hoth, M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. Biochim. Biophys.
Acta 2016, 1863, 1408–1417. [CrossRef] [PubMed]

6. Parekh, A.B.; Putney, J.W., Jr. Store-operated calcium channels. Physiol. Rev. 2005, 85, 757–810. [CrossRef]
[PubMed]

7. Trebak, M.; Kinet, J.P. Calcium signalling in T cells. Nat. Rev. Immunol. 2019. [CrossRef] [PubMed]
8. Schwarz, E.C.; Qu, B.; Hoth, M. Calcium, cancer and killing: The role of calcium in killing cancer cells by

cytotoxic T lymphocytes and natural killer cells. Biochim. Biophys. Acta 2013, 1833, 1603–1611. [CrossRef]
9. Feske, S.; Skolnik, E.Y.; Prakriya, M. Ion channels and transporters in lymphocyte function and immunity.

Nat. Rev. Immunol. 2012, 12, 532–547. [CrossRef] [PubMed]
10. Vashisht, A.; Trebak, M.; Motiani, R.K. STIM and Orai proteins as novel targets for cancer therapy. A Review

in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am. J. Physiol. Cell Physiol. 2015, 309,
C457–C469. [CrossRef]

11. Chalmers, S.B.; Monteith, G.R. ORAI channels and cancer. Cell Calcium 2018, 74, 160–167. [CrossRef]
12. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox:

To promote or to suppress? Free Radic. Biol. Med. 2017, 104, 144–164. [CrossRef]
13. Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64.

[CrossRef] [PubMed]
14. Alansary, D.; Schmidt, B.; Dorr, K.; Bogeski, I.; Rieger, H.; Kless, A.; Niemeyer, B.A. Thiol dependent

intramolecular locking of Orai1 channels. Sci. Rep. 2016, 6, 33347. [CrossRef] [PubMed]
15. Bogeski, I.; Kummerow, C.; Al-Ansary, D.; Schwarz, E.C.; Koehler, R.; Kozai, D.; Takahashi, N.; Peinelt, C.;

Griesemer, D.; Bozem, M.; et al. Differential redox regulation of ORAI ion channels: A mechanism to tune
cellular calcium signaling. Sci. Signal. 2010, 3, ra24. [CrossRef] [PubMed]

https://smart.servier.com/
http://dx.doi.org/10.1242/jcs.116392
http://dx.doi.org/10.1038/nrc.2016.124
http://dx.doi.org/10.1038/onc.2008.271
http://www.ncbi.nlm.nih.gov/pubmed/18836471
http://dx.doi.org/10.1111/febs.13402
http://dx.doi.org/10.1016/j.bbamcr.2015.12.009
http://www.ncbi.nlm.nih.gov/pubmed/26705695
http://dx.doi.org/10.1152/physrev.00057.2003
http://www.ncbi.nlm.nih.gov/pubmed/15788710
http://dx.doi.org/10.1038/s41577-018-0110-7
http://www.ncbi.nlm.nih.gov/pubmed/30622345
http://dx.doi.org/10.1016/j.bbamcr.2012.11.016
http://dx.doi.org/10.1038/nri3233
http://www.ncbi.nlm.nih.gov/pubmed/22699833
http://dx.doi.org/10.1152/ajpcell.00064.2015
http://dx.doi.org/10.1016/j.ceca.2018.07.011
http://dx.doi.org/10.1016/j.freeradbiomed.2017.01.004
http://dx.doi.org/10.1016/j.semcdb.2017.05.023
http://www.ncbi.nlm.nih.gov/pubmed/28587975
http://dx.doi.org/10.1038/srep33347
http://www.ncbi.nlm.nih.gov/pubmed/27624281
http://dx.doi.org/10.1126/scisignal.2000672
http://www.ncbi.nlm.nih.gov/pubmed/20354224


Cancers 2019, 11, 457 18 of 28

16. Saul, S.; Gibhardt, C.S.; Schmidt, B.; Lis, A.; Pasieka, B.; Conrad, D.; Jung, P.; Gaupp, R.; Wonnenberg, B.;
Diler, E.; et al. A calcium-redox feedback loop controls human monocyte immune responses: The role of
ORAI Ca2+ channels. Sci. Signal. 2016, 9, ra26. [CrossRef]

17. Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer
prevention and therapy. Ann. N. Y. Acad. Sci. 2015, 1348, 20–31. [CrossRef] [PubMed]

18. Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 133, 571–573. [CrossRef]
19. Anari, F.; Ramamurthy, C.; Zibelman, M. Impact of tumor microenvironment composition on therapeutic

responses and clinical outcomes in cancer. Future Oncol. 2018, 14, 1409–1421. [CrossRef] [PubMed]
20. Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response.

Nature 2013, 501, 346–354. [CrossRef]
21. Weber, C.E.; Kuo, P.C. The tumor microenvironment. Surg. Oncol. 2012, 21, 172–177. [CrossRef]
22. Polyak, K.; Haviv, I.; Campbell, I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet.

2009, 25, 30–38. [CrossRef]
23. Vogel, B.; Mehta, S.R.; Mehran, R. Reperfusion strategies in acute myocardial infarction and multivessel

disease. Nat. Rev. Cardiol. 2017, 14, 665–678. [CrossRef]
24. Michiels, C.; Tellier, C.; Feron, O. Cycling hypoxia: A key feature of the tumor microenvironment. Biochim.

Biophys. Acta 2016, 1866, 76–86. [CrossRef]
25. Hoth, M.; Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature

1992, 355, 353–356. [CrossRef] [PubMed]
26. Subedi, K.P.; Ong, H.L.; Son, G.Y.; Liu, X.; Ambudkar, I.S. STIM2 Induces Activated Conformation of STIM1

to Control Orai1 Function in ER-PM Junctions. Cell Rep. 2018, 23, 522–534. [CrossRef] [PubMed]
27. Brandman, O.; Liou, J.; Park, W.S.; Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and

endoplasmic reticulum Ca2+ levels. Cell 2007, 131, 1327–1339. [CrossRef]
28. Bird, G.S.; Hwang, S.Y.; Smyth, J.T.; Fukushima, M.; Boyles, R.R.; Putney, J.W., Jr. STIM1 is a calcium sensor

specialized for digital signaling. Curr. Biol. 2009, 19, 1724–1729. [CrossRef] [PubMed]
29. DeHaven, W.I.; Smyth, J.T.; Boyles, R.R.; Putney, J.W., Jr. Calcium inhibition and calcium potentiation of

Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J. Biol. Chem. 2007, 282, 17548–17556.
[CrossRef] [PubMed]

30. Lis, A.; Peinelt, C.; Beck, A.; Parvez, S.; Monteilh-Zoller, M.; Fleig, A.; Penner, R. CRACM1, CRACM2,
and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr. Biol. 2007, 17,
794–800. [CrossRef]

31. Yen, T.T.; Yang, A.; Chiu, W.T.; Li, T.N.; Wang, L.H.; Wu, Y.H.; Wang, H.C.; Chen, L.; Wang, W.C.; Huang, W.;
et al. Hepatitis B virus PreS2-mutant large surface antigen activates store-operated calcium entry and
promotes chromosome instability. Oncotarget 2016, 7, 23346–23360. [CrossRef]

32. Zhang, Z.; Liu, X.; Feng, B.; Liu, N.; Wu, Q.; Han, Y.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. STIM1, a direct target
of microRNA-185, promotes tumor metastasis and is associated with poor prognosis in colorectal cancer.
Oncogene 2015, 34, 4808–4820. [CrossRef] [PubMed]

33. Gui, L.; Wang, Z.; Han, J.; Ma, H.; Li, Z. High Expression of Orai1 Enhances Cell Proliferation and is
Associated with Poor Prognosis in Human Colorectal Cancer. Clin. Lab. 2016, 62, 1689–1698. [CrossRef]
[PubMed]

34. Zhan, Z.Y.; Zhong, L.X.; Feng, M.; Wang, J.F.; Liu, D.B.; Xiong, J.P. Over-expression of Orai1 mediates cell
proliferation and associates with poor prognosis in human non-small cell lung carcinoma. Int. J. Clin. Exp.
Pathol. 2015, 8, 5080–5088.

35. Zhu, H.; Zhang, H.; Jin, F.; Fang, M.; Huang, M.; Yang, C.S.; Chen, T.; Fu, L.; Pan, Z. Elevated Orai1 expression
mediates tumor-promoting intracellular Ca2+ oscillations in human esophageal squamous cell carcinoma.
Oncotarget 2014, 5, 3455–3471. [CrossRef] [PubMed]

36. Xia, J.; Wang, H.; Huang, H.; Sun, L.; Dong, S.; Huang, N.; Shi, M.; Bin, J.; Liao, Y.; Liao, W. Elevated Orai1
and STIM1 expressions upregulate MACC1 expression to promote tumor cell proliferation, metabolism,
migration, and invasion in human gastric cancer. Cancer Lett. 2016, 381, 31–40. [CrossRef] [PubMed]

37. Benzerdjeb, N.; Sevestre, H.; Ahidouch, A.; Ouadid-Ahidouch, H. Orai3 is a predictive marker of metastasis
and survival in resectable lung adenocarcinoma. Oncotarget 2016, 7, 81588–81597. [CrossRef]

http://dx.doi.org/10.1126/scisignal.aaf1639
http://dx.doi.org/10.1111/nyas.12811
http://www.ncbi.nlm.nih.gov/pubmed/26109073
http://dx.doi.org/10.1016/S0140-6736(00)49915-0
http://dx.doi.org/10.2217/fon-2017-0585
http://www.ncbi.nlm.nih.gov/pubmed/29848096
http://dx.doi.org/10.1038/nature12626
http://dx.doi.org/10.1016/j.suronc.2011.09.001
http://dx.doi.org/10.1016/j.tig.2008.10.012
http://dx.doi.org/10.1038/nrcardio.2017.88
http://dx.doi.org/10.1016/j.bbcan.2016.06.004
http://dx.doi.org/10.1038/355353a0
http://www.ncbi.nlm.nih.gov/pubmed/1309940
http://dx.doi.org/10.1016/j.celrep.2018.03.065
http://www.ncbi.nlm.nih.gov/pubmed/29642009
http://dx.doi.org/10.1016/j.cell.2007.11.039
http://dx.doi.org/10.1016/j.cub.2009.08.022
http://www.ncbi.nlm.nih.gov/pubmed/19765994
http://dx.doi.org/10.1074/jbc.M611374200
http://www.ncbi.nlm.nih.gov/pubmed/17452328
http://dx.doi.org/10.1016/j.cub.2007.03.065
http://dx.doi.org/10.18632/oncotarget.8109
http://dx.doi.org/10.1038/onc.2014.404
http://www.ncbi.nlm.nih.gov/pubmed/25531324
http://dx.doi.org/10.7754/Clin.Lab.2016.160131
http://www.ncbi.nlm.nih.gov/pubmed/28164587
http://dx.doi.org/10.18632/oncotarget.1903
http://www.ncbi.nlm.nih.gov/pubmed/24797725
http://dx.doi.org/10.1016/j.canlet.2016.07.014
http://www.ncbi.nlm.nih.gov/pubmed/27431311
http://dx.doi.org/10.18632/oncotarget.13149


Cancers 2019, 11, 457 19 of 28

38. Dubois, C.; Vanden Abeele, F.; Lehen’kyi, V.; Gkika, D.; Guarmit, B.; Lepage, G.; Slomianny, C.; Borowiec, A.S.;
Bidaux, G.; Benahmed, M.; et al. Remodeling of channel-forming ORAI proteins determines an oncogenic
switch in prostate cancer. Cancer Cell 2014, 26, 19–32. [CrossRef] [PubMed]

39. Faouzi, M.; Hague, F.; Potier, M.; Ahidouch, A.; Sevestre, H.; Ouadid-Ahidouch, H. Down-regulation of
Orai3 arrests cell-cycle progression and induces apoptosis in breast cancer cells but not in normal breast
epithelial cells. J. Cell. Physiol. 2011, 226, 542–551. [CrossRef] [PubMed]

40. McAndrew, D.; Grice, D.M.; Peters, A.A.; Davis, F.M.; Stewart, T.; Rice, M.; Smart, C.E.; Brown, M.A.;
Kenny, P.A.; Roberts-Thomson, S.J.; et al. ORAI1-mediated calcium influx in lactation and in breast cancer.
Mol. Cancer Ther. 2011, 10, 448–460. [CrossRef]

41. Rana, A.; Yen, M.; Sadaghiani, A.M.; Malmersjo, S.; Park, C.Y.; Dolmetsch, R.E.; Lewis, R.S. Alternative
splicing converts STIM2 from an activator to an inhibitor of store-operated calcium channels. J. Cell Biol.
2015, 209, 653–669. [CrossRef]

42. Miederer, A.M.; Alansary, D.; Schwar, G.; Lee, P.H.; Jung, M.; Helms, V.; Niemeyer, B.A. A STIM2 splice
variant negatively regulates store-operated calcium entry. Nat. Commun. 2015, 6, 6899. [CrossRef] [PubMed]

43. Scrimgeour, N.; Litjens, T.; Ma, L.; Barritt, G.J.; Rychkov, G.Y. Properties of Orai1 mediated store-operated
current depend on the expression levels of STIM1 and Orai1 proteins. J. Physiol. 2009, 587, 2903–2918.
[CrossRef] [PubMed]

44. Hoover, P.J.; Lewis, R.S. Stoichiometric requirements for trapping and gating of Ca2+ release-activated
Ca2+ (CRAC) channels by stromal interaction molecule 1 (STIM1). Proc. Natl. Acad. Sci. USA 2011, 108,
13299–13304. [CrossRef] [PubMed]

45. Li, Z.; Liu, L.; Deng, Y.; Ji, W.; Du, W.; Xu, P.; Chen, L.; Xu, T. Graded activation of CRAC channel by binding
of different numbers of STIM1 to Orai1 subunits. Cell Res. 2011, 21, 305–315. [CrossRef]

46. Zhou, Y.; Wang, X.; Wang, X.; Loktionova, N.A.; Cai, X.; Nwokonko, R.M.; Vrana, E.; Wang, Y.; Rothberg, B.S.;
Gill, D.L. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels. Nat. Commun. 2015, 6,
8395. [CrossRef]

47. Wang, X.; Wang, Y.; Zhou, Y.; Hendron, E.; Mancarella, S.; Andrake, M.D.; Rothberg, B.S.; Soboloff, J.;
Gill, D.L. Distinct Orai-coupling domains in STIM1 and STIM2 define the Orai-activating site. Nat. Commun.
2014, 5, 3183. [CrossRef]

48. Roderick, H.L.; Cook, S.J. Ca2+ signalling checkpoints in cancer: Remodelling Ca2+ for cancer cell
proliferation and survival. Nat. Rev. Cancer 2008, 8, 361–375. [CrossRef]

49. Wang, J.Y.; Sun, J.; Huang, M.Y.; Wang, Y.S.; Hou, M.F.; Sun, Y.; He, H.; Krishna, N.; Chiu, S.J.; Lin, S.; et al.
STIM1 overexpression promotes colorectal cancer progression, cell motility and COX-2 expression. Oncogene
2015, 34, 4358–4367. [CrossRef]

50. Kim, J.H.; Lkhagvadorj, S.; Lee, M.R.; Hwang, K.H.; Chung, H.C.; Jung, J.H.; Cha, S.K.; Eom, M. Orai1 and
STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochem. Biophys. Res.
Commun. 2014, 448, 76–82. [CrossRef]

51. Zhou, Y.; Gu, P.; Li, J.; Li, F.; Zhu, J.; Gao, P.; Zang, Y.; Wang, Y.; Shan, Y.; Yang, D. Suppression of STIM1
inhibits the migration and invasion of human prostate cancer cells and is associated with PI3K/Akt signaling
inactivation. Oncol. Rep. 2017, 38, 2629–2636. [CrossRef] [PubMed]

52. Chen, Y.F.; Chiu, W.T.; Chen, Y.T.; Lin, P.Y.; Huang, H.J.; Chou, C.Y.; Chang, H.C.; Tang, M.J.; Shen, M.R.
Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical
cancer growth, migration, and angiogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, 15225–15230. [CrossRef]

53. Li, G.; Zhang, Z.; Wang, R.; Ma, W.; Yang, Y.; Wei, J.; Wei, Y. Suppression of STIM1 inhibits human
glioblastoma cell proliferation and induces G0/G1 phase arrest. J. Exp. Clin. Cancer Res. 2013, 32, 20.
[CrossRef] [PubMed]

54. Li, P.; Bian, X.Y.; Chen, Q.; Yao, X.F.; Wang, X.D.; Zhang, W.C.; Tao, Y.J.; Jin, R.; Zhang, L. Blocking of stromal
interaction molecule 1 expression influence cell proliferation and promote cell apoptosis in vitro and inhibit
tumor growth in vivo in head and neck squamous cell carcinoma. PLoS ONE 2017, 12, e0177484. [CrossRef]
[PubMed]

55. Wang, Y.; He, J.; Jiang, H.; Zhang, Q.; Yang, H.; Xu, X.; Zhang, C.; Xu, C.; Wang, J.; Lu, W. Nicotine enhances
storeoperated calcium entry by upregulating HIF1alpha and SOCC components in nonsmall cell lung cancer
cells. Oncol. Rep. 2018, 40, 2097–2104. [PubMed]

http://dx.doi.org/10.1016/j.ccr.2014.04.025
http://www.ncbi.nlm.nih.gov/pubmed/24954132
http://dx.doi.org/10.1002/jcp.22363
http://www.ncbi.nlm.nih.gov/pubmed/20683915
http://dx.doi.org/10.1158/1535-7163.MCT-10-0923
http://dx.doi.org/10.1083/jcb.201412060
http://dx.doi.org/10.1038/ncomms7899
http://www.ncbi.nlm.nih.gov/pubmed/25896806
http://dx.doi.org/10.1113/jphysiol.2009.170662
http://www.ncbi.nlm.nih.gov/pubmed/19403622
http://dx.doi.org/10.1073/pnas.1101664108
http://www.ncbi.nlm.nih.gov/pubmed/21788510
http://dx.doi.org/10.1038/cr.2010.131
http://dx.doi.org/10.1038/ncomms9395
http://dx.doi.org/10.1038/ncomms4183
http://dx.doi.org/10.1038/nrc2374
http://dx.doi.org/10.1038/onc.2014.366
http://dx.doi.org/10.1016/j.bbrc.2014.04.064
http://dx.doi.org/10.3892/or.2017.5961
http://www.ncbi.nlm.nih.gov/pubmed/29048678
http://dx.doi.org/10.1073/pnas.1103315108
http://dx.doi.org/10.1186/1756-9966-32-20
http://www.ncbi.nlm.nih.gov/pubmed/23578185
http://dx.doi.org/10.1371/journal.pone.0177484
http://www.ncbi.nlm.nih.gov/pubmed/28494008
http://www.ncbi.nlm.nih.gov/pubmed/30015910


Cancers 2019, 11, 457 20 of 28

56. Choi, S.; Cui, C.; Luo, Y.; Kim, S.H.; Ko, J.K.; Huo, X.; Ma, J.; Fu, L.W.; Souza, R.F.; Korichneva, I.; et al.
Selective inhibitory effects of zinc on cell proliferation in esophageal squamous cell carcinoma through Orai1.
FASEB J. 2018, 32, 404–416. [CrossRef]

57. Bernichtein, S.; Pigat, N.; Barry Delongchamps, N.; Boutillon, F.; Verkarre, V.; Camparo, P.; Reyes-Gomez, E.;
Mejean, A.; Oudard, S.M.; Lepicard, E.M.; et al. Vitamin D3 Prevents Calcium-Induced Progression of
Early-Stage Prostate Tumors by Counteracting TRPC6 and Calcium Sensing Receptor Upregulation. Cancer
Res. 2017, 77, 355–365. [CrossRef] [PubMed]

58. Qi, L.; Song, W.; Li, L.; Cao, L.; Yu, Y.; Song, C.; Wang, Y.; Zhang, F.; Li, Y.; Zhang, B.; et al. FGF4 induces
epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma.
Oncotarget 2016, 7, 74015–74030. [CrossRef]

59. Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976.
[CrossRef] [PubMed]

60. Peng, H.; Liu, J.; Sun, Q.; Chen, R.; Wang, Y.; Duan, J.; Li, C.; Li, B.; Jing, Y.; Chen, X.; et al. mTORC1
enhancement of STIM1-mediated store-operated Ca2+ entry constrains tuberous sclerosis complex-related
tumor development. Oncogene 2013, 32, 4702–4711. [CrossRef]

61. Hoth, M.; Niemeyer, B.A. The neglected CRAC proteins: Orai2, Orai3, and STIM2. Curr. Top. Membr. 2013,
71, 237–271. [PubMed]

62. Aytes, A.; Mollevi, D.G.; Martinez-Iniesta, M.; Nadal, M.; Vidal, A.; Morales, A.; Salazar, R.; Capella, G.;
Villanueva, A. Stromal interaction molecule 2 (STIM2) is frequently overexpressed in colorectal tumors and
confers a tumor cell growth suppressor phenotype. Mol. Carcinog. 2012, 51, 746–753. [CrossRef] [PubMed]

63. Stanisz, H.; Saul, S.; Muller, C.S.; Kappl, R.; Niemeyer, B.A.; Vogt, T.; Hoth, M.; Roesch, A.; Bogeski, I. Inverse
regulation of melanoma growth and migration by Orai1/STIM2-dependent calcium entry. Pigment Cell
Melanoma Res. 2014, 27, 442–453. [CrossRef] [PubMed]

64. Sobradillo, D.; Hernandez-Morales, M.; Ubierna, D.; Moyer, M.P.; Nunez, L.; Villalobos, C. A reciprocal shift
in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to
Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J. Biol. Chem. 2014, 289, 28765–28782.
[CrossRef] [PubMed]

65. Motiani, R.K.; Zhang, X.; Harmon, K.E.; Keller, R.S.; Matrougui, K.; Bennett, J.A.; Trebak, M. Orai3 is
an estrogen receptor alpha-regulated Ca(2)(+) channel that promotes tumorigenesis. FASEB J. 2013, 27, 63–75.
[CrossRef]

66. Faouzi, M.; Kischel, P.; Hague, F.; Ahidouch, A.; Benzerdjeb, N.; Sevestre, H.; Penner, R.; Ouadid-Ahidouch, H.
ORAI3 silencing alters cell proliferation and cell cycle progression via c-myc pathway in breast cancer cells.
Biochim. Biophys. Acta 2013, 1833, 752–760. [CrossRef]

67. Ay, A.S.; Benzerdjeb, N.; Sevestre, H.; Ahidouch, A.; Ouadid-Ahidouch, H. Orai3 constitutes a native
store-operated calcium entry that regulates non small cell lung adenocarcinoma cell proliferation. PLoS ONE
2013, 8, e72889. [CrossRef]

68. Vashisht, A.; Tanwar, J.; Motiani, R.K. Regulation of proto-oncogene Orai3 by miR18a/b and miR34a. Cell
Calcium 2018, 75, 101–111. [CrossRef] [PubMed]

69. Li, W.; Zhang, M.; Xu, L.; Lin, D.; Cai, S.; Zou, F. The apoptosis of non-small cell lung cancer induced by
cisplatin through modulation of STIM1. Exp. Toxicol. Pathol. 2013, 65, 1073–1081. [CrossRef]

70. Kondratska, K.; Kondratskyi, A.; Yassine, M.; Lemonnier, L.; Lepage, G.; Morabito, A.; Skryma, R.;
Prevarskaya, N. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic
adenocarcinoma. Biochim. Biophys. Acta 2014, 1843, 2263–2269. [CrossRef]

71. Flourakis, M.; Lehen’kyi, V.; Beck, B.; Raphael, M.; Vandenberghe, M.; Abeele, F.V.; Roudbaraki, M.;
Lepage, G.; Mauroy, B.; Romanin, C.; et al. Orai1 contributes to the establishment of an apoptosis-resistant
phenotype in prostate cancer cells. Cell Death Dis. 2010, 1, e75. [CrossRef] [PubMed]

72. Chiu, W.T.; Chang, H.A.; Lin, Y.H.; Lin, Y.S.; Chang, H.T.; Lin, H.H.; Huang, S.C.; Tang, M.J.; Shen, M.R.
Bcl(-)2 regulates store-operated Ca(2+) entry to modulate ER stress-induced apoptosis. Cell Death Discov.
2018, 4, 37. [CrossRef] [PubMed]

73. Pinton, P.; Ferrari, D.; Rapizzi, E.; Di Virgilio, F.; Pozzan, T.; Rizzuto, R. The Ca2+ concentration of the
endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular
mechanism of Bcl-2 action. EMBO J. 2001, 20, 2690–2701. [CrossRef] [PubMed]

http://dx.doi.org/10.1096/fj.201700227RRR
http://dx.doi.org/10.1158/0008-5472.CAN-16-0687
http://www.ncbi.nlm.nih.gov/pubmed/27879271
http://dx.doi.org/10.18632/oncotarget.12187
http://dx.doi.org/10.1016/j.cell.2017.02.004
http://www.ncbi.nlm.nih.gov/pubmed/28283069
http://dx.doi.org/10.1038/onc.2012.481
http://www.ncbi.nlm.nih.gov/pubmed/23890118
http://dx.doi.org/10.1002/mc.20843
http://www.ncbi.nlm.nih.gov/pubmed/22125164
http://dx.doi.org/10.1111/pcmr.12222
http://www.ncbi.nlm.nih.gov/pubmed/24472175
http://dx.doi.org/10.1074/jbc.M114.581678
http://www.ncbi.nlm.nih.gov/pubmed/25143380
http://dx.doi.org/10.1096/fj.12-213801
http://dx.doi.org/10.1016/j.bbamcr.2012.12.009
http://dx.doi.org/10.1371/journal.pone.0072889
http://dx.doi.org/10.1016/j.ceca.2018.08.006
http://www.ncbi.nlm.nih.gov/pubmed/30216788
http://dx.doi.org/10.1016/j.etp.2013.04.003
http://dx.doi.org/10.1016/j.bbamcr.2014.02.012
http://dx.doi.org/10.1038/cddis.2010.52
http://www.ncbi.nlm.nih.gov/pubmed/21364678
http://dx.doi.org/10.1038/s41420-018-0039-4
http://www.ncbi.nlm.nih.gov/pubmed/29531834
http://dx.doi.org/10.1093/emboj/20.11.2690
http://www.ncbi.nlm.nih.gov/pubmed/11387204


Cancers 2019, 11, 457 21 of 28

74. Sun, S.; Li, W.; Zhang, H.; Zha, L.; Xue, Y.; Wu, X.; Zou, F. Requirement for store-operated calcium entry in
sodium butyrate-induced apoptosis in human colon cancer cells. Biosci. Rep. 2012, 32, 83–90. [CrossRef]
[PubMed]

75. Gueder, N.; Allan, G.; Telliez, M.S.; Hague, F.; Fernandez, J.M.; Sanchez-Fernandez, E.M.;
Ortiz-Mellet, C.; Ahidouch, A.; Ouadid-Ahidouch, H. sp(2) -Iminosugar alpha-glucosidase inhibitor
1-C-octyl-2-oxa-3-oxocastanospermine specifically affected breast cancer cell migration through Stim1,
beta1-integrin, and FAK signaling pathways. J. Cell. Physiol. 2017, 232, 3631–3640. [CrossRef]

76. Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer 2018, 18, 128–134.
[CrossRef]

77. Roche, J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers 2018, 10, 52. [CrossRef] [PubMed]
78. De Craene, B.; Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat.

Rev. Cancer 2013, 13, 97–110. [CrossRef] [PubMed]
79. Xu, Y.; Zhang, S.; Niu, H.; Ye, Y.; Hu, F.; Chen, S.; Li, X.; Luo, X.; Jiang, S.; Liu, Y.; et al. STIM1 accelerates

cell senescence in a remodeled microenvironment but enhances the epithelial-to-mesenchymal transition in
prostate cancer. Sci. Rep. 2015, 5, 11754. [CrossRef]

80. Hu, J.; Qin, K.; Zhang, Y.; Gong, J.; Li, N.; Lv, D.; Xiang, R.; Tan, X. Downregulation of transcription factor
Oct4 induces an epithelial-to-mesenchymal transition via enhancement of Ca2+ influx in breast cancer cells.
Biochem. Biophys. Res. Commun. 2011, 411, 786–791. [CrossRef] [PubMed]

81. Zhang, S.; Miao, Y.; Zheng, X.; Gong, Y.; Zhang, J.; Zou, F.; Cai, C. STIM1 and STIM2 differently regulate
endogenous Ca(2+) entry and promote TGF-beta-induced EMT in breast cancer cells. Biochem. Biophys. Res.
Commun. 2017, 488, 74–80. [CrossRef] [PubMed]

82. Bhattacharya, A.; Kumar, J.; Hermanson, K.; Sun, Y.; Qureshi, H.; Perley, D.; Scheidegger, A.; Singh, B.B.;
Dhasarathy, A. The calcium channel proteins ORAI3 and STIM1 mediate TGF-beta induced Snai1 expression.
Oncotarget 2018, 9, 29468–29483. [CrossRef] [PubMed]

83. Brundage, R.A.; Fogarty, K.E.; Tuft, R.A.; Fay, F.S. Calcium gradients underlying polarization and chemotaxis
of eosinophils. Science 1991, 254, 703–706. [CrossRef] [PubMed]

84. Lee, J.; Ishihara, A.; Oxford, G.; Johnson, B.; Jacobson, K. Regulation of cell movement is mediated by
stretch-activated calcium channels. Nature 1999, 400, 382–386. [CrossRef] [PubMed]

85. Schwab, A.; Fabian, A.; Hanley, P.J.; Stock, C. Role of ion channels and transporters in cell migration. Physiol.
Rev. 2012, 92, 1865–1913. [CrossRef]

86. Mo, P.; Yang, S. The store-operated calcium channels in cancer metastasis: From cell migration, invasion to
metastatic colonization. Front. Biosci. (Landmark. Ed.) 2018, 23, 1241–1256. [PubMed]

87. Yang, S.; Zhang, J.J.; Huang, X.Y. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis.
Cancer Cell 2009, 15, 124–134. [CrossRef] [PubMed]

88. Chantome, A.; Potier-Cartereau, M.; Clarysse, L.; Fromont, G.; Marionneau-Lambot, S.; Gueguinou, M.;
Pages, J.C.; Collin, C.; Oullier, T.; Girault, A.; et al. Pivotal role of the lipid Raft SK3-Orai1 complex in human
cancer cell migration and bone metastases. Cancer Res. 2013, 73, 4852–4861. [CrossRef] [PubMed]

89. Sun, J.; Lu, F.; He, H.; Shen, J.; Messina, J.; Mathew, R.; Wang, D.; Sarnaik, A.A.; Chang, W.C.; Kim, M.;
et al. STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma
invasion. J. Cell. Biol. 2014, 207, 535–548. [CrossRef]

90. Kadir, S.; Astin, J.W.; Tahtamouni, L.; Martin, P.; Nobes, C.D. Microtubule remodelling is required for the
front-rear polarity switch during contact inhibition of locomotion. J. Cell Sci. 2011, 124, 2642–2653. [CrossRef]

91. Webb, D.J.; Parsons, J.T.; Horwitz, A.F. Adhesion assembly, disassembly and turnover in migrating
cells—Over and over and over again. Nat. Cell Biol. 2002, 4, E97–E100. [CrossRef]

92. Chen, Y.T.; Chen, Y.F.; Chiu, W.T.; Wang, Y.K.; Chang, H.C.; Shen, M.R. The ER Ca(2)(+) sensor STIM1
regulates actomyosin contractility of migratory cells. J. Cell Sci. 2013, 126, 1260–1267. [CrossRef] [PubMed]

93. Chen, Y.W.; Chen, Y.F.; Chiu, W.T.; Chen, H.C.; Shen, M.R. STIM1-dependent Ca(2+) signaling regulates
podosome formation to facilitate cancer cell invasion. Sci. Rep. 2017, 7, 11523. [CrossRef]

94. Yang, N.; Tang, Y.; Wang, F.; Zhang, H.; Xu, D.; Shen, Y.; Sun, S.; Yang, G. Blockade of store-operated Ca(2+)
entry inhibits hepatocarcinoma cell migration and invasion by regulating focal adhesion turnover. Cancer
Lett. 2013, 330, 163–169. [CrossRef] [PubMed]

http://dx.doi.org/10.1042/BSR20110062
http://www.ncbi.nlm.nih.gov/pubmed/21699495
http://dx.doi.org/10.1002/jcp.25832
http://dx.doi.org/10.1038/nrc.2017.118
http://dx.doi.org/10.3390/cancers10020052
http://www.ncbi.nlm.nih.gov/pubmed/29462906
http://dx.doi.org/10.1038/nrc3447
http://www.ncbi.nlm.nih.gov/pubmed/23344542
http://dx.doi.org/10.1038/srep11754
http://dx.doi.org/10.1016/j.bbrc.2011.07.025
http://www.ncbi.nlm.nih.gov/pubmed/21798248
http://dx.doi.org/10.1016/j.bbrc.2017.05.009
http://www.ncbi.nlm.nih.gov/pubmed/28479254
http://dx.doi.org/10.18632/oncotarget.25672
http://www.ncbi.nlm.nih.gov/pubmed/30034631
http://dx.doi.org/10.1126/science.1948048
http://www.ncbi.nlm.nih.gov/pubmed/1948048
http://dx.doi.org/10.1038/22578
http://www.ncbi.nlm.nih.gov/pubmed/10432119
http://dx.doi.org/10.1152/physrev.00018.2011
http://www.ncbi.nlm.nih.gov/pubmed/28930597
http://dx.doi.org/10.1016/j.ccr.2008.12.019
http://www.ncbi.nlm.nih.gov/pubmed/19185847
http://dx.doi.org/10.1158/0008-5472.CAN-12-4572
http://www.ncbi.nlm.nih.gov/pubmed/23774210
http://dx.doi.org/10.1083/jcb.201407082
http://dx.doi.org/10.1242/jcs.087965
http://dx.doi.org/10.1038/ncb0402-e97
http://dx.doi.org/10.1242/jcs.121129
http://www.ncbi.nlm.nih.gov/pubmed/23378028
http://dx.doi.org/10.1038/s41598-017-11273-2
http://dx.doi.org/10.1016/j.canlet.2012.11.040
http://www.ncbi.nlm.nih.gov/pubmed/23211538


Cancers 2019, 11, 457 22 of 28

95. Zhu, M.; Chen, L.; Zhao, P.; Zhou, H.; Zhang, C.; Yu, S.; Lin, Y.; Yang, X. Store-operated Ca(2+) entry regulates
glioma cell migration and invasion via modulation of Pyk2 phosphorylation. J. Exp. Clin. Cancer Res. 2014,
33, 98. [CrossRef]

96. Huang, C.Y.; Wei, P.L.; Chen, W.Y.; Chang, W.C.; Chang, Y.J. Silencing Heat Shock Protein 27 Inhibits the
Progression and Metastasis of Colorectal Cancer (CRC) by Maintaining the Stability of Stromal Interaction
Molecule 1 (STIM1) Proteins. Cells 2018, 7, 262. [CrossRef] [PubMed]

97. Emeriau, N.; de Clippele, M.; Gailly, P.; Tajeddine, N. Store operated calcium entry is altered by the inhibition
of receptors tyrosine kinase. Oncotarget 2018, 9, 16059–16073. [CrossRef]

98. Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134.
[CrossRef] [PubMed]

99. Gueguinou, M.; Harnois, T.; Crottes, D.; Uguen, A.; Deliot, N.; Gambade, A.; Chantome, A.; Haelters, J.P.;
Jaffres, P.A.; Jourdan, M.L.; et al. SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell
migration: A novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline. Oncotarget
2016, 7, 36168–36184. [CrossRef]

100. Potente, M.; Gerhardt, H.; Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 2011, 146, 873–887.
[CrossRef]

101. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1995, 1, 27–31.
[CrossRef] [PubMed]

102. Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [CrossRef]
103. Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408. [CrossRef]

[PubMed]
104. Darby, I.A.; Hewitson, T.D. Hypoxia in tissue repair and fibrosis. Cell Tissue Res. 2016, 365, 553–562.

[CrossRef] [PubMed]
105. LaGory, E.L.; Giaccia, A.J. The ever-expanding role of HIF in tumour and stromal biology. Nat. Cell Biol.

2016, 18, 356–365. [CrossRef] [PubMed]
106. Liu, X.; Wan, X.; Kan, H.; Wang, Y.; Yu, F.; Feng, L.; Jin, J.; Zhang, P.; Ma, X. Hypoxia-induced upregulation

of Orai1 drives colon cancer invasiveness and angiogenesis. Eur. J. Pharmacol. 2018, 832, 1–10. [CrossRef]
[PubMed]

107. Liu, X.; Wang, T.; Wang, Y.; Chen, Z.; Hua, D.; Yao, X.; Ma, X.; Zhang, P. Orai1 is critical for Notch-driven
aggressiveness under hypoxic conditions in triple-negative breast cancers. Biochim. Biophys. Acta Mol. Basis
Dis 2018, 1864, 975–986. [CrossRef] [PubMed]

108. Shin, H.M.; Minter, L.M.; Cho, O.H.; Gottipati, S.; Fauq, A.H.; Golde, T.E.; Sonenshein, G.E.; Osborne, B.A.
Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 2006, 25, 129–138.
[CrossRef]

109. Eylenstein, A.; Schmidt, S.; Gu, S.; Yang, W.; Schmid, E.; Schmidt, E.M.; Alesutan, I.; Szteyn, K.; Regel, I.;
Shumilina, E.; et al. Transcription factor NF-kappaB regulates expression of pore-forming Ca2+ channel unit,
Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. J. Biol. Chem. 2012, 287,
2719–2730. [CrossRef]

110. Kallio, P.J.; Okamoto, K.; O’Brien, S.; Carrero, P.; Makino, Y.; Tanaka, H.; Poellinger, L. Signal transduction
in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the
hypoxia-inducible factor-1alpha. EMBO J 1998, 17, 6573–6586. [CrossRef]

111. Li, Y.; Guo, B.; Xie, Q.; Ye, D.; Zhang, D.; Zhu, Y.; Chen, H.; Zhu, B. STIM1 Mediates Hypoxia-Driven
Hepatocarcinogenesis via Interaction with HIF-1. Cell Rep. 2015, 12, 388–395. [CrossRef] [PubMed]

112. Dery, M.A.; Michaud, M.D.; Richard, D.E. Hypoxia-inducible factor 1: Regulation by hypoxic and
non-hypoxic activators. Int. J. Biochem. Cell Biol. 2005, 37, 535–540. [CrossRef]

113. Chandel, N.S.; McClintock, D.S.; Feliciano, C.E.; Wood, T.M.; Melendez, J.A.; Rodriguez, A.M.;
Schumacker, P.T. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible
factor-1alpha during hypoxia: A mechanism of O2 sensing. J. Biol. Chem. 2000, 275, 25130–25138. [CrossRef]
[PubMed]

114. Song, M.Y.; Makino, A.; Yuan, J.X. STIM2 Contributes to Enhanced Store-operated Ca Entry in Pulmonary
Artery Smooth Muscle Cells from Patients with Idiopathic Pulmonary Arterial Hypertension. Pulm. Circul.
2011, 1, 84–94. [CrossRef]

http://dx.doi.org/10.1186/PREACCEPT-3101393591453932
http://dx.doi.org/10.3390/cells7120262
http://www.ncbi.nlm.nih.gov/pubmed/30544747
http://dx.doi.org/10.18632/oncotarget.24685
http://dx.doi.org/10.1016/j.cell.2010.06.011
http://www.ncbi.nlm.nih.gov/pubmed/20602996
http://dx.doi.org/10.18632/oncotarget.8786
http://dx.doi.org/10.1016/j.cell.2011.08.039
http://dx.doi.org/10.1038/nm0195-27
http://www.ncbi.nlm.nih.gov/pubmed/7584949
http://dx.doi.org/10.1038/35025220
http://dx.doi.org/10.1016/j.cell.2012.01.021
http://www.ncbi.nlm.nih.gov/pubmed/22304911
http://dx.doi.org/10.1007/s00441-016-2461-3
http://www.ncbi.nlm.nih.gov/pubmed/27423661
http://dx.doi.org/10.1038/ncb3330
http://www.ncbi.nlm.nih.gov/pubmed/27027486
http://dx.doi.org/10.1016/j.ejphar.2018.05.008
http://www.ncbi.nlm.nih.gov/pubmed/29753044
http://dx.doi.org/10.1016/j.bbadis.2018.01.003
http://www.ncbi.nlm.nih.gov/pubmed/29307746
http://dx.doi.org/10.1038/sj.emboj.7600902
http://dx.doi.org/10.1074/jbc.M111.275925
http://dx.doi.org/10.1093/emboj/17.22.6573
http://dx.doi.org/10.1016/j.celrep.2015.06.033
http://www.ncbi.nlm.nih.gov/pubmed/26166565
http://dx.doi.org/10.1016/j.biocel.2004.08.012
http://dx.doi.org/10.1074/jbc.M001914200
http://www.ncbi.nlm.nih.gov/pubmed/10833514
http://dx.doi.org/10.4103/2045-8932.78106


Cancers 2019, 11, 457 23 of 28

115. Azimi, I.; Milevskiy, M.J.G.; Chalmers, S.B.; Yapa, K.; Robitaille, M.; Henry, C.; Baillie, G.J.; Thompson, E.W.;
Roberts-Thomson, S.J.; Monteith, G.R. ORAI1 and ORAI3 in Breast Cancer Molecular Subtypes and the
Identification of ORAI3 as a Hypoxia Sensitive Gene and a Regulator of Hypoxia Responses. Cancers 2019,
11, 208. [CrossRef]

116. Helfinger, V.; Schroder, K. Redox control in cancer development and progression. Mol. Asp. Med. 2018, 63,
88–98. [CrossRef] [PubMed]

117. Kong, H.; Chandel, N.S. Regulation of redox balance in cancer and T cells. J. Biol. Chem. 2018, 293, 7499–7507.
[CrossRef] [PubMed]

118. Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular
signaling. Cell Signal. 2012, 24, 981–990. [CrossRef]

119. Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552, 335–344. [CrossRef]
120. Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial

redox signaling. Free Radic. Biol. Med. 2016, 100, 14–31. [CrossRef]
121. Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: Physiology and

pathophysiology. Physiol. Rev. 2007, 87, 245–313. [CrossRef]
122. Holmstrom, K.M.; Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent

signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [CrossRef]
123. Martinez-Reyes, I.; Diebold, L.P.; Kong, H.; Schieber, M.; Huang, H.; Hensley, C.T.; Mehta, M.M.; Wang, T.;

Santos, J.H.; Woychik, R.; et al. TCA Cycle and Mitochondrial Membrane Potential Are Necessary for Diverse
Biological Functions. Mol. Cell 2016, 61, 199–209. [CrossRef] [PubMed]

124. Gottlieb, E.; Vander Heiden, M.G.; Thompson, C.B. Bcl-x(L) prevents the initial decrease in mitochondrial
membrane potential and subsequent reactive oxygen species production during tumor necrosis factor
alpha-induced apoptosis. Mol. Cell Biol. 2000, 20, 5680–5689. [CrossRef] [PubMed]

125. Chandel, N.S.; Maltepe, E.; Goldwasser, E.; Mathieu, C.E.; Simon, M.C.; Schumacker, P.T. Mitochondrial
reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 1998, 95,
11715–11720. [CrossRef]

126. Gorlach, A.; Dimova, E.Y.; Petry, A.; Martinez-Ruiz, A.; Hernansanz-Agustin, P.; Rolo, A.P.; Palmeira, C.M.;
Kietzmann, T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015,
6, 372–385. [CrossRef]

127. West, A.P.; Brodsky, I.E.; Rahner, C.; Woo, D.K.; Erdjument-Bromage, H.; Tempst, P.; Walsh, M.C.; Choi, Y.;
Shadel, G.S.; Ghosh, S. TLR signalling augments macrophage bactericidal activity through mitochondrial
ROS. Nature 2011, 472, 476–480. [CrossRef]

128. Li, J.M.; Fan, L.M.; Christie, M.R.; Shah, A.M. Acute tumor necrosis factor alpha signaling via NADPH
oxidase in microvascular endothelial cells: Role of p47phox phosphorylation and binding to TRAF4. Mol.
Cell Biol. 2005, 25, 2320–2330. [CrossRef]

129. Imai, Y.; Kuba, K.; Neely, G.G.; Yaghubian-Malhami, R.; Perkmann, T.; van Loo, G.; Ermolaeva, M.;
Veldhuizen, R.; Leung, Y.H.; Wang, H.; et al. Identification of oxidative stress and Toll-like receptor 4
signaling as a key pathway of acute lung injury. Cell 2008, 133, 235–249. [CrossRef]

130. Raimundo, N.; Song, L.; Shutt, T.E.; McKay, S.E.; Cotney, J.; Guan, M.X.; Gilliland, T.C.; Hohuan, D.;
Santos-Sacchi, J.; Shadel, G.S. Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness. Cell
2012, 148, 716–726. [CrossRef] [PubMed]

131. Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijevic, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.;
Ord, E.N.J.; Smith, A.C.; et al. Ischaemic accumulation of succinate controls reperfusion injury through
mitochondrial ROS. Nature 2014, 515, 431–435. [CrossRef] [PubMed]

132. Dikalov, S.I.; Harrison, D.G. Methods for detection of mitochondrial and cellular reactive oxygen species.
Antioxid. Redox Signal. 2014, 20, 372–382. [CrossRef] [PubMed]

133. Debowska, K.; Debski, D.; Hardy, M.; Jakubowska, M.; Kalyanaraman, B.; Marcinek, A.; Michalski, R.;
Michalowski, B.; Ouari, O.; Sikora, A.; et al. Toward selective detection of reactive oxygen and nitrogen
species with the use of fluorogenic probes—Limitations, progress, and perspectives. Pharmacol. Rep. PR
2015, 67, 756–764. [CrossRef] [PubMed]

134. Pouvreau, S. Genetically encoded reactive oxygen species (ROS) and redox indicators. Biotechnol. J. 2014, 9,
282–293. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/cancers11020208
http://dx.doi.org/10.1016/j.mam.2018.02.003
http://www.ncbi.nlm.nih.gov/pubmed/29501614
http://dx.doi.org/10.1074/jbc.TM117.000257
http://www.ncbi.nlm.nih.gov/pubmed/29282291
http://dx.doi.org/10.1016/j.cellsig.2012.01.008
http://dx.doi.org/10.1113/jphysiol.2003.049478
http://dx.doi.org/10.1016/j.freeradbiomed.2016.04.001
http://dx.doi.org/10.1152/physrev.00044.2005
http://dx.doi.org/10.1038/nrm3801
http://dx.doi.org/10.1016/j.molcel.2015.12.002
http://www.ncbi.nlm.nih.gov/pubmed/26725009
http://dx.doi.org/10.1128/MCB.20.15.5680-5689.2000
http://www.ncbi.nlm.nih.gov/pubmed/10891504
http://dx.doi.org/10.1073/pnas.95.20.11715
http://dx.doi.org/10.1016/j.redox.2015.08.016
http://dx.doi.org/10.1038/nature09973
http://dx.doi.org/10.1128/MCB.25.6.2320-2330.2005
http://dx.doi.org/10.1016/j.cell.2008.02.043
http://dx.doi.org/10.1016/j.cell.2011.12.027
http://www.ncbi.nlm.nih.gov/pubmed/22341444
http://dx.doi.org/10.1038/nature13909
http://www.ncbi.nlm.nih.gov/pubmed/25383517
http://dx.doi.org/10.1089/ars.2012.4886
http://www.ncbi.nlm.nih.gov/pubmed/22978713
http://dx.doi.org/10.1016/j.pharep.2015.03.016
http://www.ncbi.nlm.nih.gov/pubmed/26321278
http://dx.doi.org/10.1002/biot.201300199
http://www.ncbi.nlm.nih.gov/pubmed/24497389


Cancers 2019, 11, 457 24 of 28

135. Zielonka, J.; Kalyanaraman, B. Small-molecule luminescent probes for the detection of cellular oxidizing and
nitrating species. Free Radic. Biol. Med. 2018, 128, 3–22. [CrossRef]

136. Griendling, K.K.; Touyz, R.M.; Zweier, J.L.; Dikalov, S.; Chilian, W.; Chen, Y.R.; Harrison, D.G.; Bhatnagar, A.;
American Heart Association Council on Basic Cardiovascular Sciences. Measurement of Reactive Oxygen
Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System:
A Scientific Statement From the American Heart Association. Circ. Res. 2016, 119, e39–e75. [CrossRef]
[PubMed]

137. Meyer, A.J.; Dick, T.P. Fluorescent protein-based redox probes. Antioxid. Redox Signal. 2010, 13, 621–650.
[CrossRef]

138. Bilan, D.S.; Pase, L.; Joosen, L.; Gorokhovatsky, A.Y.; Ermakova, Y.G.; Gadella, T.W.; Grabher, C.; Schultz, C.;
Lukyanov, S.; Belousov, V.V. HyPer-3: A genetically encoded H2O2 probe with improved performance for
ratiometric and fluorescence lifetime imaging. ACS Chem. Biol. 2013, 8, 535–542. [CrossRef]

139. Roma, L.P.; Deponte, M.; Riemer, J.; Morgan, B. Mechanisms and Applications of Redox-Sensitive Green
Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid. Redox Signal. 2018, 29, 552–568. [CrossRef]

140. Gibhardt, C.S.; Zimmermann, K.M.; Zhang, X.; Belousov, V.V.; Bogeski, I. Imaging calcium and redox signals
using genetically encoded fluorescent indicators. Cell Calcium 2016, 60, 55–64. [CrossRef] [PubMed]

141. Bilan, D.S.; Belousov, V.V. HyPer Family Probes: State of the Art. Antioxid. Redox Signal. 2016, 24, 731–751.
[CrossRef] [PubMed]

142. Setsukinai, K.; Urano, Y.; Kakinuma, K.; Majima, H.J.; Nagano, T. Development of novel fluorescence probes
that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem. 2003, 278,
3170–3175. [CrossRef] [PubMed]

143. Nazarewicz, R.R.; Bikineyeva, A.; Dikalov, S.I. Rapid and specific measurements of superoxide using
fluorescence spectroscopy. J. Biomol. Screen. 2013, 18, 498–503. [CrossRef]

144. Bozem, M.; Knapp, P.; Mirceski, V.; Slowik, E.J.; Bogeski, I.; Kappl, R.; Heinemann, C.; Hoth, M.
Electrochemical Quantification of Extracellular Local H2O2 Kinetics Originating from Single Cells. Antioxid.
Redox Signal. 2018, 29, 501–517. [CrossRef]

145. Amatore, C.; Arbault, S.; Guille, M.; Lemaitre, F. Electrochemical monitoring of single cell secretion: Vesicular
exocytosis and oxidative stress. Chem. Rev. 2008, 108, 2585–2621. [CrossRef]

146. Wang, Y.; Noel, J.M.; Velmurugan, J.; Nogala, W.; Mirkin, M.V.; Lu, C.; Guille Collignon, M.; Lemaitre, F.;
Amatore, C. Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine
macrophages. Proc. Natl. Acad. Sci. USA 2012, 109, 11534–11539. [CrossRef] [PubMed]

147. Dikalov, S.I.; Polienko, Y.F.; Kirilyuk, I. Electron Paramagnetic Resonance Measurements of Reactive Oxygen
Species by Cyclic Hydroxylamine Spin Probes. Antioxid. Redox Signal. 2018, 28, 1433–1443. [CrossRef]
[PubMed]

148. Gomez-Mejiba, S.E.; Zhai, Z.; Della-Vedova, M.C.; Munoz, M.D.; Chatterjee, S.; Towner, R.A.; Hensley, K.;
Floyd, R.A.; Mason, R.P.; Ramirez, D.C. Immuno-spin trapping from biochemistry to medicine: Advances,
challenges, and pitfalls. Focus on protein-centered radicals. Biochim. Biophys. Acta 2014, 1840, 722–729.
[CrossRef]

149. Mason, R.P. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox
Biol. 2016, 8, 422–429. [CrossRef]

150. Towner, R.A.; Smith, N. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin
Trapping and Molecular Magnetic Resonance Imaging. Antioxid. Redox Signal. 2018, 28, 1404–1415.
[CrossRef]

151. Jena, N.R. DNA damage by reactive species: Mechanisms, mutation and repair. J. Biosci. 2012, 37, 503–517.
[CrossRef]

152. Rundhaug, J.E.; Fischer, S.M. Molecular mechanisms of mouse skin tumor promotion. Cancers 2010, 2,
436–482. [CrossRef]

153. Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag.
2006, 2, 213–219. [CrossRef] [PubMed]

154. Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005, 69 (Suppl. 3), 4–10. [CrossRef]
[PubMed]

155. Lin, C.; McGough, R.; Aswad, B.; Block, J.A.; Terek, R. Hypoxia induces HIF-1alpha and VEGF expression in
chondrosarcoma cells and chondrocytes. J. Orthop. Res. 2004, 22, 1175–1181. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.032
http://dx.doi.org/10.1161/RES.0000000000000110
http://www.ncbi.nlm.nih.gov/pubmed/27418630
http://dx.doi.org/10.1089/ars.2009.2948
http://dx.doi.org/10.1021/cb300625g
http://dx.doi.org/10.1089/ars.2017.7449
http://dx.doi.org/10.1016/j.ceca.2016.04.008
http://www.ncbi.nlm.nih.gov/pubmed/27142890
http://dx.doi.org/10.1089/ars.2015.6586
http://www.ncbi.nlm.nih.gov/pubmed/26607375
http://dx.doi.org/10.1074/jbc.M209264200
http://www.ncbi.nlm.nih.gov/pubmed/12419811
http://dx.doi.org/10.1177/1087057112468765
http://dx.doi.org/10.1089/ars.2016.6840
http://dx.doi.org/10.1021/cr068062g
http://dx.doi.org/10.1073/pnas.1201552109
http://www.ncbi.nlm.nih.gov/pubmed/22615353
http://dx.doi.org/10.1089/ars.2017.7396
http://www.ncbi.nlm.nih.gov/pubmed/29037084
http://dx.doi.org/10.1016/j.bbagen.2013.04.039
http://dx.doi.org/10.1016/j.redox.2016.04.003
http://dx.doi.org/10.1089/ars.2017.7390
http://dx.doi.org/10.1007/s12038-012-9218-2
http://dx.doi.org/10.3390/cancers2020436
http://dx.doi.org/10.2147/vhrm.2006.2.3.213
http://www.ncbi.nlm.nih.gov/pubmed/17326328
http://dx.doi.org/10.1159/000088478
http://www.ncbi.nlm.nih.gov/pubmed/16301830
http://dx.doi.org/10.1016/j.orthres.2004.03.002
http://www.ncbi.nlm.nih.gov/pubmed/15475194


Cancers 2019, 11, 457 25 of 28

156. Xia, C.; Meng, Q.; Liu, L.Z.; Rojanasakul, Y.; Wang, X.R.; Jiang, B.H. Reactive oxygen species regulate
angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007, 67,
10823–10830. [CrossRef] [PubMed]

157. Xia, Y.; Shen, S.; Verma, I.M. NF-kappaB, an active player in human cancers. Cancer Immunol. Res. 2014, 2,
823–830. [CrossRef]

158. Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring
Harb. Perspect. Biol. 2009, 1, a000034. [CrossRef]

159. Ameyar, M.; Wisniewska, M.; Weitzman, J.B. A role for AP-1 in apoptosis: The case for and against. Biochimie
2003, 85, 747–752. [CrossRef]

160. Basu, S.; Thorat, R.; Dalal, S.N. MMP7 is required to mediate cell invasion and tumor formation upon
Plakophilin3 loss. PLoS ONE 2015, 10, e0123979. [CrossRef]

161. Ho, B.Y.; Wu, Y.M.; Chang, K.J.; Pan, T.M. Dimerumic acid inhibits SW620 cell invasion by attenuating
H(2)O(2)-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent
manner. Int. J. Biol. Sci. 2011, 7, 869–880. [CrossRef]

162. Klaunig, J.E.; Wang, Z.; Pu, X.; Zhou, S. Oxidative stress and oxidative damage in chemical carcinogenesis.
Toxicol. Appl. Pharmacol. 2011, 254, 86–99. [CrossRef]

163. Zilfou, J.T.; Lowe, S.W. Tumor suppressive functions of p53. Cold Spring Harb. Perspect. Biol. 2009, 1, a001883.
[CrossRef]

164. Meplan, C.; Richard, M.J.; Hainaut, P. Redox signalling and transition metals in the control of the p53
pathway. Biochem. Pharmacol. 2000, 59, 25–33. [CrossRef]

165. Chen, Y.; Jungsuwadee, P.; Vore, M.; Butterfield, D.A.; St Clair, D.K. Collateral damage in cancer
chemotherapy: Oxidative stress in nontargeted tissues. Mol. Interv. 2007, 7, 147–156. [CrossRef]

166. Hwang, P.M.; Bunz, F.; Yu, J.; Rago, C.; Chan, T.A.; Murphy, M.P.; Kelso, G.F.; Smith, R.A.; Kinzler, K.W.;
Vogelstein, B. Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal
cancer cells. Nat. Med. 2001, 7, 1111–1117. [CrossRef]

167. Fitzgerald, A.L.; Osman, A.A.; Xie, T.X.; Patel, A.; Skinner, H.; Sandulache, V.; Myers, J.N. Reactive oxygen
species and p21Waf1/Cip1 are both essential for p53-mediated senescence of head and neck cancer cells.
Cell Death Dis. 2015, 6, e1678. [CrossRef]

168. Ueno, M.; Masutani, H.; Arai, R.J.; Yamauchi, A.; Hirota, K.; Sakai, T.; Inamoto, T.; Yamaoka, Y.; Yodoi, J.;
Nikaido, T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J. Biol. Chem. 1999, 274,
35809–35815. [CrossRef]

169. Kruiswijk, F.; Labuschagne, C.F.; Vousden, K.H. p53 in survival, death and metabolic health: A lifeguard
with a licence to kill. Nat. Rev. Mol. Cell Biol. 2015, 16, 393–405. [CrossRef]

170. Wang, D.B.; Kinoshita, C.; Kinoshita, Y.; Morrison, R.S. p53 and mitochondrial function in neurons. Biochim.
Biophys. Acta 2014, 1842, 1186–1197. [CrossRef]

171. Hemmings, B.A.; Restuccia, D.F. PI3K-PKB/Akt pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a011189.
[CrossRef] [PubMed]

172. Cui, W.; Matsuno, K.; Iwata, K.; Ibi, M.; Matsumoto, M.; Zhang, J.; Zhu, K.; Katsuyama, M.; Torok, N.J.;
Yabe-Nishimura, C. NOX1/nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase
promotes proliferation of stellate cells and aggravates liver fibrosis induced by bile duct ligation. Hepatology
2011, 54, 949–958. [CrossRef] [PubMed]

173. Lee, S.R.; Yang, K.S.; Kwon, J.; Lee, C.; Jeong, W.; Rhee, S.G. Reversible inactivation of the tumor suppressor
PTEN by H2O2. J. Biol. Chem. 2002, 277, 20336–20342. [CrossRef] [PubMed]

174. Kamiya, T.; Goto, A.; Kurokawa, E.; Hara, H.; Adachi, T. Cross Talk Mechanism among EMT, ROS,
and Histone Acetylation in Phorbol Ester-Treated Human Breast Cancer MCF-7 Cells. Oxid. Med. Cell.
Longev. 2016, 2016, 1284372. [CrossRef] [PubMed]

175. Petrova, Y.I.; Schecterson, L.; Gumbiner, B.M. Roles for E-cadherin cell surface regulation in cancer. Mol. Biol.
Cell 2016, 27, 3233–3244. [CrossRef]

176. Lim, S.O.; Gu, J.M.; Kim, M.S.; Kim, H.S.; Park, Y.N.; Park, C.K.; Cho, J.W.; Park, Y.M.; Jung, G. Epigenetic
changes induced by reactive oxygen species in hepatocellular carcinoma: Methylation of the E-cadherin
promoter. Gastroenterology 2008, 135, 2128–2140. [CrossRef] [PubMed]

http://dx.doi.org/10.1158/0008-5472.CAN-07-0783
http://www.ncbi.nlm.nih.gov/pubmed/18006827
http://dx.doi.org/10.1158/2326-6066.CIR-14-0112
http://dx.doi.org/10.1101/cshperspect.a000034
http://dx.doi.org/10.1016/j.biochi.2003.09.006
http://dx.doi.org/10.1371/journal.pone.0123979
http://dx.doi.org/10.7150/ijbs.7.869
http://dx.doi.org/10.1016/j.taap.2009.11.028
http://dx.doi.org/10.1101/cshperspect.a001883
http://dx.doi.org/10.1016/S0006-2952(99)00297-X
http://dx.doi.org/10.1124/mi.7.3.6
http://dx.doi.org/10.1038/nm1001-1111
http://dx.doi.org/10.1038/cddis.2015.44
http://dx.doi.org/10.1074/jbc.274.50.35809
http://dx.doi.org/10.1038/nrm4007
http://dx.doi.org/10.1016/j.bbadis.2013.12.015
http://dx.doi.org/10.1101/cshperspect.a011189
http://www.ncbi.nlm.nih.gov/pubmed/22952397
http://dx.doi.org/10.1002/hep.24465
http://www.ncbi.nlm.nih.gov/pubmed/21618578
http://dx.doi.org/10.1074/jbc.M111899200
http://www.ncbi.nlm.nih.gov/pubmed/11916965
http://dx.doi.org/10.1155/2016/1284372
http://www.ncbi.nlm.nih.gov/pubmed/27127545
http://dx.doi.org/10.1091/mbc.E16-01-0058
http://dx.doi.org/10.1053/j.gastro.2008.07.027
http://www.ncbi.nlm.nih.gov/pubmed/18801366


Cancers 2019, 11, 457 26 of 28

177. Nishida, N.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Hagiwara, S.; Inoue, T.; Minami, Y.; Ueshima, K.;
Sakurai, T.; et al. Reactive oxygen species induce epigenetic instability through the formation of
8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig. Dis. 2013, 31, 459–466. [CrossRef] [PubMed]

178. Wu, Q.; Ni, X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr. Drug Targets
2015, 16, 13–19. [CrossRef] [PubMed]

179. Feinberg, A.P.; Tycko, B. The history of cancer epigenetics. Nat. Rev. Cancer 2004, 4, 143–153. [CrossRef]
[PubMed]

180. Szatrowski, T.P.; Nathan, C.F. Production of large amounts of hydrogen peroxide by human tumor cells.
Cancer Res. 1991, 51, 794–798.

181. Schumacker, P.T. Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell
2006, 10, 175–176. [CrossRef] [PubMed]

182. Sullivan, L.B.; Chandel, N.S. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014, 2, 17.
[CrossRef]

183. Bauer, G. Targeting extracellular ROS signaling of tumor cells. Anticancer Res. 2014, 34, 1467–1482.
184. Jayavelu, A.K.; Moloney, J.N.; Bohmer, F.D.; Cotter, T.G. NOX-driven ROS formation in cell transformation

of FLT3-ITD-positive AML. Exp. Hematol. 2016, 44, 1113–1122. [CrossRef]
185. Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [CrossRef]
186. Storz, P. Reactive oxygen species in tumor progression. Front. Biosci. 2005, 10, 1881–1896. [CrossRef]
187. Segal, A.W.; Shatwell, K.P. The NADPH oxidase of phagocytic leukocytes. Ann. N. Y. Acad. Sci. 1997, 832,

215–222. [CrossRef] [PubMed]
188. Babior, B.M. The respiratory burst oxidase. Curr. Opin. Hematol. 1995, 2, 55–60. [CrossRef] [PubMed]
189. Schafer, Z.T.; Grassian, A.R.; Song, L.; Jiang, Z.; Gerhart-Hines, Z.; Irie, H.Y.; Gao, S.; Puigserver, P.; Brugge, J.S.

Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461,
109–113. [CrossRef]

190. Piskounova, E.; Agathocleous, M.; Murphy, M.M.; Hu, Z.; Huddlestun, S.E.; Zhao, Z.; Leitch, A.M.;
Johnson, T.M.; DeBerardinis, R.J.; Morrison, S.J. Oxidative stress inhibits distant metastasis by human
melanoma cells. Nature 2015, 527, 186–191. [CrossRef] [PubMed]

191. Crosas-Molist, E.; Bertran, E.; Rodriguez-Hernandez, I.; Herraiz, C.; Cantelli, G.; Fabra, A.; Sanz-Moreno, V.;
Fabregat, I. The NADPH oxidase NOX4 represses epithelial to amoeboid transition and efficient tumour
dissemination. Oncogene 2017, 36, 3002–3014. [CrossRef] [PubMed]

192. Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative
nutraceuticals. Cancer Lett. 2017, 387, 95–105. [CrossRef]

193. Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell 2007, 26, 1–14.
[CrossRef] [PubMed]

194. Darbellay, B.; Arnaudeau, S.; Bader, C.R.; Konig, S.; Bernheim, L. STIM1L is a new actin-binding splice
variant involved in fast repetitive Ca2+ release. J. Cell. Biol. 2011, 194, 335–346. [CrossRef]

195. Foyouzi-Youssefi, R.; Petersson, F.; Lew, D.P.; Krause, K.H.; Nusse, O. Chemoattractant-induced respiratory
burst: Increases in cytosolic Ca2+ concentrations are essential and synergize with a kinetically distinct
second signal. Biochem. J. 1997, 322 Pt 3, 709–718. [CrossRef]

196. Holzmann, C.; Kilch, T.; Kappel, S.; Armbruster, A.; Jung, V.; Stockle, M.; Bogeski, I.; Schwarz, E.C.; Peinelt, C.
ICRAC controls the rapid androgen response in human primary prostate epithelial cells and is altered in
prostate cancer. Oncotarget 2013, 4, 2096–2107. [CrossRef] [PubMed]

197. Holzmann, C.; Kilch, T.; Kappel, S.; Dorr, K.; Jung, V.; Stockle, M.; Bogeski, I.; Peinelt, C. Differential Redox
Regulation of Ca(2)(+) Signaling and Viability in Normal and Malignant Prostate Cells. Biophys. J. 2015, 109,
1410–1419. [CrossRef]

198. Motiani, R.K.; Abdullaev, I.F.; Trebak, M. A novel native store-operated calcium channel encoded by Orai3:
Selective requirement of Orai3 versus Orai1 in estrogen receptor-positive versus estrogen receptor-negative
breast cancer cells. J. Biol. Chem. 2010, 285, 19173–19183. [CrossRef]

199. Hawkins, B.J.; Irrinki, K.M.; Mallilankaraman, K.; Lien, Y.C.; Wang, Y.; Bhanumathy, C.D.; Subbiah, R.;
Ritchie, M.F.; Soboloff, J.; Baba, Y.; et al. S-glutathionylation activates STIM1 and alters mitochondrial
homeostasis. J. Cell Biol. 2010, 190, 391–405. [CrossRef]

200. Prins, D.; Groenendyk, J.; Touret, N.; Michalak, M. Modulation of STIM1 and capacitative Ca2+ entry by the
endoplasmic reticulum luminal oxidoreductase ERp57. EMBO Rep. 2011, 12, 1182–1188. [CrossRef]

http://dx.doi.org/10.1159/000355245
http://www.ncbi.nlm.nih.gov/pubmed/24281021
http://dx.doi.org/10.2174/1389450116666150113121054
http://www.ncbi.nlm.nih.gov/pubmed/25585126
http://dx.doi.org/10.1038/nrc1279
http://www.ncbi.nlm.nih.gov/pubmed/14732866
http://dx.doi.org/10.1016/j.ccr.2006.08.015
http://www.ncbi.nlm.nih.gov/pubmed/16959608
http://dx.doi.org/10.1186/2049-3002-2-17
http://dx.doi.org/10.1016/j.exphem.2016.08.008
http://dx.doi.org/10.3109/10715761003667554
http://dx.doi.org/10.2741/1667
http://dx.doi.org/10.1111/j.1749-6632.1997.tb46249.x
http://www.ncbi.nlm.nih.gov/pubmed/9704049
http://dx.doi.org/10.1097/00062752-199502010-00008
http://www.ncbi.nlm.nih.gov/pubmed/9371972
http://dx.doi.org/10.1038/nature08268
http://dx.doi.org/10.1038/nature15726
http://www.ncbi.nlm.nih.gov/pubmed/26466563
http://dx.doi.org/10.1038/onc.2016.454
http://www.ncbi.nlm.nih.gov/pubmed/27941881
http://dx.doi.org/10.1016/j.canlet.2016.03.042
http://dx.doi.org/10.1016/j.molcel.2007.03.016
http://www.ncbi.nlm.nih.gov/pubmed/17434122
http://dx.doi.org/10.1083/jcb.201012157
http://dx.doi.org/10.1042/bj3220709
http://dx.doi.org/10.18632/oncotarget.1483
http://www.ncbi.nlm.nih.gov/pubmed/24240085
http://dx.doi.org/10.1016/j.bpj.2015.08.006
http://dx.doi.org/10.1074/jbc.M110.102582
http://dx.doi.org/10.1083/jcb.201004152
http://dx.doi.org/10.1038/embor.2011.173


Cancers 2019, 11, 457 27 of 28

201. Oh-Hora, M.; Rao, A. Calcium signaling in lymphocytes. Curr. Opin. Immunol. 2008, 20, 250–258. [CrossRef]
[PubMed]

202. Williams, R.T.; Manji, S.S.; Parker, N.J.; Hancock, M.S.; Van Stekelenburg, L.; Eid, J.P.; Senior, P.V.;
Kazenwadel, J.S.; Shandala, T.; Saint, R.; et al. Identification and characterization of the STIM (stromal
interaction molecule) gene family: Coding for a novel class of transmembrane proteins. Biochem. J. 2001, 357,
673–685. [CrossRef] [PubMed]

203. Berna-Erro, A.; Braun, A.; Kraft, R.; Kleinschnitz, C.; Schuhmann, M.K.; Stegner, D.; Wultsch, T.; Eilers, J.;
Meuth, S.G.; Stoll, G.; et al. STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic
neuronal cell death. Sci. Signal. 2009, 2, ra67. [CrossRef] [PubMed]

204. Reiter, J.G.; Makohon-Moore, A.P.; Gerold, J.M.; Heyde, A.; Attiyeh, M.A.; Kohutek, Z.A.; Tokheim, C.J.;
Brown, A.; DeBlasio, R.M.; Niyazov, J.; et al. Minimal functional driver gene heterogeneity among untreated
metastases. Science 2018, 361, 1033–1037. [CrossRef]

205. Tokheim, C.J.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B.; Karchin, R. Evaluating the evaluation of
cancer driver genes. Proc. Natl. Acad. Sci. USA 2016, 113, 14330–14335. [CrossRef]

206. Tomasetti, C.; Marchionni, L.; Nowak, M.A.; Parmigiani, G.; Vogelstein, B. Only three driver gene mutations
are required for the development of lung and colorectal cancers. Proc. Natl. Acad. Sci. USA 2015, 112,
118–123. [CrossRef]

207. Vogelstein, B.; Kinzler, K.W. The Path to Cancer—Three Strikes and You’re Out. N. Engl. J. Med. 2015, 373,
1895–1898. [CrossRef] [PubMed]

208. Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome
landscapes. Science 2013, 339, 1546–1558. [CrossRef]

209. Yang, F.; Xu, J.; Tang, L.; Guan, X. Breast cancer stem cell: The roles and therapeutic implications. Cell. Mol.
Life Sci. 2016. [CrossRef]

210. Feng, M.; Grice, D.M.; Faddy, H.M.; Nguyen, N.; Leitch, S.; Wang, Y.; Muend, S.; Kenny, P.A.; Sukumar, S.;
Roberts-Thomson, S.J.; et al. Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell
2010, 143, 84–98. [CrossRef]

211. Bergmeier, W.; Weidinger, C.; Zee, I.; Feske, S. Emerging roles of store-operated Ca(2)(+) entry through
STIM and ORAI proteins in immunity, hemostasis and cancer. Channels (Austin) 2013, 7, 379–391. [CrossRef]
[PubMed]

212. Schwarz, E.C.; Kummerow, C.; Wenning, A.S.; Wagner, K.; Sappok, A.; Waggershauser, K.; Griesemer, D.;
Strauss, B.; Wolfs, M.J.; Quintana, A.; et al. Calcium dependence of T cell proliferation following focal
stimulation. Eur. J. Immunol. 2007, 37, 2723–2733. [CrossRef] [PubMed]

213. Maul-Pavicic, A.; Chiang, S.C.; Rensing-Ehl, A.; Jessen, B.; Fauriat, C.; Wood, S.M.; Sjoqvist, S.; Hufnagel, M.;
Schulze, I.; Bass, T.; et al. ORAI1-mediated calcium influx is required for human cytotoxic lymphocyte
degranulation and target cell lysis. Proc. Natl. Acad. Sci. USA 2011, 108, 3324–3329. [CrossRef] [PubMed]

214. Klemann, C.; Ammann, S.; Heizmann, M.; Fuchs, S.; Bode, S.F.; Heeg, M.; Fuchs, H.; Lehmberg, K.;
Zur Stadt, U.; Roll, C.; et al. Hemophagocytic lymphohistiocytosis as presenting manifestation of profound
combined immunodeficiency due to an ORAI1 mutation. J. Allergy Clin. Immunol. 2017, 140, 1721–1724.
[CrossRef]

215. Backes, C.S.; Friedmann, K.S.; Mang, S.; Knorck, A.; Hoth, M.; Kummerow, C. Natural killer cells induce
distinct modes of cancer cell death: Discrimination, quantification, and modulation of apoptosis, necrosis,
and mixed forms. J. Biol. Chem. 2018, 293, 16348–16363. [CrossRef] [PubMed]

216. Zhou, X.; Friedmann, K.S.; Lyrmann, H.; Zhou, Y.; Schoppmeyer, R.; Knorck, A.; Mang, S.; Hoxha, C.;
Angenendt, A.; Backes, C.S.; et al. A calcium optimum for cytotoxic T lymphocyte and natural killer cell
cytotoxicity. J. Physiol. 2018. [CrossRef] [PubMed]

217. Kong, Q.; Beel, J.A.; Lillehei, K.O. A threshold concept for cancer therapy. Med. Hypotheses 2000, 55, 29–35.
[CrossRef] [PubMed]

218. Sabharwal, S.S.; Schumacker, P.T. Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles’ heel?
Nat. Rev. Cancer 2014, 14, 709–721. [CrossRef]

219. Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug
Discov. 2013, 12, 931–947. [CrossRef]

220. Sayin, V.I.; Ibrahim, M.X.; Larsson, E.; Nilsson, J.A.; Lindahl, P.; Bergo, M.O. Antioxidants accelerate lung
cancer progression in mice. Sci. Transl. Med. 2014, 6, 221ra215. [CrossRef]

http://dx.doi.org/10.1016/j.coi.2008.04.004
http://www.ncbi.nlm.nih.gov/pubmed/18515054
http://dx.doi.org/10.1042/bj3570673
http://www.ncbi.nlm.nih.gov/pubmed/11463338
http://dx.doi.org/10.1126/scisignal.2000522
http://www.ncbi.nlm.nih.gov/pubmed/19843959
http://dx.doi.org/10.1126/science.aat7171
http://dx.doi.org/10.1073/pnas.1616440113
http://dx.doi.org/10.1073/pnas.1421839112
http://dx.doi.org/10.1056/NEJMp1508811
http://www.ncbi.nlm.nih.gov/pubmed/26559569
http://dx.doi.org/10.1126/science.1235122
http://dx.doi.org/10.1007/s00018-016-2334-7
http://dx.doi.org/10.1016/j.cell.2010.08.040
http://dx.doi.org/10.4161/chan.24302
http://www.ncbi.nlm.nih.gov/pubmed/23511024
http://dx.doi.org/10.1002/eji.200737039
http://www.ncbi.nlm.nih.gov/pubmed/17899547
http://dx.doi.org/10.1073/pnas.1013285108
http://www.ncbi.nlm.nih.gov/pubmed/21300876
http://dx.doi.org/10.1016/j.jaci.2017.05.039
http://dx.doi.org/10.1074/jbc.RA118.004549
http://www.ncbi.nlm.nih.gov/pubmed/30190323
http://dx.doi.org/10.1113/JP274964
http://www.ncbi.nlm.nih.gov/pubmed/29368348
http://dx.doi.org/10.1054/mehy.1999.0982
http://www.ncbi.nlm.nih.gov/pubmed/11021322
http://dx.doi.org/10.1038/nrc3803
http://dx.doi.org/10.1038/nrd4002
http://dx.doi.org/10.1126/scitranslmed.3007653


Cancers 2019, 11, 457 28 of 28

221. Le Gal, K.; Ibrahim, M.X.; Wiel, C.; Sayin, V.I.; Akula, M.K.; Karlsson, C.; Dalin, M.G.; Akyurek, L.M.;
Lindahl, P.; Nilsson, J.; et al. Antioxidants can increase melanoma metastasis in mice. Sci. Transl. Med. 2015,
7, 308re308. [CrossRef] [PubMed]

222. Klein, E.A.; Thompson, I.M., Jr.; Tangen, C.M.; Crowley, J.J.; Lucia, M.S.; Goodman, P.J.; Minasian, L.M.;
Ford, L.G.; Parnes, H.L.; Gaziano, J.M.; et al. Vitamin E and the risk of prostate cancer: The Selenium and
Vitamin E Cancer Prevention Trial (SELECT). JAMA 2011, 306, 1549–1556. [CrossRef] [PubMed]

223. Fujikawa, Y.; Roma, L.P.; Sobotta, M.C.; Rose, A.J.; Diaz, M.B.; Locatelli, G.; Breckwoldt, M.O.; Misgeld, T.;
Kerschensteiner, M.; Herzig, S.; et al. Mouse redox histology using genetically encoded probes. Sci. Signal.
2016, 9, rs1. [CrossRef] [PubMed]

224. Ermakova, Y.G.; Bilan, D.S.; Matlashov, M.E.; Mishina, N.M.; Markvicheva, K.N.; Subach, O.M.; Subach, F.V.;
Bogeski, I.; Hoth, M.; Enikolopov, G.; et al. Red fluorescent genetically encoded indicator for intracellular
hydrogen peroxide. Nat. Commun. 2014, 5, 5222. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1126/scitranslmed.aad3740
http://www.ncbi.nlm.nih.gov/pubmed/26446958
http://dx.doi.org/10.1001/jama.2011.1437
http://www.ncbi.nlm.nih.gov/pubmed/21990298
http://dx.doi.org/10.1126/scisignal.aad3895
http://www.ncbi.nlm.nih.gov/pubmed/26980443
http://dx.doi.org/10.1038/ncomms6222
http://www.ncbi.nlm.nih.gov/pubmed/25330925
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Tumor Microenvironment (TME) 
	STIM/Orai Channels in Cancer 
	Short Introduction to STIM and Orai 
	STIM/Orai in Tumor Initiation and Promotion 
	STIM/Orai in Tumor Proliferation/Growth 
	STIM/Orai in Tumor Survival/Apoptosis 
	STIM/Orai in Epithelial-to-Mesenchymal Transition (EMT)/Cancer Progression 
	STIM/Orai in Tumor Metastasis/Angiogenesis 

	ROS Production and Elimination 
	Impact of Reactive Oxygen Species (ROS) in the Tumor Microenvironment (TME) 
	How Can ROS Support Carcinogenesis? 
	Sources of ROS in The Tumor Microenvironment 
	What Are The Downstream Effects of Increased ROS in The Tumor Microenvironment? 

	Impact of ROS on STIM/Orai Channels 
	Impact of ROS on Orai 
	Impact of ROS on STIM 

	Interactions between TME, Orai, and ROS: Promoting or Inhibiting Tumor Progression 
	Conclusions 
	References

