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Abstract: Cancer prognosis is of essential interest, and extensive research has been conducted
searching for biomarkers with prognostic power. Recent studies have shown that both omics profiles
and histopathological imaging features have prognostic power. There are also studies exploring
integrating the two types of measurements for prognosis modeling. However, there is a lack of
study rigorously examining whether omics measurements have independent prognostic power
conditional on histopathological imaging features, and vice versa. In this article, we adopt a rigorous
statistical testing framework and test whether an individual gene expression measurement can
improve prognosis modeling conditional on high-dimensional imaging features, and a parallel
analysis is conducted reversing the roles of gene expressions and imaging features. In the analysis of
The Cancer Genome Atlas (TCGA) lung adenocarcinoma and liver hepatocellular carcinoma data,
it is found that multiple individual genes, conditional on imaging features, can lead to significant
improvement in prognosis modeling; however, individual imaging features, conditional on gene
expressions, only offer limited prognostic power. Being among the first to examine the independent
prognostic power, this study may assist better understanding the “connectedness” between omics
profiles and histopathological imaging features and provide important insights for data integration
in cancer modeling.

Keywords: cancer prognosis; independent prognostic power; omics profiles; histopathological
imaging features

1. Introduction

In cancer research and practice, prognosis is of essential interest. Extensive statistical modeling
has been conducted, and yet there is still much room for additional research [1,2]. Multiple families of
biomarkers have been used in cancer prognosis modeling. In the past decades, with the development
of profiling techniques, omics data have been extensively used and shown to be effective. For example,
in [3], a signature composed of 21 gene expressions is used for modeling breast cancer prognosis. In [4],
hsa-mir-155 and hsa-let-7a-2 microRNAs are found as prognostic for lung cancer. In [5], the prognostic
power of methylated RASSF1A and/or APC serum DNA for breast cancer is identified. Such findings
are biologically highly sensible as cancer is a genetic disease and the development and progression of
cancer are strongly affected by molecular changes.

Imaging techniques have been extensively used in cancer practice. In particular, for definitive
diagnosis, biopsies are usually ordered, and pathologists review the slides of representative sections
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of tissues. The histopathological imaging data generated in this process directly reflect the
histological organization and morphological characteristics of tumor cells and their surrounding
tumor microenvironment. More recently, beyond diagnosis, histopathological imaging data have also
been used for modeling other cancer outcomes/phenotypes. For example, Harpole et al. [6] showed
that the levels of tumor cell dedifferentiation are associated with survival outcomes. Automated
histopathological imaging analysis systems have been shown to be effective in the prognostic
determination of various malignancies, including breast cancer [7], neuroblastoma [8], lymphoma [9],
nonsmall cell lung cancer [10], precancerous lesions in the esophagus [11], and others.

Omics profiles and histopathological images are biologically connected and contain overlapping information.
In particular, properties of tumors and their microenvironment, as described in histopathological
images, are highly regulated by molecular changes. Multiple statistical modelings have been
conducted on their interconnections. For example, Yu et al. [10] found the correlation of quantitative
histopathological features with TP53 mutation in lung adenocarcinoma. Cooper et al. [12]
demonstrated that PDGFRA, EGFR, and MDM2 amplifications are associated with imaging features
such as greater minor axis length, area, and circularity in glioblastoma.

On the other hand, it is also possible that omics profiles and histopathological images may contain
independent information. Tissues used to generate omics measurements are usually heterogeneous and
mixtures of different components, making the observed omics measurements represent an aggregation
of distinct cells [12]. Histopathological images, with extremely high spatial resolutions, also contain
information on tissue relationships and characteristics of the spatial organizations of tumor cells.
Features of histopathological images, beyond regulated by molecular changes, may also be affected
by personal immune system, microenvironment, and other factors. There are a few recent studies
integrating omics measurements and imaging features and showing that such a data integration
can lead to improved prognosis modeling for breast cancer [13], brain tumor [14], and nonsmall cell
lung cancer [15]. Such studies seem to suggest that there is independent information in omics and
histopathological imaging data.

Our literature review suggests that there is a lack of study rigorously quantifying whether
omics profiles contain independent information, conditional on histopathological images, on cancer
prognosis, and vice versa. It is noted that the aforementioned and other data integration studies
do not suggest which type of measurement has independent information. In addition, they are
mostly estimation-based and do not have a rigorous statistical inference framework. Some studies
rely on prescreening to accommodate high data dimensionality and can be statistically limited. This
study is conducted to directly tackle these problems. It can advance from the existing literature in
multiple aspects. Specifically, it delivers an analysis pipeline which has a rigorous statistical inference
framework and can show whether individuals of a type of measurement have additional prognostic
power conditional on the other type of measurement. It can provide solid evidence on whether data
integration is needed in modeling and clinical practice. In addition, data analysis may also provide
further insights into two deadly cancers.

2. Data

The Cancer Genome Atlas (TCGA) is one of the largest and most comprehensive cancer projects,
and is organized by the National Cancer Institute (NCI) and National Human Genome Research
Institute (NHGRI) [16]. It has published high quality omics data and histopathological images for 33
types of cancer. In this study, we analyze data on lung adenocarcinoma (LUAD) and liver hepatocellular
carcinoma (LIHC), both of which have high mortality rates and pose increasing public concerns. They
also have relatively larger sample sizes, which is critical for making reliable findings. The proposed
analysis can be extended to other cancer types straightforwardly. For omics measurements, we consider
gene expressions, which have a central role in cancer prognosis modeling. The response of interest
is overall survival time, which is right censored. It is noted that other types of omics measurements,
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for example protein expressions and microRNAs, and other prognosis outcomes can be analyzed in a
similar manner.

2.1. mRNA Gene Expression Measurements

We download the mRNA gene expression data from cBioPortal (http://cbioportal.org), which
have been measured using the Illumina Hiseq2000 RNA Sequencing Version 2 analysis platform, and
processed and normalized using the RSEM software. We refer to the literature [17,18] and TCGA
website for more detailed information on data collection and processing. Data are available on 25,031
gene expression measurements. As the number of cancer-related genes is not expected to be large, we
conduct a simple prescreening to reduce the dimensionality and also improve the stability of estimation.
Specifically, the top 5000 genes with the largest variances are selected for downstream analysis.

2.2. Histopathological Imaging Features

We download the whole-slide histopathology images directly from the TCGA website (https:
//portal.gdc.cancer.gov), which are in the svs format. These tissue slides are formalin-fixed,
paraffin-embedded slides with which the cell morphology is well-preserved and thus appropriate
for image feature recognition. They are captured at 20× or 40×magnification by the Aperio medical
scanner. To extract imaging features, we conduct the following three-step preprocessing. The overall
flowchart is provided in Figure 1.
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Figure 1. Flowchart of extracting imaging features. Step 1: whole-slide histopathology images are
cropped into small subimages of 500 × 500 pixels, and 20 subimages are then randomly selected. Step
2: Imaging features are extracted using CellProfiler [19] for each subimage. Step 3: For each patient,
features are averaged.

In the first step, we process the downloaded svs files using the Openslide Python library [20].
Specifically, to make data in an appropriate format for morphological feature extraction, each svs
image is cropped into small subimages of 500 × 500 pixels, and each subimage is then saved in the tiff
format. Among them, subimages that contain mostly (>50%) background white space are filtered out.

http://cbioportal.org
https://portal.gdc.cancer.gov
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From the remaining subimages, twenty representative ones are randomly selected for each svs image
to avoid potential subjective bias and reduce computational cost [21].

In the second step, we use CellProfiler [19] to extract features from each subimage. CellProfiler
is an open source cell image analysis platform developed by the Broad Institute. Specifically, image
colors are separated based on hematoxylin staining and eosin staining, and converted to grayscale
to extract regional features, such as cell and tissue texture and granularity. These are “classic” image
processing features, which have been examined in a large number of imaging studies. It is noted
that they are not expected to be specific histopathological features, and cannot be recognized by
pathologist. More specifically, texture describes a set of metrics calculated in CellProfiler to quantify
the perceived texture of histopathological images, and includes information on the spatial arrangement
of color or intensities in images. Granularity describes the size of how well the structure element fits in
images. Then, cell nuclei are identified and segmented to collect the cell-level features, such as cell
size, shape, distribution, and texture of nuclei. Other cell features such as regional occupation, area
fraction, and neighboring architecture are also captured. The above process generates 832 features for
each subimage. A further screening is conducted to exclude irrelevant features such as file size and
execution information. Finally, for each subimage, a total of 772 features are available for analysis.

In the third step, for each slide, the average feature values over twenty representative subimages
are computed. When a subject has multiple slides, the average values over multiple slides are further
computed for downstream analysis.

The above preprocessing is applied to both LUAD and LIHC data. There are missing values
in imaging feature data. Subjects with more than 25% missing imaging features are excluded. The
remaining missing values are imputed using sample medians.

Remark 1. We adopt CellProfiler to extract imaging features, which is a popular choice in recent literature. The
feature names are automatically provided by CellProfiler. The extracted features represent objective attributes
of histopathological images, including the area and perimeter of nucleus and cytoplasm, mean and standard
deviation of these measures, and other general image attributes. For each patient, multiple slides and subimages
may be available. To extract as much information as possible, we consider multiple slides and subimages
simultaneously, and the average values are used to summarize information. A closer examination suggests
that they are not explicitly associated with specific histopathological findings, such as cellularity, atypia,
anaplasia, nuclear pleomorphism, and some others. However, these attributes have been shown to be associated
with pathological stages [7,10] and prognosis [21], and also been used in multiple existing cancer modeling
studies [13,15]. For example, Yu et al. [22] show that some of these features are associated with specific subtypes
of lung cancer. In this study, our goal is to rigorously quantify independent information in omics profiles
and histopathological images for cancer prognosis, as opposed to focusing on specific interpretation of imaging
features. As such, these features are sensible for our analysis, although they may not have simple, explicit
biological interpretations.

2.3. Available Data

After data matching, we obtain records on 316 and 358 subjects for LUAD and LIHC, respectively,
with 5000 gene expression measurements, 772 imaging features, and survival time. For LUAD, there
are 103 deaths during follow-up, with survival times ranging from 0 to 214.77 months (median 6.03
months). For LIHC, there are 121 deaths during follow-up, with survival times ranging from 0 to
120.73 months (median 19.25 months). Summary information of the analyzed subjects is provided in
Table 1.
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Table 1. Sample characteristics.

Characteristic LUAD LIHC

Sample size 316 358

Age at diagnosis: median (range) 66 (39–88) 61 (16–90)

Follow-up: median (range) 6.03 (0–214.77) 19.25 (0–120.73)

Vital status: n (%)
Alive 213 (67.4%) 233 (65.0%)

Deceased 103 (32.6%) 125 (35.0%)

Sex: n (%)
Male 144 (45.6%) 242 (67.6%)

Female 172 (54.4%) 116 (32.4%)

Cancer stage: n (%)
I 180 (57.0%) 166 (46.4%)
II 69 (18.7%) 82 (22.9%)
III 41 (13%) 83 (23.2%)
IV 21 (6.6%) 5 (1.4%)

NA 5 (1.6%) 22 (6.1%)

3. Methods

For describing cancer survival, we use the accelerated failure time (AFT) model. This model
has been extensively adopted in cancer studies with high-dimensional variables because of its lucid
interpretations and low computational cost [23]. For each gene expression, we consider the prognosis
model with its effect along with all imaging features. A statistically rigorous test is then conducted
on the gene expression’s effect, which can suggest whether this particular gene has independent
information for prognosis conditional on the imaging features. Then a parallel analysis is conducted,
reversing the roles of gene expressions and imaging features. With a special emphasis on omics and
imaging features, clinical factors are not included in the prognosis models.

Consider n independent subjects. For the ith subject, denote xi =
(
xi1, xx2, . . . , xip

)
and zi =(

zi1, zi2, . . . , ziq
)

as the p- and q-dimensional vectors of gene expressions and imaging features,
Ti and Ci as the logarithm of the event and censoring times. With right censoring, we observe
(yi = min(Ti, Ci), δi = I(Ti ≤ Ci), xi, zi).

First consider the analysis with one gene expression and all imaging features. The analysis with
one imaging feature and all gene expressions can be conducted in a similar manner and will not be
reiterated. For the jth gene expression, consider the following AFT model:

Ti = α + xijβ j + ziθj + εi (1)

where α is the intercept, β j and θj =
(
θj1, . . . , θjq

)′ are the unknown coefficients for the jth gene
expression and all imaging features, and εi is the random error. A statistical test

H0 : β j = 0 vs. H1 : β j 6= 0

can reveal whether xij is independently associated with Ti given zi. Here, loosely speaking, a smaller
p value can indicate a stronger association/more prognostic power. The analysis is challenging
with the high dimensionality of imaging features, which makes the “standard” estimation and
inference techniques not applicable. To tackle this problem, we consider a high-dimensional inference
approach [24] recently developed under a related but simpler context. Specifically, for estimation, the
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weighted least squares approach is adopted. Assume that data have been sorted according to yi’s from
the smallest to the largest. Then we have the Kaplan–Meier weights defined as

w1 =
δ1

n
, wi =

yi
n− i + 1

i−1

∏
j=1

(
n− j

n− j + 1

)δj

, i = 2, . . . , n,

where a further normalization is conducted to make ∑n
i=1 wi = n. Let W = diag{w1 , w2, w3, . . . , wn},

x·j, z·k, and y denote the vectors composed of xij’s, zik’s, and yi’s, which are weighted normalized such
that 1′Wx·j = 0, 1′Wz·k = 0, and 1′Wy = 0, and Z =

(
z·1, . . . , z·q

)
. With the high data dimensionality,

regularized estimation is needed. In addition, not all imaging features are expected to be associated
with survival, posing a variable selection problem. Consider the weighted penalized estimation:

(
β̃∗j , θ̃j

)
= argminβ j ,θ∈R1+q

{
1

2n‖W
1
2
(
y− x·jβ j − Zθj

)
‖2

2 + λ0 ∑
q
k=1

∣∣∣θjk

∣∣∣}
b̃j = argminbj∈Rq

{
1

2n‖W
1
2
(
x·j − Zbj

)
‖2

2 + λ1 ∑
q
k=1

∣∣∣bjk

∣∣∣} , (2)

where ‖·‖2 denotes the L2 norm, bj =
(
bj1, . . . , bjq

)′ is the unknown coefficient vector, and λ0, λ1 > 0
are data-dependent tuning parameters for Lasso penalties.

With θ̃j and b̃j, the final estimate β̃ j of β j is defined as

β̃ j =
(
x̃.j
′Wx.j

)−1x̃.j
′W
(

y− Zθ̃j

)
, (3)

where x̃.j = x·j − Zb̃j. It has been shown in [24] that
√

n
(

β̃ j − β j

)
is asymptotically normal with

variance defined as
Σ̃
(

β̃ j

)
=

1
n
(
x̃.j
′Wx.j

)−1Σ̃1
(
x.j
′Wx̃.j

)−1,

where Σ̃1 is the sample variance based on x̃ij(yi − xij β̃ j + ziθ̃j). With this asymptotic normal
distribution, the test statistic for H0 : βj = 0 can be defined as

β̃ j/
√

Σ̃
(

β̃ j

)
/n,

which follows Student’s T distribution. The unadjusted p value can then be obtained. When all gene
expressions are considered together, to accommodate multiple comparisons, p values are adjusted
using the voxel-level false discovery rate approach [25].

An advantage of the above analysis is that it can be realized via simple coding. The most
challenging step is the estimation in (2), which can be realized using the R function glmnet. The tuning
parameters λ0 and λ1 are selected using the EBIC approach [26]. To facilitate data analysis in and
beyond this study, we have developed R code implementing the proposed approach. To illustrate its
usage, we have also provided an example R file with the LUAD data. The code and data are publicly
available at http://www.github.com/shuanggema/TestLDHD as well as in Supplementary Materials.

Remark 2. The effectiveness of the AFT model for cancer prognosis modeling has been well tested. Penalization
has been shown effective for screening out irrelevant variables and accommodating high dimensionality. As
shown in [24], the estimation (2) can effectively “single out” the effect of the one gene expression. It is noted that,
as the gene expression effect is of particular interest, its coefficient is not subject to penalization in estimation.
A “byproduct” of penalized estimation is that imaging features associated with prognosis, conditional on the
one gene expression effect, are identified, which may assist understanding the associations between imaging
features and prognosis as well as the associations between imaging features and gene expressions. The statistical
distribution result for the test statistic has been rigorously proved in [24]. The T distribution makes inference
very easy.

http://www.github.com/shuanggema/TestLDHD
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4. Results

4.1. Identification of Gene Expressions with Independent Prognostic Power Conditional on Imaging Features

We first apply the analysis approach described above to identify individual gene expressions that
have independent prognostic power conditional on the high dimensional histopathological imaging
features. With significance level 0.05 as cutoff, 85 genes are identified as significantly associated with
prognosis for LUAD. Detailed estimation results are provided in the Table S1. A quick literature
search of PubMed suggests that many of the findings have sound biological basis. For top ten
representative genes, we provide brief information and references on their associations with lung
cancer prognosis in Table 2. For LIHC, we identify 386 genes as significantly associated with prognosis
conditional on imaging features. Again, it is found that many of those genes have established evidences
of being associated with liver cancer prognosis. Brief information on the representative genes is
provided in Table 3. The solid evidences from existing studies provide support to the validity of
analysis. To more comprehensively comprehend the identified genes, we examine the genes’ functional
and biological connections by conducting Gene Ontology (GO) and KEGG pathway enrichment
analysis. The processes with the smallest p values are presented in Figure 2. It is observed that
both LUAD and LIHC have enriched processes associated with cell adhesion. This may result from
high-dimensional imaging features capturing more information on cell interaction. The identified
genes are also enriched in traditional cancer hallmarks, such as the positive regulation of mitotic cell
cycle, proteoglycans in cancer, and extracellular matrix regulation. It is interesting that some immune
response-related pathways, such as MHC assembly, are also identified, considering that there are
promising developments in immunotherapy for cancer treatment recently.Cancers 2019, 11, x  7 of 16 
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It is also noted that the proposed analysis takes an angle different from the literature. As such,
there are also new findings. For example, the top ranked genes (with the smallest p values) also include
DCAF6 and LITAF for LUAD and IARS and LRPPRC for LIHC. Gene DCAF6 is a transcriptional
cofactor that enhances androgen receptor (AR)-mediated transcriptional activity. Chen et al. [27]
have found that the expression of DCAF6 is upregulated in prostate cancer patient and may be a
candidate tumor promoter for prostate cancer, indicating its important role in cancer etiology. For
gene LITAF, Zhou et al. [28] have established the regulatory axis of AMPK–LITAF–TNFSF15, where
AMPK activation upregulates the transcription of LITAF and consequently upregulates the expression
of TNFSF15. TNFSF15 inhibits the growth of prostate cancer cells and bovine aortic endothelial cells
in vitro, supporting that LITAF may function as a tumor suppressor. Gene IARS is the coding gene of
isoleucyl-tRNA synthetase (ARSs). ARSs has been shown to catalyze the amino acylation of tRNAs by
their cognate amino acid, linking amino acids with the correct nucleotide triplets and ensuring the
correct transformation of the genetic code to the protein level. Kopajtich et al. [29] have reported that
biallelic IARS mutations can cause infantile hepatopathy, suggesting its potential association with liver
function. LRPPRC is another interesting gene, which regulates the expression of all mitochondrial
DNA-encoded mRNAs, and thus has important contributions to mitochondrial function. Tian et al. [30]
have examined the expression of LRPPRC in six types of cancer and observed that LRPPRC plays an
important role in tumorigenesis through the resistance to apoptosis and high invasive activity. Other
newly identified genes, such as FLS353 [31], IPO7 [32], PDS5A [33], and MPP-2 [34], have also been
demonstrated to be related to tumorigenesis. This brief literature search suggests that the implications
of these new findings in lung and liver cancer prognosis have not been well established, however, they
have been observed to have important contributions to cancer etiology. The new findings are also
not surprising. It is conceptually sensible that the strongest “signals” are perhaps reflected in both
omics profiles and histopathological images. The proposed analysis seeks for additional “signals” in
gene expressions that are not reflected in images. As such, the findings may complement those in
the literature.

Table 2. Analysis of LUAD data: representative identified genes.

Gene Evidence PMID

HYAL2 Real-time PCR studies showed that HYAL2 genes were down regulated in
non-small cell lung cancer [35]. 19140316

MAPK1IP1L MAPK1IP1L gene was found to be related with acquired resistance to MET
inhibitors in lung cancer cells [36]. 28396363

HLA-DRA Lack of surface class II expression was found to be associated with a specific
defect in HLA-DRA induction in non-small cell lung carcinoma cells [37]. 8786310

HNRNPK Higher levels of hnRNP mRNAs were found in SCLC as compared to
NSCLC. hnRNP K protein localization varied with cellular confluence [38]. 12871776

GPNMB Osteoactivin (GPNMB) ectodomain protein was shown to promote growth
and invasive behavior of human lung cancer cells [39]. 26883195

BMP2 Positive correlation was found between gene expressions of two angiogenic
factors, VEGF and BMP-2, in lung cancer patients [40]. 19324447

COMMD6 COMMD9 was demonstrated to promote TFDP1/E2F1 transcriptional
activity via interaction with TFDP1 in non-small cell lung cancer [41]. 27871936

HLA-DRB1
Lung cancer patients in Japan showed an increased frequency of
HLA-DRB1*0901 and a decreased frequency of HLA-DRB1*1302 and
DRB1*14-related alleles when compared to the other subjects [42].

9808426

LARP1 LARP1 post-transcriptionally regulates mTOR and contributes to cancer
progression [43]. 25531318

ZAK ZAK inhibits human lung cancer cell growth via ERK and JNK activation in
an AP-1-dependent manner [44]. 20331627

* The star is a sign indicating the location of the mutated allel.
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Table 3. Analysis of LIHC data: representative identified genes.

Gene Evidence PMID

LAPTM4B LAPTM4B is a potential proto-oncogene, whose overexpression is
involved in carcinogenesis and progression of HCC [45]. 12902989

CAPZA1 CAPZA1 expression levels were negatively correlated with the
biological characteristics of primary HCC and patient prognosis [46]. 28093067

PLOD2 PLOD2 expression was identified as a significant, independent factor of
poor prognosis for HCC patients [47]. 22098155

STIP1 STIP1 was upregulated in HCC and associated with poor clinical
prognosis [48]. 28887036

IGF1
Inhibition of IGF-1R tyrosine kinase (IGF-1R-TK) by NVP-AEW541
induces growth inhibition, apoptosis and cell cycle arrest in human
HCC cell lines without accompanying cytotoxicity [49].

16530734

HTATIP2

HepG2 cells that expressed transgenic HTATIP2 formed more invasive
tumors in mice following administration of sorafenib. Sorafenib
therapy prolonged recurrence-free survival in patients who expressed
lower levels of HTATIP2 compared with higher levels [50].

22922424

GNAI3
GNAI3 inhibits tumor cell migration and invasion and is
post-transcriptionally regulated by miR-222 in hepatocellular
carcinoma [51].

25444921

XPO1 Exportin-1 (XPO1, CRM1) mediates the nuclear export of several key
growth regulatory and tumor suppressor proteins [52]. 25030088

PLVAP PLVAP was identified as a gene specifically expressed in vascular
endothelial cells of HCC but not in non-tumorous liver tissues [53]. 25376302

EPAS1 HIF-2alpha/EPAS1 expression may play an important role in tumor
progression and prognosis of HCC [54]. 17589895

Analysis is further conducted to better comprehend the additional prognostic information in
gene expressions. Specifically, for each identified gene expression, two AFT models are considered.
The first model, referred to as A1, contains the single gene expression as well as selected imaging
features; in contrast, the second model, referred to as A2, contains only the selected imaging features.
Comparing the two models can straightforwardly describe the contribution of the gene expression to
prognosis. To facilitate the comparison, subjects are classified into low and high risk groups with equal
sizes based on the survival times predicted using A1 and A2, and the log rank test is conducted to
compare survival of the two groups. p values from the log rank tests are provided in the Table S1. For
LUAD, it is observed that 56 out of the 85 A1 type models can effectively separate the high and low
risk groups (with the adjusted log rank test p values < 0.05); In contrast, 47 of the A2 type models have
significant adjusted log rank p values. In addition, 51 A1 type models have p values smaller than their
A2 counterparts. In the analysis of LIHC data, the numbers of significant adjusted p values for the
A1 and A2 type of models are 237 and 66, respectively. In addition, 286 genes have p values smaller
under the A1 type models than their A2 counterparts. These results suggest that gene expressions
can significantly improve prognosis modeling beyond histopathological imaging features. For a more
intuitive presentation, we present the Kaplan–Meier curves for two representative genes in Figure 3.
Specifically, we show the survival functions of the low and high risk groups under the A1 and A2
models. The A1 models have a much clearer and more significant separation. Such results suggest that,
for clinical practice, it may be necessary to integrate gene expression data beyond histopathological
imaging data.
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Figure 3. Kaplan–Meier (KM) curves for low (blue) and high (red) risk groups under models A1 and
A2. (a,b) for LUAD: Gene HNRNPK as well as selected imaging features (A1), and only selected
imaging features (A2). (c,d) for LIHC: Gene GOT2 as well as selected imaging features (A1), and only
selected imaging features (A2). p values are computed from log rank tests.

4.2. Identification of Imaging Features with Independent Prognostic Power Conditional on Gene Expressions

Analysis parallel to the above is conducted, reversing the roles of gene expressions and imaging
features. With significance level 0.05, the identified imaging features along with their p values are
shown in Table 4. Detailed estimation results are provided in the Table S1. In the LUAD data analysis,
11 imaging features are found as significantly associated with prognosis conditional on the selected
gene expressions. Among them, six are texture related, which is consistent with the literature [21]. In
the analysis of LIHC data, nine imaging features are found as significantly associated with prognosis
conditional on gene expressions, among which eight belong to the morphological category of nuclei
texture. There is one notable difference between gene expression and histopathological imaging
measurements. With extensive functional studies accumulated over years, the biological functions of
many genes are known; In contrast, the biological interpretations of imaging features mostly remain
unclear. As such, interpretations as in Table 2; Table 3 cannot be pursued.
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Table 4. Identified histopathological features.

LUAD LIHC

Feature Name Adjusted
p Value Feature Name Adjusted

p Value

Mean_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_00 1.16 × 10−4 StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_02 9.46 × 10−6

Median_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_00 1.59 × 10−4 StDev_Identifyhemasub2_Texture_SumEntropy_ImageAfterMath_3_00 9.46 × 10−6

StDev_Identifyeosinprimarycytoplasm_Texture_Correlation_maskosingray_3_00 1.59 × 10−4 StDev_Identifyhemasub2_Texture_SumEntropy_ImageAfterMath_3_02 1.85 × 10−5

StDev_Identifyhemasub2_AreaShape_Orientation 1.59 × 10−4 StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_00 2.92 × 10−5

StDev_Identifyhemasub2_AreaShape_Zernike_6_6 1.05 × 10−4 StDev_Identifyhemasub2_Texture_SumEntropy_ImageAfterMath_3_01 3.64 × 10−5

StDev_Identifyhemasub2_AreaShape_Zernike_9_1 1.59 × 10−4 StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_01 4.08 × 10−5

StDev_Identifyhemasub2_AreaShape_Zernike_9_9 1.59 × 10−4 StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_03 4.82 × 10−5

StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_03 1.64 × 10−4 StDev_Identifyhemasub2_Texture_SumEntropy_ImageAfterMath_3_03 9.24 × 10−5

StDev_Identifyhemasub2_Texture_SumEntropy_ImageAfterMath_3_01 1.64 × 10−4 Granularity_2_ImageAfterMath 1.07 × 10−4

Texture_Correlation_maskosingray_3_00 1.59 × 10−4

Granularity_15_ImageAfterMath 7.66 × 10−4
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As in the above section, additional analysis is conducted. Specifically, two types of AFT models
are considered. The first type, referred to as B1, is based on an individual imaging feature and
selected gene expressions; whereas the second type, referred to as B2, is only based on selected
gene expressions. Detailed results are provided in the Table S1. For LUAD, it is observed that ten
out of the 11 B1 type models can effectively separate the high and low risk groups, whereas 11 of
the B2 type models have significant adjusted log rank p values. For the identified imaging feature
Granularity_15_ImageAfterMath, the B1 model is not significant, however, the corresponding B2
model is significant. This can be explained by the larger degrees of freedom of the B1 model and
possible correlation between the two types of measurements. It is also found that six imaging features
have p values smaller under the B1 type models than their B2 counterparts. In the LIHC data analysis,
the overall findings are similar. Specifically, all tests under both B1 and B2 types of models have
adjusted p values smaller than 0.05. All tests under B1 have p values larger than those under B2. Again,
this can be possibly explained by the larger numbers of parameters under B1 and correlations. The
KM curves for two representative imaging features are examined in Figure 4. The differences between
the left and right panels are much less distinct compared to Figure 3. Overall, the analysis suggests
that, conditional on the presence of gene expression measurements, histopathological imaging features
have limited independent prognostic power.
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Figure 4. KM curves for low (blue) and high (red) risk groups under models B1 and B2.
(a,b) for LUAD: Imaging feature Texture_Correlation_maskosingray_3_00 as well as selected gene
expressions (B1), and only selected gene expressions (B2). (c,d) for LIHC: Imaging feature
StDev_Identifyhemasub2_Texture_DifferenceEntropy_ImageAfterMath_3_00 as well as selected gene
expressions (B1), and only selected gene expressions (B2). p values are computed from log rank tests.
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5. Discussion

In the literature, the separate and integrated analyses of omics and histopathological imaging data
have been conducted. This study has taken a different perspective and tried to answer the fundamental
question of whether a type of measurement has independent prognostic power conditional on the
collective effect of the other type. A rigorous statistical testing approach, developed under simpler
settings, has been adopted and extended. In the analysis of TCGA data on two cancer types, it
has been found that, conditional on imaging features, individual gene expressions may still have
significant prognostic power; however, conditional on gene expressions, individual imaging features
may have limited prognostic power. As such, at least for the analyzed datasets, gene expressions
and histopathological imaging features have an irreversible independent relationship in modeling
prognosis. Such findings, to the best of our knowledge, are the first in the literature. They may have
important implications for cancer practice. Specifically, in cancer clinical practice, gene expression
profiling is becoming routine. Our analysis suggests that, for modeling prognosis, when gene
expression data are available, clinicians may not need to order histopathological imaging. However,
this is not true the other way around. For a more accurate prognosis modeling, with imaging data,
clinicians may still want to order gene expression profiling, and use integrated analysis techniques
(developed in published and future literature) to integrate gene expression and imaging data. The
biological implications of the findings, pertinent to the associations between gene expressions and
imaging features, are worth further investigation.

This study can be extended in multiple directions. Specifically, other types of omics measurements,
such as DNA mutations, miRNA expressions, methylation, and copy number variations, can be
analyzed similarly. It is noted that the findings are not necessarily the same as in this article. In our
analysis, we have considered high dimensional imaging features, which may include more information
but do not have simple biological interpretations. It is possible to conduct a similar analysis using
low dimensional imaging features such as vascular invasion and lymphocyte cells—this is postponed
to future research. It is noted that in the literature [55], techniques have already been developed to
identify cancer regions, extract such low dimensional imaging features, and use them in analysis. The
analysis has been focused on gene expression and imaging data. We acknowledge the importance
of clinical, environmental, and other factors in cancer prognosis. These factors are not included in
analysis with the following concerns. First, the most important objective of this study is to evaluate the
overlapping/independent information in omics and histopathological imaging data. As such, we focus
on these two types of measurements. Second, to the best of our knowledge, techniques for making
inference with the “one gene expression + low dimensional clinical factors + high dimensional imaging
features” model are not available. This analysis can be more complex than that in this article with the
significant differences between clinical factors and imaging features. Table 1 has been provided so that
researchers can comprehend properties of the TCGA cohorts. Extending the proposed analysis and
accommodating clinical factors will be postponed to future research. It is also of interest to conduct
similar analysis for other types of cancer outcomes. For a continuous cancer marker, the described
analysis technique can be directly applied. New developments will be needed for other types of
outcomes/phenotypes. It is also noted that the detailed results can be data and model dependent.
It is impossible to conduct analysis with all cancer types and models. However, the “spirit” of the
proposed analysis will be broadly applicable. Although with certain limitations, being the first of its
kind, this study may still provide important insights into cancer modeling and characteristics of cancer
as reflected in omics profiles and histopathological images.

6. Conclusions

Omics and histopathological imaging data have been co-collected in cancer practice and analyzed
in recent integrated analysis. In this study, we have presented a pipeline for analyzing their
independent prognostic power conditional on the other type of data. The adopted statistical inference
technique has a solid ground and can be broadly applied. The “asymmetric” finding is interesting, has
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not been observed in the literature, and has sound interpretations. It is reasonable to expect that the
proposed analysis and its downstream integrated analysis will gain popularity fast and have a deep
impact on cancer practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/3/361/s1,
Table S1: Detailed estimation results referred to in Section 4, TestLDHD: R code and example data.
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