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1 Nondimensionalization

1.1 Intracellular model (S, F,A,R)

Using a mathematical model abstracted from the complex network in Figure S1, we illustrate the bio-
chemical mechanisms and conditions under which these signaling molecules operate. A system of ordinary
differential equations was utilized to understand the intracellular dynamics. In order to incorporate the
signaling network we simplified the network as shown in Figure S1A as follows: We merged all the reg-
ulatory network between proteasome/Bcl2 and NFκB -Bcl2 into one component (NFκB-Bcl2 complex;
middle green box with dashed line in Figure S1A) while we kept IκB (dashed yellow box in Figure S1A)
and Bax (dashed blue box in Figure S1A) in separate modules. The corresponding mathematical model
network is shown in Figure S1B. We refer to the interactions represented by edges in Figure S1B as
the core control system. By convention, the kinetic interpretation of arrows and hammerheads in the
chemical network signify induction (arrow) and inhibition (hammerhead).

Let the variables S(t), F (t), A(t) and R(t) be activities of IκB, NFκB-Bcl2 complex, Bax, and RIP1,
respectively, at time t. The scheme includes autocatalytic activities of IκB (S), NFκB-Bcl2 complex (F ),
Bax (A), and RIP1 (R), protein degradation of those key molecules, mutual inhibition between IκB and
NFκB-Bcl2 complex and inhibition of Bax activity by NFκB-Bcl2 complex and RIP1, and activation of
RIP1 by NFκB-Bcl2 complex in the presence of OVs and bortezomib. Based on biological observations,
we write the phenomenological equations for the rate change of those key modules (S, F,A,R) as follows:
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where the first term in Eq. (1) represents the signaling pathways from bortezomib to IκB in the absence
and presence of OVs, kSB is the signaling strength of bortezomib, B is the bortezomib level, k12 is a
scaling factor for inhibition of the bortezomib signaling, k13 is the inhibition strength of bortezomib
signaling by OVs, [oHSV] is a biochemical switch for oncolytic viruses with [oHSV] = v

k+v where v is the
OV density, as introduced below, and k is the Hill type parameter, giving [oHSV] = 0 (1) in the absence
(presence) of virus, c1, c2, k10 are the signaling pathways to the proteasome-NFκB -Bcl-2 complex, Bax,
and RIP1, respectively, k1, k2, k3 are the autocatalytic enhancement parameters for IκB, proteasome-
NFκB-Bcl-2 complex and Bax, respectively, k2, k4, k8 are the Hill-type inhibition saturation parameters
from the counter part of IκB, proteasome-NFκB -Bcl-2 complex and Bax, respectively, k5 is the inhibition
strength of IκB by the proteasome-NFκB-Bcl-2 complex, k6 is the inhibition strength of the proteasome-
NFκB-Bcl-2 complex by IκB, k9 is the inhibition strength of the Bax by the , and finally, µs, µf , µa, µr
are decay rates of IκB, proteasome-NFκB-Bcl-2 complex, Bax, RIP1, respectively.
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By performing the following non-dimensionalization:
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of Eqs. (1)-(4), we obtain the dimensionless equations for IκB (S̄), NFκB-Bcl2 (F̄ ), Bax (Ā), RIP1 (R̄)
with a set of essential control parameters:
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where v̄ is the dimensionless OV density, as introduced below.
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Figure S1. (A) A simplified model of the network of IκB-NFκB-Bcl2-Bax-RIP system for
anti-apoptosis, apoptosis, and necroptosis of glioma cells [1–5]. (B) Schematic components of IκB,
proteasome-NFκB -Bcl2 complex, BAX, and RIP1 are represented by ‘S’, ‘F ’, ‘A’, and ‘R’, respectively.
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Var Description Dimensional value Ref

L Length scale 3 mm [1, 2, 5]
T Time scale 1.0 h [5]
D Characteristic diffusion coefficient 1.5× 10−5cm2/s [5]
x∗ Uninfected cell density 106 cells/mm3 [5–7]
y∗ Infected cell density = x∗ [5–7]
n∗ Dead cell density = x∗ [5–7]
v∗ Virus concentration 2.2× 108 virus/mm3 [5–7]
B∗ Bortezomib concentration 1.0× 10−11 g/mm3 [1, 2, 5]
S∗ IκB concentration 0.05 µM [8, 9]
F ∗ concentration of the NFκB-Bcl2 com-

plex
0.5 µM [8–11]

A∗ Bax concentration 0.1 µM [12]
R∗ RIP concentration 5.0 µM [13]

Table S1. Reference value used in the model.

1.2 Diffusible variables (x, y, n, v, B)

The following nondimensionalization was used for the governing equations (8)-(12) in the main text
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to get the dimensionless model equations:

∂x̄

∂t̄
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k̄B + B̄
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*Note that β† = β, β†3 = β3, δ
† = δ under the assumption of x∗ = y∗ = n∗; otherwise β†, β†3, δ

† are
different from β, β3, δ, respectively.
Table S1 lists the reference values in the model.

Boundary Condition:
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We take no-flux boundary condition for all diffusible variables (x, y, v, B) on the boundary Γ = ∂Ω

(D1∇x) · ν = 0, (D2∇y) · ν = 0, (Dv∇v) · ν = 0, (DB∇B) · ν = 0, (16)

where ν is the outer normal vector.

2 Parameter estimation

ω1, ω2, ω3: Half-life of suppressor (IκB) is in the range of (10-40) mins [14–16]. By taking 40 mins
of half-life, we get µs = ln(2)/(40 min) = 1.0 h−1. We take 2.2 hours of half-life for the NFκB-Bcl2
complex, leading to µf = 0.315 h−1 and ω1 =

µf

µs
= 0.3. Half-life of Bax is approximated to be in the

range of (6-32) hours [17], leading to µa = ln(2)/(32 h)− ln(2)/(6 h) = (0.0217− 0.1155) h−1. We take
µa = 0.02 h−1, resulting in ω2 = µa

µs
= 0.02. Half-life of RIP1 was estimated to be (1.2-5) hours [18]. By

taking 4.8 hour of half life, we have µr = 0.1444 h−1 and ω3 = µr

µs
= 0.139

D1, D2, Dv: Diffusion coefficient of tumor cells D1 is 3.6× 10−6 mm2/h [5]. Random motility of infected
cells is very limited due to OV infection and we take much slower value, D2 = D1/1000. From the
approximation Dv ∼ 104D [19], we get Dv = 3.89× 10−2 mm2/h.

α1: We assume that effect of OV replication doubles when B = B∗, (i.e., , 1 + α1B
∗ = 2), based on

experimental observation [2]. So, we take α1 = 1011 mm3/g.

kB : We take the bortezomib level (B∗) to indicate the instant consumption of bortezomib by tumor cells,
leading to kB = B∗ = 1.0× 10−11 g/mm3.

µB : The average half-life of Bortezomib was estimated to be 10-31 hours [20]. The mean removal half-
life of after the first dose was in the range of 9-15 hours at the dose level 1.45-2.00 mg/m2 in cancer
patients [21]. We take 20 h, leading to µB = ln2

20 h = 3.47× 10−2/h.

µ1, µ2: While proteasome inhibitor, bortezomib (B), has a relatively long half-life of 31 hours, internal-
ization of this key molecule into an infected tumor cell and infection of tumor cells happen at a faster time
scale. Therefore, we assume that the consumption rate in the bortezomib equation is much higher than
natural decay term, resulting in (µ1x+ µ2y) 1

2 > µBB with an approximation of B
k1+B ∼ 0.5. By setting

µ1 = µ2 and an estimation of x+y ∼ 0.8×10−3 g/mm3, we get µ1 = µ2 = 0.166×10−8

0.8
1
h = 2.075×10−9/h.
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