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Abstract: Translational research aims to provide direct support for advancing novel treatment
approaches in oncology towards improving patient outcomes. Preclinical studies have a central role in
this process and the ability to accurately model biological and physical aspects of the clinical scenario
in radiation oncology is critical to translational success. The use of small animal irradiators with
disease relevant mouse models and advanced in vivo imaging approaches offers unique possibilities
to interrogate the radiotherapy response of tumors and normal tissues with high potential to translate
to improvements in clinical outcomes. The present review highlights the current technology and
applications of small animal irradiators, and explores how these can be combined with molecular
and functional imaging in advanced preclinical radiotherapy research.

Keywords: preclinical radiotherapy; functional imaging; small animal irradiators; radiobiology;
radiation oncology

1. Introduction

Since the introduction of the linear accelerator into the practice of radiation oncology during
the 1950s, the discipline has undergone major technology changes that have significantly advanced
all stages of the radiotherapy process from treatment planning to delivery and verification. These
innovations have resulted in an unparalleled ability to delineate target volumes, conform radiation dose
and irradiate under image guidance [1], which have translated to better tumor control and reduced
toxicity in many cancer types. Despite these advances, it is unlikely that radiotherapy technology
has reached its zenith, with many developments in molecular and functional imaging, treatment
adaptation and particle therapy yet to be fully realized in the clinic [2].

In contrast, the impact of biologically driven strategies in radiation oncology has been less
substantial. This is evidenced by the implementation of most advanced radiotherapy techniques
on the basis of technology rather than a comprehensive understanding of radiobiological response,
highlighting the need for advanced preclinical systems capable of modelling aspects of human disease
under clinically relevant radiation exposure conditions. In addition, several radiotherapy clinical
trials have reported null outcomes, an issue that was examined by the National Cancer Institute (NCI)
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Radiation Research Program (RRP) at a workshop aiming to better understand these findings and to
try to improve the success of future trials [3].

From radiotherapy trials reporting negative and null outcomes, an intriguing example is that of the
phase 3 Radiotherapy Oncology Trial Group (RTOG) 0617 study. This aimed to compare standard-dose
versus dose escalation with concurrent chemotherapy and the addition of cetuximab in patients with
inoperable stage III non-small-cell lung cancer (NSCLC). The study failed to demonstrate overall
survival benefit at the higher dose of 74 Gy, compared with the lower, standard dose of 60 Gy [4], and
further reported 17 deaths in the high dose arms compared to 7 in the lower dose cohort. The causes
of these unexpected findings have been explored with secondary analysis suggesting that deaths
related to the effects of dose to the heart and lung are the most likely explanation of the findings, and
these continue to be discussed [5].

Importantly, trials such as a RTOG 0617 need to be reverse translated using relevant preclinical
models to gain de novo mechanistic insight into the clinical benefits and risks of dose escalation.
Part of the recommendations proposed by the NCI RRP group have included the requirement for
robust preclinical supporting data to guide subsequent clinical trials. In addition, Stone et al., surveyed
data from 125 published reports which tested the interaction of 10 drug-radiation combinations and
provided comprehensive recommendations for improved preclinical testing [6]. This has also been
supported by further recommendations from Coleman et al., aiming at improve the predictive power of
preclinical models in developing radiotherapy clinical trials [7]. Cumulatively, these reports clearly
highlight the need for robust preclinical supporting data in translationally relevant disease models to
justify radiotherapy clinical trials. In this context, it is essential that preclinical models in radiobiology
research accurately reflect modern clinical practice, in terms of both biological model and physical
radiation exposure conditions [8]. These approaches should also be further synergized with anatomical,
functional and molecular imaging to optimize radiotherapy planning and response monitoring and
maximize potential for translation. In this article, we review the technology of small animal irradiators
and preclinical imaging techniques to identify key opportunities for translational research that may
impact the future success rate of radiotherapy clinical trials.

2. Small Animal Radiotherapy: Rationale and Technology

Since the first report of the tissue sparing effects from fractionation in ram testes more than
100 years ago [9], small animal models have been widely applied in radiobiological studies predicated
on the basis of genetic and physiological similarities with humans [10]. In particular, mouse models
have contributed significantly to the advancement of biomedical research [11]. Recent genome
editing technologies continue to allow a wide spectrum of gain- and loss-of-function mutations to be
investigated along with evaluation of novel therapies in defined genomic backgrounds. In addition,
the implantation of human tissue into NOD-scid-γ (NSG) mice with partially reconstituted immune
systems can help to recapitulate aspects of the patient immune response during treatment through
humanized mouse models [12]. Whilst no ideal mouse model exists to truly recapitulate the human
setting, it is important that contemporary disease models are used with advanced irradiation techniques
to closely mimic clinical scenarios and maximize the potential to deliver translationally relevant
datasets [13].

Classic radiobiology experiments have been performed using broad fields from fixed sources and
shielding to target the beam. Some of these experiments involved the irradiation of large volumes
(usually whole body or whole thorax) which did not require precision image guidance, however, these
procedures have high levels of uncertainty due to inaccurate beam targeting, as highlighted in Figure 1.
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Figure 1. Schematic diagram demonstrating the evolution of conventional radiobiology to
image-guided preclinical radiotherapy and molecular imaging. These changes are a major refinement of
conventional techniques and have resulted in improved precision and accuracy. Overall, these advanced
approaches have reduced study sizes in radiobiology studies required to obtain statistical power by
reducing dose uncertainty, error and allowing longitudinal analysis.

Similar to clinical techniques, modern radiobiology studies aim to irradiate small target volumes
with high levels of precision and accuracy. Devices capable of performing image-guided irradiation in
small animals have been developed over the last 10 years by a number of investigators and vendors
(Table 1). Two systems have been made commercially available: The Small Animal Radiotherapy
Research Platform (SARRP) from Xstrahl Life Sciences developed at Johns Hopkins University [13] and
the X-Rad SmART from Precision X-ray Inc., developed at Princess Margaret Hospital [14]. In addition,
several other systems have been designed and implemented at a number of institutions across the
world using approaches consisting of rotating or fixed gantries with cone beam computed tomography
(CBCT) detectors or conversions of micro-CT devices. Details of these systems and their characteristics
are summarized in Table 1.

Table 1. Summary of small animal radiotherapy systems and individual characteristics.

Research
Platform

Vendor
Research
Institute

Beam
Energy
(KeV)

Dose
Rate

(Gy/Min)

Beam
Collimation

Accuracy
(mm)

Image
Guidance

Treatment
Planning
System

Reference

Commercially available

SARRP 1 Xstrahl Life
Sciences 5–225 1–4 Aperture

MVC 0.2 CBCT
BLT Muriplan [14,15]

X-RAD
225Cx

SmART 2

Precision
X-ray 5–225 0.01–4 Aperture 0.2 CBCT

BLI SmART-Plan [16]

Non-commercial

iSMAART University of
Miami, USA 45–225 2.5–4 Aperture 0.4

CBCT
BLT
FLT

In house [17–19]

SAIGRT 3

Technical
University of

Dresden,
Germany

10–225 1–4 Aperture
MVC 0.1 CBCT In house [20]
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Table 1. Cont.

Research
Platform

Vendor
Research
Institute

Beam
Energy
(KeV)

Dose
Rate

(Gy/Min)

Beam
Collimation

Accuracy
(mm)

Image
Guidance

Treatment
Planning
System

Reference

Non-commercial

SACRTD 4
University of
Arkansas, AR,

USA
60–225 0.4–3 Aperture 0.2 CBCT In house [21]

Micro-CT
based

radiotherapy
devices

Stanford
University,

USA
70–120 2 Aperture <0.1 CBCT In house [22]

Heidelberg
University,
Germany

10–160 4.5–6.4 Aperture <1 CBCT In house [23]

The University
of Western

Ontario,
Canada

70–140 2 Jaw
Collimation 0.1 CBCT In house [24]

1 Small animal radiotherapy research platform (SARRP); 2 Small animal radiotherapy (SmART); 3 Small animal image
guided radiotherapy (SAIGRT); 4 Small animal conformal radiotherapy device (SACRTD).

To complement these platforms, dedicated treatment planning systems (TPS) analogous to those
used clinically are required for accurate dose calculations. These have been developed using the
superposition convolution algorithm [25], Monte Carlo simulations [15] or in-house dose engines [26].
Preclinical TPS aim to efficiently solve the challenges associated with tissue segmentation and dose
calculation relating to photon scattering for very small fields and differences in the energy absorption of
soft tissues for kilovoltage beams [27]. Although still at a relatively early stage, small animal irradiators
are rapidly becoming the experimental standard in radiobiology. Previously unachievable experimental
approaches are now being explored, including the irradiation of small target volumes (under 100 mm3)
at depth under image guidance from computed tomography (CT), magnetic resonance imaging (MRI)
and bioluminescence imaging (BLI).

The integration of small animal irradiators into radiobiology research either, simultaneously or
sequentially combined with imaging methods such as CT, BLI, positron-emission tomography (PET)
and MRI, have significantly improved the level of precision and accuracy with which target volumes
can be irradiated. These strategies have directly impacted animal welfare within the framework of
the UK National Centre for the Replacement, Refinement and Reduction of Animals in Research
(NC3Rs). In particular, these improvements are a major refinement from conventional approaches
as both precision and accuracy has been improved along with the ability to acquire longitudinal
information from the same animals. Consequently, this has reduced the requirement for large study
sizes which shown schematically in Figure 1 [28,29].

3. Preclinical Imaging: Principles and Technology

Imaging has focused on the visualization of anatomical regions of interest in the diagnosis and
staging of disease, as well as monitoring response to therapy. Conventional anatomical imaging
methods, such as X-ray, fluoroscopy and computed tomography (CT) continue to play a critical
role in the delineation of macroscopic patient anatomy. However, advances in molecular biology
have enabled imaging techniques to move beyond structural characterization of malignancy into the
realm of molecular imaging [30]. This involves the visualization, characterization, and measurement of
biological processes at the molecular and cellular levels, typically including two- or three-dimensional
imaging using techniques such as PET, Single Photon Emission Computed Tomography (SPECT) and
BLI [31]. Some of these techniques overlap as functional imaging modalities that are used to delineate
and measure physiologic functions in organ systems, including techniques such as PET, functional
MRI and ultrasound.
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Many preclinical imaging techniques were originally developed as clinical imaging procedures
but have since been reverse translated in the same way modern radiotherapy has been brought to
the preclinical laboratory. A variety of imaging methods are now available to plan and monitor
radiotherapy response in a manner analogous to that in the clinic as shown in Figure 2.
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Figure 2. Schema of different preclinical imaging techniques showing increasing molecular
specificity and spatial resolution for in vitro and in vivo studies. BLI, bioluminescence imaging; PET,
positron-emission tomography; CT, computed tomography; MRI, magnetic resonance imaging.

X-ray computed tomography (CT) remains the primary imaging modality in preclinical and
clinical radiotherapy treatment planning. In small animal CT scanners, X-rays are emitted as a
beam from the tube, pass through the subject and are detected by a large-area solid-state radiation
detector [28]. Whilst CT can provide material composition information useful for dose calculation, it
has limited soft tissue contrast that can complicate identification of targets for treatment as well as
volumes of radiosensitive tissues to be avoided.

A variety of molecular imaging technologies have been developed that generate image contrast
based on functional aspects of tissue including perfusion, gene expression, oxygenation and
metabolism, rather than anatomical structure [28,32–34]. The most prominent modality used for
this purpose clinically is positron-emission tomography (PET), a nuclear medicine technique that
detects and localizes radiation produced by positron-emitting radiopharmaceuticals administered
exogenously to a subject [35]. Imaging glucose metabolism with 18F-fluorodeoxyglucose (18F-FDG) is
most commonly used to provide functional information based on increased uptake and glycolysis of
cancer cells [32,36]. 18F-FDG PET is widely used in cancer diagnosis and screening, yet it is unsuitable
for tumors in organs with high 18F-FDG non-specific uptake such as the liver. Furthermore, it has
limited ability to differentiate benign from metastatic lesions and early versus late stage disease [37].

The development of many other tracer types has given PET wide applications, particularly in
the study of tumor metabolism [38]. Some preclinical PET tracers are probes consisting of a targeted
molecule specific to a biological functional measurement attached to a radioisotope with a favorable
half-life such as 11C, 15O and 18F. Probes can also be used to image specific molecules based on
binding of radiolabeled ligands (e.g., α5β3 integrin imaging of tumor vasculature with radiolabeled
glycosylated RGD (arginine-glycine-aspartate) containing peptides). A list of PET tracers used in
preclinical studies and their biological targets is summarized in Table 2. PET has progressed to offer
~5 mm spatial resolution and picomolar sensitivity in clinical scanners [39]. Preclinical studies have
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exploited microPET technology with comparable sensitivity and ~1 mm spatial resolution for treatment
planning and response assessment [28,40].

Table 2. Summary of tracers used in preclinical studies and their biological targets.

Tracer Targeting Moiety Biological Target Reference

64Cu Anti-PD-1 Tumor infiltrating
lymphocytes [41]

124I Anti-CD4 CD8+ cells [42–44]
89Zr Anti-CD4 T-cell reconstitution

post-transplant [43]

89Zr Anti-CD3 tumor-infiltrating
lymphocytes [44]

64Cu
Anti-OX40 T cells activation

[45]Anti-CTLA-4 CTLA-4 visualization
68Ga/18F PSMA PSMA [46]
18F-FDG Fluorodeoxyglucose Glucose metabolism [47]

68Ga-NODAGA-c(RGDfK) RGD (arginine, glycine, aspartate) peptides αvβ3 integrins in the
tumor vasculature [48]

18F-EF5
2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoro

propyl)-acetamide
Hypoxia

[49,50]
18F-FAZA

1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-
nitroimidazole

18F-FMISO Fluoromisonidazole
[51–54]

18F-HX4
fluoro-2-(4-((2-nitro-1H-imidazol-1-yl)methyl)-1H-

1,2,3-triazol-1-yl)propan-1-ol

(18F)F-AraG
2-(2-Nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoro

propyl)-acetamide
fluoro-9-β-D-arabinofuranosyl guanin

T cell activation [55,56]

Magnetic resonance imaging (MRI) has become an established medical imaging modality
due to its superior soft tissue contrast and lack of ionizing radiation dose. MRI is based on
combining high-strength magnetic fields with radiofrequency (RF) detection to exploit atomic nuclei
with odd numbers of nucleons and thus net magnetic moments [28]. At the microscopic level,
net magnetic fields in tissue depend on the microenvironment as well as the applied magnetic
field, yielding soft tissue contrast uniquely characteristic of MRI. Preclinical MRI systems are being
implemented for a range of applications, including MRI-guided radiation therapy for intracranial,
pancreatic and flank tumors, immobilization devices, fiducial marker placement and MRI-only based
treatment planning [57–59]. These methods are well established for mice and rats with technical
developments towards implementing adaptable registration into existing workflows for small animal
radiotherapy [57–59].

Other molecular imaging modalities such as BLI have been developed specifically for preclinical
applications. BLI involves the engineering of cells to express a luciferase enzyme, which catalyzes
the metabolism of a substrate (luciferin) that generates as a by-product a photon in the visible to
near-infrared wavelength range [49]. Such enzymatic reactions are found natively in organisms
including bacteria, fireflies, and jellyfish, however, molecular biology methods have allowed
integration of luciferase into cells in vitro or into animals through the germline. Two-dimensional
BLI is now used extensively in preclinical cancer biology research to detect, quantify, and localize
specific cell types [60–62] and is being integrated with preclinical image-guided irradiators for target
localization and response monitoring.

The X-Rad SmART (Precision X-ray, Inc, North Branford, CT, USA) offers a configuration in
which a cooled CCD camera is mounted on the gantry perpendicular to the X-ray beam axis to allow
two-dimensional BLI data to be collected from the subject and co-registered with the planning CT [15].
In contrast, the SARRP offers MuriGlo, an optical imaging system capable of both two-dimensional
BLI, fluorescence imaging and three-dimensional bioluminescence tomography (BLT) [63]. Similarly,
BLT has also been successfully integrated into the iSMAART system and shown accurately targeting
with quantitative assessment of response in orthotopically implanted, luciferase expressing 4T1 breast
cancer cells [64]. BLI is an attractive imaging modality in radiotherapy studies as it can provide target
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localization information and does not contribute to added dose [65,66], however, research efforts are
required to develop robust 3D reconstruction algorithms for true tomographical representation.

In addition to BLI, in vivo fluorescence imaging (FLI) is another optical imaging technique that is
being applied to radiobiological studies. An interesting approach has been demonstrated combining
the Cx225 platform with intra-vital, multimodal optical microscopy to study the spatio-temporal
dynamics of tumor microvasculature in radiation response of tumors [67]. Another approach combined
the iSMAART device with fluorescence molecular tomography (FMT) to localize tumors at depth with
a localization error of <0.5 mm [19].

Finally, a number of imaging methods have been preclinically evaluated but have not been
explored in the clinic. These include molecular ultrasound using microbubble agents, photoacoustic
imaging, Raman spectroscopy, as well as a variety of emerging radiotracers, magnetic resonance
imaging probes and X-ray contrast agents [28,34,46,68–70], which may yet provide important clinical
advantages in diagnosis and treatment.

4. Translational Research Opportunities

Imaging techniques play a central role in patient management to determine tumor-specific
characteristics and response to therapy. This is particularly evident in radiation oncology where
imaging is used for diagnosis, treatment planning, response monitoring and to detect adverse effects
resulting from treatment [35,71,72]. Preclinical investigations integrating anatomical, functional,
and molecular imaging in the experimental study design allows interrogation of key molecular
characteristics that can be used to detect and potentially predict radiotherapy response. CT and
BLT have been successfully integrated with preclinical radiotherapy devices to provide excellent
multi-modal imaging solutions. Using interchangeable beds and immobilization devices, it is also
possible to develop sequential workflows across different systems allowing co-registration of multiple
imaging sources with radiotherapy plans that are equally effective and more easily disseminated, e.g.,
sequential PET/MRI systems. Some of the unique research possibilities that these approaches are now
enabling towards the realization of biologically optimized radiotherapy are explained below.

4.1. Quantifying Tumor Burden and Response to Therapy

Evaluation of the tumor burden at diagnosis and during response to therapy is critical in guiding
treatment decisions, prognosis and radiotherapy planning. Clinically, longitudinal CT scans are used to
assess volumetric differences in target lesions at baseline and after treatment, which are standardized to
the Response Evaluation Criteria for Solid Tumors (RECIST) [73,74]. However, anatomical observations
have limitations in imaging changes post treatment as they fail to accurately represent viable tumor
cells. 18F-FDG-PET/CT has become established as an important tool in radiation oncology to determine
primary tumor characteristics, lymph node invasion and metastases. This has led to the Positron
Emission Tomography (PET) Response Criteria in Solid Tumors (PERCIST 1.0) which adopts functional
imaging into routine assessment. These criteria also serve as a starting point for use in clinical trials
when assessing the activity of novel therapies that stabilize disease, and has led to revised strategies
based on functional rather than anatomical features [75].

Currently, no standardized staging or response criteria have been defined for preclinical
studies where quantification of tumor burden is derived from caliper measurements or longitudinal
monitoring of regions of interest delineated from imaging. In PET imaging, regions of interest are
determined from the standardized uptake volume (SUV), defined as the level of tracer accumulation
normalized to the subject mass. This may also be used to determine progression in cancer models by
comparing tracer distributions in normal and diseased mice.

Preclinical efforts are needed towards optimizing PET tracers and evaluating radiotherapy
response where determining success or failure may guide future treatment decisions such as dose
boosting or salvage surgery. As tumor response is non-uniform, alterations in the SUVs of tracers often
occurs prior to tissue changes and so may provide predictive information of response, local failure
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or radioresistance. Preclinical evaluation of 18F-FDG uptake has been determined for different doses
and irradiated sub-volumes. This important study irradiated high uptake regions with high doses
and reduced (redistribution approach) or standard doses (dose escalation approach) were delivered
to the rest of the tumor volume. Minimum tumor growth delay was observed in the mice with
dose escalation to the sub-volumes with high FDG uptake [47]. Other preclinical studies compare
18F-FMISO, 18F-FAZA and 18F-HX4 to optimize imaging conditions to evaluate tumor hypoxia in
preclinical models [52–54]. A further study used the hypoxia specific tracer 18F-EF5 to determine
changes in hypoxia with radiation response. Tracer uptake was correlated with tumor growth delay or
total control and showed distinct responses corresponding to the uptake of 18F-EF5 before irradiation,
suggesting response can be predicted based on initial 18F-EF5 uptake [49,50].

Finally, different imaging techniques can also allow differentiation of tumor and normal tissues
at a level superior to anatomical imaging. Although technological improvements have reduced the
risk of normal tissue injury, toxicity causing long-term side effects or interrupted treatment continues
to occur in subsets of patients and can be critical in defining treatment options. Pre-clinically, CT data
in free-breathing animals enabled the non-invasive and high-throughput detection of a range of
pulmonary diseases in mice [76,77]. Moreover, CT was also used to image the radiation-induced
lung fibrosis longitudinally for up to 9 months post irradiation [78–81]. MRI has also been used to
detect pulmonary fibrosis in living mice and rats treated with bleomycin [82]. Considering the critical
role of the immune system in radiotherapy response, imaging approaches capable of visualizing highly
complex interactions involving multiple cell types are also being developed.

4.2. Imaging the Immune Response

The seminal discovery of enhanced antitumor immunity by blockade of the cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4) by Allison and colleagues in 1996 [83] has led to the
rapid development and uptake of immunotherapy as standard of care for many types of cancer [84,85].
Currently, over 2000 different immunotherapy compounds are in development, with 26 approved
immune-oncology (IO) agents already approved for use in the clinic including T-cell targeted
immuno-modulators, cancer vaccines and cell therapies [85]. The underlying mechanism of action
for IO agents often leads to abnormal response patterns termed pseudo-progression, and represents
considerable risk in underestimating response which may lead to early removal of patients from
treatment. This has resulted in the development of the iRECIST guidelines by the RECIST working
group for the use of modified criteria in cancer immunotherapy trials [86], which provide information
concerning tumor size but not biological characteristics of the tumor.

Given that only 15–30% of patients respond to IO agents as monotherapies, there is a critical
need for biomarkers to accurately predict response and select patients most likely to respond, and
for the development of novel combination therapies [87]. Radiotherapy is a promising approach for
combination with IO due to its multiple immune-modulatory effects, which include natural killer
(NK) cell activation [88], increased expression of tumor associated antigens [89] and activation of
immunogenic cell death mediated by damage-associated molecular patterns (DAMPs) [87,90].

Limited information is available concerning the molecular imaging changes during response
to IO agents as monotherapies or in combination with radiotherapy. Molecular imaging has much
potential to differentiate immune response from tumor progression by targeted labelling of immune
cells ex vivo, PET reporter gene expression or direct in vivo labelling and provides predictive
biomarkers of response to IO in combination with radiotherapy [91]. Considering the observed
dependence of immune effects on dose and fractionation scheme [92,93], major efforts are needed
to optimize the combination of IO and radiotherapy in preclinical models prior to translation to the
clinic. Important preclinical studies using syngeneic mouse mammary tumor models with small
animal radiotherapy have delineated the mechanisms and dose response of radiation induced T cell
activation through the DNA exonuclease, Trex1. These important findings may guide the selection of
optimum radiation dose and fractionation in patients treated with immunotherapy [92]. Also, the tracer



Cancers 2019, 11, 170 9 of 15

2’-deoxy-2’-(18F)fluoro-9-β-D-arabinofuranosyl has been identified to have specific cytotoxicity in
T-lymphocytes compared to other immune cell types and is currently under clinical investigation
as an indicator of the immune status in cancer patients (NCT03142204). (18F)F-AraG has also been
used in preclinical studies to image T-cell dynamics, showing up to 1.4-fold higher uptake in a
Graft-versus-Host disease elicited by allogenic hematopoietic cell transplant compared to control
mice [41,55,56].

4.3. Image-Guided Adaptive Radiotherapy

Anatomical changes during treatment including tumor growth, regression or weight loss may
necessitate adaptive planning by modifying the treatment plan based on the most current image to
prescribe new personalized margins and doses for individual patients [94]. Repeated CT imaging
during treatment is often used for adaptive re-planning, aiming to integrate sequential imaging in the
radiotherapy workflow. This has led to the development of MRI-integrated radiotherapy systems first
conceptualized by Lagendijk and Bakker [95] with two systems now commercially available developed
by ViewRay and the Philips Elekta Consortium [96,97].

In addition to real-time image-guided treatments, spatial variations in tracer uptake offer
opportunities for dose boosting in sub-volumes of high 18F-FDG uptake or hypoxic regions [98–101].
Anatomical and functional imaging are proving essential in defining target volumes, in dose painting
and adaptive treatments to optimize dose in radio-resistant areas, yet many challenges remain in
how to best integrate these approaches and determine individualized treatments. Preclinical efforts
have made towards developing novel technology, with several prototypes for MRI-PET imaging
systems already developed and incorporated in pilot studies [101].

5. Conclusions

Technological innovations in the delivery of advanced conformal radiotherapy and radiological
imaging have resulted in improved outcomes for cancer patients receiving radiotherapy. Clinical
advances have been reverse translated to the laboratory, where research teams are now enabled to
deliver highly conformal treatments to small volumes under image guidance. These advances
fundamentally require a better understanding of the radiobiological correspondence between mice
and humans so that fractionation schedules and dose distributions can be better interpolated in
experimental models. The synergy of small animal radiotherapy studies with functional imaging
has high potential to lead to the next generation of innovations in radiation oncology, which may
include biologically guided treatments using predictive biomarkers to optimize dose, fractionation
and combination treatments with IO or other molecular targeted agents.
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