Supplementary Materials: Cordycepin Suppresses Endothelial Cell Proliferation, Migration, Angiogenesis, and Tumor Growth by Regulating Focal Adhesion Kinase and p53

Yi-Ting Lin, Shu-Man Liang, Ya-Ju Wu, Yi-Ju Wu, Yi-Jhu Lu, Yee-Jee Jan, Bor-Sheng Ko, Yung-Jen Chuang, Song-Kun Shyue, Cheng-Chin Kuo and Jun-Yang Liou

Figure S1. Structure of cordycepin and adenosine.

Figure S2. Cordycepin has no significant effect on inducing HUVEC apoptosis. (**A**) HUVECs were treated with 0–25 μg/mL cordycepin for 24 h. The percentage of sub-G1 cells was examined by flow cytometry analysis. Scale bars: mean ± SD. (**B**) HUVECs were treated with 0–25 μg/mL cordycepin and 5 ng/mL PS-341 (bortezomib) for 24 h. Expression of cleaved PARP was determined by Western blotting analysis. β-actin was used as loading control. ** p < 0.01, *** p < 0.005

Figure S3. Cordycepin suppresses FAK expression and phosphorylation in HCC. Huh-7 cells were treated with 0–25 µg/mL cordycepin for 24 h. Expressions of FAK and p-FAK were determined by Western blotting analysis. β -actin was used as loading control. ** p < 0.01, *** p < 0.005

Figure S4. Cordycepin inhibits cell proliferation of HCC. Huh-7, HepG2 and Hep3B cells were treated with 0–25 µg/mL cordycepin for 24 h or 48 h. Cell viability was determined by MTT assay. Scale bars: mean \pm SD. *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Figure S5. Representative immunohistochemistry staining of CD31 in tumors of xenograft nude mice treated without (control) or with cordycepin (2.4 mg/kg/day). T: tumor; N: necrosis region.

Table S1.	Culture medium	n of HUVECs.	HCAECs and	HPAECs.
14010 010	culture incului		11CI ILCO una	11111000.

Cells	Culture Medium
HUVECs	M200 medium (Gibco, Gaithersburg, MD, USA) supplemented with 10% fetal bovine serum (FBS) (Biological
	Industries, Kibbutz BeitHaemek, Israel), 100 unit/mL penicillin, 100 mg/mL streptomycin and low serum
	growth supplement (LSGS) (Gibco).
	Endothelial cell growth medium (EGM™-2 MV) medium supplemented with 5% FBS, 0.04% hydrocortisone,
HCAECs	0.4% hFGF-B, 0.1% VEGF, 0.1% R3-IFG-1, 0.1% ascorbic acid, 0.1% hEGF, 0.1% gentamicin and amphotericin-B
	(GA-1000) (Lonza, Walkersville, MD, USA).
HPAECs	Endothelial cell growth medium-2 (EGM [™] -2) medium supplemented with 2% FBS, 0.04% hydrocortisone,
	0.4% hFGF-B, 0.1% VEGF, 0.1% R3-IFG-1, 0.1% ascorbic acid, 0.1% hEGF, 0.1% GA-1000, 0.1% heparin (Lonza).

Table S2. Antibodies used in this study.

Antibodies	Dilution	
FAK	1:5000 (Santa Cruz, Dallas, TX, USA)	
p-FAK (Tyr397)	1:1000 (GeneTex, Hsinchu, Taiwan)	
p53	1:500 (Cell signaling, Danvers, MA, USA)	
p21	1:500 (Cell signaling)	
-actin	1:5000 (Sigma-Aldrich, Saint Louis, MO, USA)	
PARP	1:1000 (Cell signaling, Danvers, MA, USA)	

Table S3. Primer sequences for Q-PCR used in this study.

Gene	Oligonucleotide Primer	
EAV	Forward: TCCCTATGGTGAAGGAAGTC	
FAK	Reverse: TTCTGTGCCATCTCAATCTC	
	Forward: ATTTGCGTGTGGAGTATTTGGATGA	
p55	Reverse: GTAGTGGATGGTGGTACAGTCAGA	
01	Forward: AGACTCTCAGGGTCGAAAAC	
p21	Reverse: TAAGGCAGAAGATGTAGAGC	
CAPDH	Forward: ACCACAGTCCATGCCATCACTG	
GALDU	Reverse: GTTCAGCTCAGGGATGACCTTG	

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).