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Abstract: In most diagnostic laboratories, targeted next-generation sequencing (NGS) is currently 
the default assay for the detection of somatic variants in solid as well as haematological tumours. 
Independent of the method, the final outcome is a list of variants that differ from the human genome 
reference sequence of which some may relate to the establishment of the tumour in the patient. A 
critical point towards a uniform patient management is the assignment of the biological contribution 
of each variant to the malignancy and its subsequent clinical impact in a specific malignancy. These 
so-called biological and clinical classifications of somatic variants are currently not standardized 
and are vastly dependent on the subjective analysis of each laboratory. This subjectivity can thus 
result in a different classification and subsequent clinical interpretation of the same variant. 
Therefore, the ComPerMed panel of Belgian experts in cancer diagnostics set up a working group 
with the goal to harmonize the biological classification and clinical interpretation of somatic variants 
detected by NGS. This effort resulted in the establishment of a uniform, two-level classification 
workflow system that should enable high consistency in diagnosis, prognosis, treatment and follow-
up of cancer patients. Variants are first classified into a tumour-independent biological five class 
system and subsequently in a four tier ACMG clinical classification. Here, we describe the 
ComPerMed workflow in detail including examples for each step of the pipeline. Moreover, this 
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workflow can be implemented in variant classification software tools enabling automatic reporting 
of NGS data, independent of panel, method or analysis software. 

Keywords: cancer; classification; guideline; NGS; variant 
 

1. Introduction 

Over the recent years, most molecular diagnostic laboratories have replaced their single gene 
assays for analysing tumour samples for clinically relevant variants to massive parallel sequencing, 
commonly called Next-Generation Sequencing (NGS). This technique allows the simultaneous 
interrogation of multiple genes in several samples starting from limited amounts of DNA. This major 
change in diagnostics has now become time- and cost-efficient due to the improved target enrichment 
methods and the reduced cost per sample through the massive sequencing capacity [1]. 

Cancer development is a very complex process that requires the accumulation of several 
different acquired genetic changes, also called variants. These include drivers that are essential for 
tumour development, and passengers, which accidently occur [2]. Driver variants in oncogenes are 
activating changes mostly generated by missense variants or in-frame insertion/deletions (indels) at 
very specific positions called hotspots, or by gene amplifications or fusions resulting in a gain-of-
function (GoF) of at least a function of that gene product, which often is its kinase activity. Driver 
variants in tumour suppressor (Ts) genes on the other hand negatively affect the proper function of 
that protein, resulting in a diminished or abolished protein activity or level. These variants thus 
induce a loss-of-function (LoF), and include nonsense variants, frameshift indels and splice site 
changes, as well as genomic aberrations that produce a null allele, such as a (partial) gene deletion. 
Occasionally, a change-of-function can also result in a cancer driver. Epigenetic inactivation can occur 
as well [3] but is not described here. 

Although the number of clinically relevant tumour-associated variants is steadily increasing, it 
is still too low to justify whole genome or exome sequencing [4]. A targeted screening panel from a 
dozen to a few hundred genes is currently sufficient for clinical patient management and allows the 
detection of single nucleotide variants (SNV) and indels, but can also find copy number variations 
(CNV), tumour mutation burden (TMB), homologous recombination deficiency (HRD) and 
microsatellite instability (MSI) [5,6]. Moreover, exon skipping, gene fusions and changes in 
expression levels can also be detected when starting preferentially from the RNA of a tumour 
specimen [7]. 

Independent of the method, targeted NGS analysis ultimately results in a variant call format 
(Vcf) file for each sample containing a list of genomic positions at which a change was observed, 
compared to the human reference sequence. This list is then extensively filtered to yield a selected 
number of clinically relevant variants. These filtering steps typically depend on the underlying 
clinical question and will differ for the detection of somatic variants in a cancer biopsy versus 
germline variants in a recessive disease entity. After these filtering steps, the remaining variants then 
need to be classified for their tumour-inducing and diagnostic potential before reporting can take 
place. This crucial classification step includes (1) the biological classification, i.e., its predicted 
potential to induce or stimulate tumorigenesis through an altered protein function, and (2) the 
tumour type-dependent clinical interpretation, which relates to the potential to alter the clinical 
management of the patient. It is important to emphasize that the biological classification of a variant 
is independent of the underlying malignancy, whereas the clinical classification is strongly 
influenced by the specific pathology in which the variant is found, as well as by several other clinical 
data. For germline variants, guidelines have been described to classify variants in biological classes 
[8] as well as tier-based clinical interpretation classes [9–11]. For somatic variants however, only 
guidelines for the clinical interpretation have been extensively described [12–14] while those for the 
biological classification are only touched upon briefly [15] or described for specific disease conditions 
[16]. Both classifications are however necessary to be able to standardize variant calling in a 
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diagnostic setting. Until now, lab-specific and thus different biological classification systems are 
being used, which can have a significant impact on the reported clinical consequence. 

In a survey organized by the Belgian MolecularDiagnostic.be working group on the biological 
and clinical classification of somatic variants, critical differences in the biological classification were 
noticed with the expected impact on the clinical reports of the same patients. Very similar results 
were reported by the ACMG working group [12]. Therefore, we set up an expert group to harmonize 
this first process and present here the Belgian guidelines that were proposed for the biological 
classification of somatic variants detected by NGS. For clinical interpretation, the four tier-based 
classes reported by the ACMG were retained, which are described in detail elsewhere [12]. 

2. Results 

2.1. Expert Panel 

All molecular diagnostic laboratories in Belgium were invited to join an expert group with a 
focus on the analysis and interpretation of NGS variants in the field of solid and haematological 
tumours. A total of 91 experts, mainly consisting of molecular biologists, clinical biologists, 
oncologists and haematologists were selected to form the Commission for Personalised Medicine 
(ComPerMed) expert panel. Members represent 27 Belgian hospitals of which seven academic 
hospitals, 19 non-academic hospitals and one laboratory not associated with a hospital. In addition, 
members of the national institute for science and health (Sciensano, Brussels, Belgium) were 
represented to guide the project. The major aim of this working group is to install guidelines and 
workflows for personalized cancer treatment and optimized patient management 
(https://www.compermed.be/). One of the goals was to harmonize the biological classification of 
somatic variants in Belgium through well-defined workflows to avoid differences between 
laboratories. For that, a working group of molecular biology experts in cancer genomics was installed. 
The second goal was to streamline the clinical interpretation and reporting of these biologically 
classified somatic variants to ameliorate the inter-laboratory concordance of clinical data. The expert 
panel gathered the first time in January 2018, with subsequent meetings every 6 months and multiple 
intermediate electronic communications. The final document was obtained in January 2019 and 
published on the BELAC website in French 
(https://economie.fgov.be/sites/default/files/Files/Publications/files/Belac-FR/2–405NGS-FR.pdf) and 
Dutch (https://economie.fgov.be/sites/default/files/Files/Publications/files/Belac-NL/2–405NGS-
NL.pdf) in July 2019. Note that these guidelines change to English from page five onwards. The focus 
was on those genes that were decided by the ComPerMed panel as required to be screened by NGS 
in the different tumour types [17–20]. These genes are listed in Tables 1 and 2. 

2.2. Variant Calling and Annotation 

Targeted NGS is currently a well-established screening method in many molecular diagnostics 
laboratories that perform tumour screening for personalized clinical management. These panels most 
commonly include twenty to fifty genes, which make them cost-efficient and bioinformatically 
manageable. Moreover, small to medium-sized panels avoid the mass introduction of technical 
artefacts due to e.g., sequencing-, alignment- and analysis-related errors. A large number of NGS data 
analysis pipelines exist, but all will result in a Vcf file for each sample. In this Vcf file, the chromosome 
and genomic position for each variant is provided, as well as the reference and alternative base, the 
coverage at that position and its variant allele frequency (VAF). Each variant can be a substitution, 
deletion, insertion or duplication of one or more nucleotides compared to the human genome 
reference sequence. The Vcf file also includes quality-related parameters to be able to judge the 
likelihood of a correct call. Subsequently, these files are used for annotation, i.e., assessing the 
consequence of that change at the transcript and protein level, and its associated functional and 
subsequent clinical effect. For each variant, the HGVS nomenclature [21] at the transcript and protein 
level, including the reference sequence accession number with versioning is provided, e.g., EGFR 
NM_005228.3: c.2573T>G; NP_005219.2: p.(Leu858Arg), or TET2 NM_001127208.2: c.419del; 
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NP_001120680.1: p.(Asn140Metfs*5). Moreover, annotation programs include additional information 
such as its presence in population databases (gnomAD, dbSNP, 1000 genomes) and/or disease-
associated databases (COSMIC, CIVIC, ClinVar, etc.) as well as the outcome of functional prediction 
programs (SIFT, MutationTaster), which assess the deleterious effect of that variant. Based on all this 
information, the variants are extensively filtered to retain only the relevant variants with a potential 
effect on tumour formation. Filtering excludes intronic regions, except for the AG/GT splice sites, 
silent changes, recurrent variants that likely are sequencing or homopolymer errors that often occur 
at VAF <10%, and single nucleotide polymorphisms (SNPs) present in the healthy population. This 
last step has to be taken with caution since some germline variants are known to predispose to cancer. 
Finally, it is highly recommended to manually inspect variants in sequence visualization programs 
such as Integrative Genomic Viewer (IGV; the Broad Institute, Cambridge, MA, USA) to assess the 
correctness of the annotation, which is especially important for flanking or neighbouring variants, 
and indels. Note however, that the quality of sequencing and mapping of the reads should always be 
checked for, to avoid false positives. 

This variant annotation forms the basis of the biological classification, i.e., the estimation of the 
likeliness that a variant contributes to the development or establishment of tumorigenesis. The expert 
panel decided to use the five biological classes of the ACMG and AMP Standards and Guidelines 
published by Richards and colleagues [8], even though these guidelines were originally described for 
germline variants. These entail the classes Pathogenic, Likely Pathogenic, Variant of Unknown 
Significance (VUS), Likely Benign, and Benign. Irrespective of their clinical consequence, all known 
driver variants end up in the Pathogenic class (e.g., c.1799T>A; p.(Val600Glu) in BRAF) while variants 
with a significant minor allele frequency (MAF) in the population, also known as polymorphisms or 
SNP’s, are classified as Benign (e.g., c.215C>G; p.(Pro72Arg) in TP53). However, since the 
classification is not that clear for many other variants, the expert panel aimed to develop a biological 
classification workflow to streamline and harmonize this currently very subjective process. Variants 
classified in a biological category will then be further analysed for their clinical impact. 

2.3. Biological Variant Classification Workflow 

The proposed ComPerMed workflow for biological classification of somatic variants is 
illustrated in Figure 1. We will elaborate below on the reasoning behind each step. 

When starting from a Vcf file, the first step of the biological classification workflow is a technical 
filtering step to select the high quality variants, usually performed by filtering out the unreliable 
changes (Figure 1-Box 1). Filtering should be done against variants generated by technical artefacts 
including stutters in repeat sequences, alignment errors and sequencing artefacts. A hallmark of such 
erroneous variants is that these are typically found in at least 10% of samples, not including variants 
in hotspot or variants previously reported in the literature [22]. These technical artefacts can be panel- 
and/or method-specific and thus have to be defined by each laboratory individually. Secondly, only 
variants that alter the protein sequence in any way (missense, nonsense, in-frame or frameshift indels 
and splice variants) have to be retained. Therefore, all variants located in introns, except for the 
AG/GT splice sites, as well as stand-alone synonymous changes are filtered out. Even though some 
of these changes might result in an alteration of the protein function, insufficient tools or information 
is currently available to assess this impact. The final filtering steps are related to the VAF and the 
read depth (coverage) of a variant. The VAF typically is validated down to 5% with at least several 
hundred reads at that position, indicating that the variant will be detected with high sensitivity and 
specificity if at least, e.g., 25 variant reads are present in a total of 500 reads. Again, both thresholds 
are lab-specific and require firm validation. However, these thresholds can be reduced for specific 
variants that need to be detected at low frequencies (e.g., BRAF c.1799T>A; p.(Val600Glu) in hairy 
cell leukaemia) but an extensive validation is needed here as well. Pathogenic and Likely Pathogenic 
variants that are filtered out due to a coverage or VAF below the lab-specific thresholds can, however, 
be considered for re-analysis with an alternative method. 
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Figure 1. ComPerMed workflow for the biological classification of somatic variants. 

Variants that pass the above-mentioned technical filtering steps are then checked for their 
presence in the healthy population databases (Figure 1-Box 2). It was agreed by the ComPerMed 
expert panel that the gnomAD database, an extension of the Exome Aggregation Consortium (ExAC), 
was the most comprehensive and curated data repository containing data from more than 125,000 
exomes and 15,000 genomes. Moreover, gnomAD reports ethnic-based MAFs, which our workflow 
uses to assign a variant as (Likely) Benign if the MAF is higher than 0.1% in any of the ethnic 
populations in which at least 2000 alleles were analysed, e.g., the variant c.4796C>A; p.(Pro1599His) 
in ALK has a MAF Total of 0.02% but the MAF in the African population is 0.25% with an interrogated 
allele number of 24,968, thereby assigning it as a Likely Benign variant. We thus relax the conservative 
value of 1% that is based on whole population-based data. Variants with an ethnic-based MAF >0.1% 
and <1% are classified as ‘Likely Benign’ while those ≥1% as “Benign”. The threshold to discriminate 
between both classes can be defined by each laboratory individually as these variants will not be 
included in the clinical report. Note that (Likely) Benign variants will typically yield VAFs close to 
100% (homozygous) or around 50% (heterozygous) as these are germline variants. Somatic variants 
typically have VAFs <50% due to the heterozygous state and the presence of contaminating healthy 
cells in the sample but can also have VAFs close to 50% or even >50% because of genomic 
amplifications or loss of the wild-type allele. Importantly, as gnomAD might use alternative gene 
transcript ID’s compared to those used by annotation programs, clear-cut polymorphic variants can 
be missed. Therefore, gnomAD-negative variants with VAF’s close to 50% and 100% should be 
checked in dbSNP (https://www.ncbi.nlm.nih.gov/snp/) as well with critical review of the outcome 
since dbSNP might include (Likely) Pathogenic variants that were not yet curated.  

The remaining pool of somatic variants then needs to be further classified for their potential 
tumour pathogenicity. We first classified these variants for which sufficient evidence exists that the 
corresponding amino acid change is a driver in cancer (e.g., EGFR p.(Leu858Arg) or JAK2 
p.(Val617Phe)). For that, a Consensus Pathogenic Variant (CPV) list was established for clinically 
relevant changes in solid and myeloid tumours (Tables 1 and 2, respectively).
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Table 1. Consensus Pathogenic Variant (CPV) list of the ComPerMed genes selected for screening in solid tumours. 

Gene Transcript ID Hs1 Hs2 Hs3 Hs4 Hs5 Hs6 Hs7 Hs8 Hs9 Hs10 Hs11 Hs12 
ALK NM_004304.4 F1174L R1275Q           

BRAF NM_004333.5 G469A/E/R/V  D594G/M 
T599-K601 if-

del/ins 
V600E/K/M/R K601E        

BRCA1 NM_007294.3 all clear LoF variants (nonsense, frameshift, splice site) 
BRCA2 NM_000059.3 all clear LoF variants (nonsense, frameshift, splice site) 
EGFR NM_005228.4 G719A/C/S ex19if-del/ins ex20 if-ins T790M C797S L858R L861Q      

ESR1 NM_000125.3 K303R E380Q V392I S463P V533M V534E P535H 
L536H/
P/Q/R 

Y537C/
N/S 

D538G   

GNAS NM_000516.5 R201C/H            

H3F3A NM_002107.4 K28M G35R/W           

HRAS NM_005343.3 G12C/D/S/V 
G13C/D/R/S/

V 
Q61H/K/L/R          

IDH1 NM_005896.3 
R132C/G/H/L/

S 
           

IDH2 NM_002168.3 R140L/Q/W R172K/M/S           

KIT NM_000222.2 
ex8 ex9 ex11 ex11 ex11 ex11 ex11 ex13 ex13 ex14 ex17 ex17 

D419 if-del 
S501-F504 if-

ins 
K550-V560 if-

indel 
W557G/R V559A/D V560D L576P K642E V654A T670I 

D816H
/V/Y 

N822K 

KRAS NM_004985.4 
G12A/C/D/F/R

/S/V 
G13C/D/R/S/

V 
A59T Q61H/K/L/R K117N A146T       

MET NM_001127500.3 ex14 skipping            

NRAS NM_002524.4 
G12A/C/D/R/S

/V 
G13C/D/R/S/

V 
A59T Q61H/K/L/R K117N A146T       

PDGFRA NM_006206.5 
S566_E577 if-

del 
D842V 

D842_I843 if-
del 

V561D         

Hs: Hotspot; if-del: inframe deletion; if-ins: inframe insertion;_: denotes the exact positions of that change; -: denotes a region in which the change has to be located; 
LoF: Loss of Function. 
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Table 2. Consensus Pathogenic Variant (CPV) list of the ComPerMed genes selected for screening in 
myeloid tumours. 

Gene Transcript ID Hs1 Hs2 Hs3 Hs4 Hs5 Hs6 
ASXL1 NM_015338.5 none      

CALR NM_004343.3 ex9of-del ex9of-ins     

CEBPA NM_004364.3 none      

CSF3R NM_156039.3 T618I      

DNMT3A NM_ 175629.2 R882C/H      

EZH2 NM_004456.4 Y646F/H/N/S      

FLT3 NM_004119.2 ex14if-dup D835A/E/H/V/Y     

IDH1 NM_005896.3 R132C/G/H/L/S      

IDH2 NM_002168.3 R140L/Q/W R172K/M/S     

JAK2 NM_004972.3 ex12 if-del/if-dup V617F     

KIT NM_000222.2 see CPV Solid list      

MPL NM_005373.2 S505N W515any ms     

NPM1 NM_002520.6 ex11of-ins      

RUNX1 NM_001754.4 none      

SETBP1 NM_015559.3 D868N G870S     

SF3B1 NM_012433.3 E622D R625C/H H662Q K666N/R/T K700E G742D 
SRSF2 NM_003016.4 P95H/L/R P95_R102del     

TET2 NM_001127208.2 none      

TP53 NM_000546.5 R175H Y220C G245S R248Q/W R273C/H R282W 
U2AF1 NM_006758.2 S34F/Y Q157P/R     

WT1 NM_024426.5 none      

Hs: Hotspot; if-del: inframe deletion; if-dup: inframe duplication; of-del: out of frame deletion; of-ins: 
out of frame insertion; any ms: any missense variant; none: no consensus pathogenic variants present. 

Both CPV lists were edited via a consensus of at least six NGS experts in solid or myeloid 
malignancies. Initially, both lists are restricted to the driver variants (hotspots) in those proteins for 
which the ComPerMed Test Level 1 and 2A (Figure S1) was applicable [23]. In a later stage, both lists 
will be extended with additional genes and variants. Proteins with amino acid variants present in the 
CPV lists are thus classified as “Pathogenic” (Figure 1-Box 3). Examples are BRAF p.(Val600Met) 
(V600M) and SF3B1 p.(Lys666Asn) (K666N). Of special note is that the conversion of the three letter 
amino acid code to the one letter code should be performed correctly in order to check the CPV lists. 
Several online tools for this conversion are available and should be consulted in case of doubt. 
Frequent erroneous conversions are A for Asp or Asn, G for Glu, and T for Trp. However, this issue 
will be solved by the implementation of bioinformatic classification and interpretation software, 
which is available from several companies now. 

Variants that are absent from the CPV list will, by default, not end up in the ”Pathogenic” class 
and need further classification. We discriminated those variants by their functional impact. Variants 
that result in a clear loss-of-function (LoF), i.e., frameshift, nonsense or AG/GT splice site variant 
(Figure 1 Box 4) will most likely result in a weakened or null allele. If the LoF variant is located in a 
tumour suppressor (Ts) gene, it is likely to result in haploinsufficiency of that Ts gene, irrespective 
whether it is present in the last exon, which is a hallmark for cancer (with some exceptions like RB1). 
Therefore, these variants should be classified as “Likely Pathogenic“ (e.g., TET2 c.5609C>G; 
p.(Ser1870*); TP53 c.445dup; p.(Ser149Phefs*32)). Since the driver status for most LoF variants in Ts 
genes have not been demonstrated through functional assays, we choose not to classify these as 
“Pathogenic“. On the other hand, if a clear LoF variant is present in an oncogene (e.g., KRAS 
c.343G>T; p.(Gly115*)), it likely will not play a key role since oncogenes need to be activated or 
overexpressed. Consequently, these variants end up in the “Variants of Unknown Significance 
(VUS)“ class. Alternatively, non-evident LoF changes, i.e., missense variants or in-frame indels, in Ts- 
or oncogenes could result in a partial loss or activated allele, and therefore, will be re-directed to a 
Scoring Table (Figure 1-Box 5). This table will guide each non-evident LoF variant towards a 
classification as “Likely Pathogenic“ or “VUS“, based on data available in curated databases or in 



Cancers 2019, 11, 2030 8 of 17 

peer-reviewed publications. We compiled a list of Ts- and oncogenes based on information in 
OncoKb (http://oncokb.org/cancerGenes), the TSGene 2.0 list (https://bioinfo.uth.edu/TSGene/), 
Vogelstein et al. [24], and IntOGen (https://www.intogen.org) (Table S1). For the few genes that are 
reported as Ts gene and oncogene, a selection was made for the tumour type in which it was 
requested to be screened for. 

The Scoring Table consists of four parameters for which a score between −1 and +2 can be 
obtained (Table 3). The total score will define the class of each variant with a total score of ≥2 resulting 
in a “Likely Pathogenic“ classification and a score <2 in a “VUS“.  

Table 3. Scoring Table for the biological variant classification of non-loss-of-function (LoF) variants 
in oncogenes. 

Parameter Score 
+2 

Score 
+1 

Score 
+0.5 

Score 
0 

Score 
−1 

Total # of entries of that 
particular AA change at 
that position in 
COSMIC 

Solid: ≥50 50 > x > 10 / ≤10 / 

Hemato: ≥10 10 > x > 5 / ≤5 / 

In silico prediction tools 
SIFT and 
MutationTaster 

/ / 
Both 

damaging and 
deleterious 

Other / 

Harmful in functional 
studies (PubMed, JAX-
CKB, MDA, MCG) 

/ / Yes Not reported No 

Described in at least 
one genomic db 
(CIVIC, ClinVar, 
OncoKb, VarSome)  

/ / 
As (Likely) 
Pathogenic 

Not described/ 
unknown 

As (Likely) 
Benign 

Variants with a score ≥2 will be classified as “Likely Pathogenic“. Variants with a score <2 are 
classified as “VUS“. 

The first parameter of the Scoring Table is the total number of entries of the specific amino acid 
change in the Catalogue of Somatic Mutations in Cancer (COSMIC; 
https://cancer.sanger.ac.uk/cosmic/), preferably the most recent version. Today, COSMIC harbours 6 
million manually curated somatic coding variants related to human cancers, with a focus on the 
census of cancer genes [25]. Depending on the number of entries, a score is assigned to each variant. 
The threshold per score depends on whether the variant is detected in a solid or a haematological 
tumour. Indeed, the number of solid tumour samples in COSMIC is much higher compared to 
haematological samples, which produces a bias towards higher numbers in solid cancer samples. 
These thresholds were set based on testing of many different variants. To obtain a score of ‘+2’ the 
threshold was set at a total of 50 entries for solid (e.g., EGFR c.2303G>T; p.(Ser768Ile): 265 entries), 
and 10 for haematological tumours (e.g., SF3B1 c.2219G>A; p.(Gly740Glu): 15 entries), irrespective of 
the tumour type in which the variant was detected. A score of “0“ was given if the number of entries 
was below 10 for solid (e.g., KRAS c.169G>A; p.(Asp57Asn): seven entries), or below five for 
haematological cancers (e.g., TET2 c.2464A>C; p.(Thr822Pro): two entries) (Table 3). Intermediate 
numbers were given the score of “+1” (e.g., BRAF c.1790T>G; p.(Leu597Arg): 35 entries; or SRSF2 
c.320C>A; p.(Pro107His): seven entries). Our reasoning for the high weight of this parameter was that 
a tumour-related variant is expected in a larger number of samples compared to variants that occur 
simply as passengers, with minimal effect on tumour development. 

The second parameter relates to the in silico prediction tools SIFT and MutationTaster. SIFT 
(Sorting Intolerant From Tolerant) determines if an amino acid substitution is deleterious to protein 
function mainly based on protein conservation with homologous sequences and the severity of the 
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amino acid change (http://sift.bii.a-star.edu.sg/www/SIFT_seq_submit2.html). MutationTaster 
evaluates DNA sequence variants for their disease-causing potential using a battery of in silico tests, 
including Polyphen, to estimate the impact of the variant on the gene product 
(http://mutationtaster.org/). The outcome of both prediction tools is often presented in the annotation 
files. The score of “+0.5“ is obtained only if both tools predict a damaging or deleterious effect, thereby 
restricting its impact on the total score. 

Parameter 3 entails whether the variant has been reported as tumorigenic in functional studies. 
For that, we advise to use PubMed (https://www.ncbi.nlm.nih.gov/pubmed), Jax-CBK 
(https://ckb.jax.org/), MD Anderson Personalized Cancer Therapy (https://pct.mdanderson.org), and 
My Cancer Genome (https://www.mycancergenome.org/) as the databases to check. If a functional 
relation with cancer has been reported in any of these databases a score of “+0.5“ is attributed to that 
variant. 

Finally, Parameter 4 looks for a detrimental role described for that variant in CIVIC 
(https://civicdb.org/home), ClinVar (http://www.clinvar.com/), OncoKb (http://oncokb.org/#/), and 
VarSome (https://varsome.com/). If present as (Likely) Pathogenic in at least one of these databases 
in a somatic framework, again a score of “+0.5“ is added. Of special note is that the search for each 
variant is dependent on the interrogated database, performed at the protein level using the three- or 
one-letter amino acid code (e.g., Ala316Glu or A316E), or at the DNA level. 

After carefully checking the above-mentioned databases the sum of the scores of the four 
parameters provides the total score. In principle, if the number of COSMIC entries of a particular 
amino acid variant is high (≥50 for solid and ≥10 for myeloid tumours), the scoring table will always 
yield the class Likely Pathogenic, irrespective of the outcome of the other parameters. On the other 
hand, if the number of entries for a specific variant in COSMIC is low (≤10 for solid and ≤5 for 
myeloid) it will always be classified as a VUS since the sum of the other three parameters cannot 
reach the final score of two. However, careful analysis of Parameters 2 to 4 is necessary for every 
variant that enters the Scoring Table irrespective of the number of entries in COSMIC. Strong 
evidence for a (Likely) Pathogenic role might have been reported in one of the databases, which then 
could overrule a VUS outcome of the Scoring Table to a higher class. It is expected however that only 
very few variants will initially fall into this group, but the future availability of many more functional 
studies will yield more “overruling” variants from this proposed Scoring Table, which then might 
need revision. 

For variants in genes not present in the CPV lists we score those also via the Scoring Table with 
the addition that they can be classified as Pathogenic if the maximal score of +3.5 is obtained. The 
overruling possibility can be applied here as well for variants of solid-proven pathogenicity, which 
need to be discussed by the expert panel. 

Of special note is that the classification via the Scoring Table can be easily automated through 
validated in-house developed or commercial software. Several companies are already developing 
such a tool, which can be adapted towards selective workflows including the one proposed here. 

2.4. Exceptions to the Workflow 

Notably, each workflow comes with exceptions. A small set of genes and specific variants should 
not be classified via the general workflow and scoring table, since these will result in an incorrect 
classification. Our list with exceptions will need to be regularly updated by the expert panel. The 
current exceptions are listed below. 

1. The Ts gene TP53 is an exceptional gene because of the plethora of variants detected in many 
tumour types affecting almost every position of the p53 protein. Therefore, we advise to use 
two dedicated TP53 databases to assess variant pathogenicity. The International Agency for 
Research in Cancer (IARC) TP53 database (http://p53.iarc.fr/) compiles various types of 
information on human TP53 variations in relation to cancer [26]. The second database, Seshat 
(http://vps338341.ovh.net/), can be used for (predicted) functional consequences of protein 
changes. The tumour-related outcome is presented in the downloadable Summary report. 
The consensus class indicated by both tools will be used for TP53 variant classification. 
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However, in comparison with the ERIC recommendations [27] that classify the −2, −1 and 
+1, +2 exon flanking splice variants as Pathogenic, we mark them as Likely Pathogenic since 
these variants are actually not different from frameshift variants that are also classified as 
Likely Pathogenic by ERIC. Secondly, synonymous changes that are predicted to affect 
splicing are classified as Pathogenic by ERIC. Importantly, synonymous changes in P53 
should also be checked for a detrimental functional effect in both TP53 databases. 

2. The BRCA1 and BRCA2 Ts genes are specifically analysed for variants in gynaecological 
tumours of the ovary and endometrium, as well as in cancers from breast, pancreas and 
prostate. In these cases, clear LoF variants (nonsense, frameshift, splice sites) are always 
classified as Pathogenic, instead of Likely Pathogenic if classified via the ComPerMed 
workflow. Notably, LoF variants in the last exon as well as all other somatic variants need 
to be checked for their pathogenicity in different online databases including ARUP 
(http://www.arup.utah.edu/database/BRCA/), InterVar (http://wintervar.wglab.org/), 
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), Enigma (https://brcaexchange.org/) and 
LOVD (https://databases.lovd.nl/shared/genes).  

3. Sequencing stutters of short tandem repeats (STR), including homopolymers, often occur as 
sequencing errors that are present in Vcf files at low allele frequencies, typically lower than 
5%. However, a true change at an STR site can be discriminated from a stutter if the VAF is 
significantly higher than the observed stutter error rate present in most samples. The VAF 
of each STR variant thus has to be checked and if higher than a validated lab-specific 
threshold, it should be regarded as a true event. This threshold has to be defined by each lab 
since it can be method or analysis-specific. Each true STR change has to follow the standard 
classification workflow. As the prime example, the frameshift c.1934dup in the Ts gene 
ASXL1 is often seen as a stutter error in many NGS workflows at VAFs up to 10% but can 
be also found as a true variant in AML samples with VAF’s above the lab-specific threshold, 
thus classifying it as Likely Pathogenic. 

4. Splice site variants should be restricted to the −2, −1 and +1, +2 exon flanking positions, which 
harbour the AG/GT consensus splice motif, except for the MET exon 14 and BRCA1 and 
BRCA2 splice regions that should be analysed more broadly. All splice site variants will be 
considered as loss-of-function variants (Likely Pathogenic class) even though it might result 
in an in-frame exon(s) deletion because loss of at least one exon will most likely functionally 
harm the protein as well. 

5. Splice site variants in exon 14 of MET have to be seen as a CPV and thus are biologically 
classified as Pathogenic. 

6. Out-of-frame indels in exon 9 of CALR, including the typical type I and type II mutations, as 
well as out-of-frame insertions in exon 11 of NPM1 should not be treated as frameshift 
variants but as Consensus Pathogenic Variants (CPVs). Therefore, they are classified as 
Pathogenic.  

7. Somatic in-frame indels in the bZIP domain of CEBPA should be regarded as Likely 
Pathogenic. 

8. Finally, population-specific very rare benign variants can be distinguished from true somatic 
variants by their presence in at least three region-specific samples, with VAFs close to 50%, 
irrespective of the tumour content or tumour type. Consultancy of neighbouring NGS labs 
is advised and follow-up of such Likely Benign variants is warranted. 

All classified variants should be collected in a lab-specific internal database generating a fast and 
standardized categorization of previously encountered variants. It also allows statistics on their 
frequency and easy follow-up in case of a required class switch. We anticipate comparing the internal 
databases of clinical laboratories and to build a common Belgian ComPerMed repository for an 
extended national standardization. 
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2.5. The Clinical Report 

The clinical report should be as concise as possible and needs to contain the information required 
by ISO 15189 for accreditation of medical laboratories. Lengthy reports of more than five pages are 
discouraged. The content of the clinical report is described in more detail in the BELAC documents 
point 4.11.4 Clinical report at page 22 (https://economie.fgov.be/sites/default/files/Files/Publications/ 
files/Belac-NL/2–405NGS-NL.pdf). It should include at minimum the order number, name of the 
patient, laboratory and physician. The medical information should contain the primary tumour type 
and histology as well as the clinical information and specific request, if any. Table 4 lists the required 
information that was agreed upon by the expert panel, including examples for each. In addition to 
the sample ID, several sample-specific parameters need to be provided as well. 

Table 4. Sample information required on the report. 

Parameter Example(s) 
Sample ID (primary lab) 123-45678 
Sampling date 16th January 2019 
Date of sample received 17th January 2019 
Sample tumoral stage primary, metastasis 
Sample anatomic site colon, liver, blood, lymph node, … 
Sample type resection, (trephine) biopsy, aspirate, … 
Sample procedure FFPE, fresh frozen, fresh tissue, … 
Neoplastic cells (%) 30%, na 
Sample quality disclaimer if sample does not fulfill pre-analytical requirements 

na: not applicable. 

The section ‘Test results’ should include the gene symbol (e.g., EGFR), the variant according to 
the HGVS nomenclature at coding (c)DNA (e.g., c.2573T>G) and protein (e.g., p.(Leu858Arg)) level, 
as well as the VAF. Though the use of the three letter amino acid code is obliged, the one letter 
annotation (e.g., L858R) can be added since this shorter form is generally more familiar to clinicians. 
The genomic position of each variant should not be included. Instead, the NM reference number 
(NCBI) with version (e.g., EGFR NM_005228.5) has to be available in the lab guide or on the report at 
least for each reported gene. VUS classified variants must be clearly separated from the Pathogenic 
and Likely Pathogenic variants and preferably are added at the end of the report or as annex. We 
recommend to add a disclaimer for any VUS so that misinterpretation is excluded. In any case, it is 
imperative that oncologists/haematologists clearly understand the meaning of these VUS changes. 
Benign and Likely Benign variants must not be reported. Importantly, the “Test results” section 
should also indicate which regions/exons/genes could not be interpreted or analysed due to biological 
or technical reasons, to inform the clinician of any failed amplicons. 

In the next section ”Conclusion and interpretation” the clinical interpretation of each Pathogenic 
and Likely Pathogenic variant together with its clinical tier level needs to be provided. For every 
biologically classified variant a clinical class needs to be attributed. We propose to use the four-tiered 
ACMG/AMP guideline system described by Li and colleagues [12], which is regarded as the standard 
for clinical classification. These four classes are: Tier I (level A and B evidence) for variants of strong 
clinical significance in the tumour type investigated; Tier II (level C and D evidence) for variants of 
potential clinical significance; Tier III for variants of unknown clinical significance; and finally, Tier 
IV for Benign or Likely Benign variants. The clinical classes Tier I, II and III can harbour biologically 
classified Pathogenic or Likely Pathogenic variants, which all should be included in the clinical 
report. A VUS is always Tier III while Tier IV only contains (Likely) Benign variants. The clinical Tier 
III, in case of a VUS, as well as Tier IV class should not be reported in the ‘Conclusion and 
interpretation’ section. Clinical trials can be included here as well. 

The clinical description of Tier I, II and III variants always need to be seen in relation to the 
tumour type it was detected in, and should be substantiated by firm publications and up-to-date 
clinical databases. Moreover, the clinical impact of each variant, i.e., its diagnostic and prognostic 
value, and its sensitivity or resistance to therapy, has to be added in sufficient detail with inclusion 
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of unequivocal referencing (e.g., Brown et al. 2015; J. Mol. Diagn. or PMID: 31138260). In case of 
absence of a variant in a gene that confers resistance to therapy, it is also important that this absence 
is clearly mentioned, e.g., no KRAS variant in colorectal adenocarcinoma. However, this section 
should be as concise as possible not to overload the physician with superfluous or irrelevant 
information. 

Clinical classification of variants is often not straightforward and is, to a variable extent, 
amenable to subjective interpretation. A common point of discussion is how to make the difference 
between Level B evidence from well-powered studies (Tier I) and Level C evidence from multiple 
small studies (Tier II). Second, how to interpret prognostic markers in haematological malignancies 
e.g., Likely Pathogenic variants in ASXL1, TET2, DNMT3A, RUNX1. How to define ‘sufficient 
evidence’ to rank them all as Tier I? Finally, combinations of variants might also affect the clinical 
outcome. These include resistance variants, which are detected with or without an activating variant. 
For instance, EGFR c.2239_2240delinsCC; p.(Leu747Pro) confers resistance to TKI treatment in 
patients with an activated EGFR pathway [28,29] and based on the Scoring Table it is classified as 
Likely Pathogenic. However, the clinical interpretation is highly dependent on the co-occurrence of 
an activating EGFR variant (Tier I) or not (Tier III). Double variants in CEBPA is another prime 
example in this category [30,31]. 

The section ‘NGS method’ should describe in sufficient detail the method, including the type of 
sequencer, the targeted genes and their regions or hotspots of the panel (e.g., BRAF: exons 11 and 15; 
DNMT3A: all coding exons), the reference genome used (e.g., Hg19), the validated coverage (e.g., 
>500×) and VAF (e.g., >5%) thresholds, and all regions or hotspots that consistently fail in the assay 
(e.g., DNMT3A: exon 6 AA165–184; JAK2: K539). Moreover, a disclaimer has to be added that the test 
cannot discriminate between somatic and germline variants. Note that the method section can also 
be consulted in more detail in the versioned lab guide. 

Finally, the report should name the person(s) who interpreted and validated the clinical report 
as well as the date the report was validated, in agreement with the ISO 15189 norm. 

3. Discussion 

Several studies already proposed guidelines for the clinical interpretation of somatic variants in 
cancer, which is a key step in the process towards efficient clinical patient management [9–14,32], of 
which some were critically compared [11,33]. However, this clinical interpretation vastly relies on the 
preceding biological variant classification, i.e., is the biological and/or biochemical evidence 
sufficiently high to claim that the variant effectively contributes to tumour formation, independent 
of the tumour type. Even though every diagnostic laboratory performs this critical step, not a single 
paper reports on a detailed somatic variant classification pipeline and proposes a workflow for 
improved harmonization. However, several groups describe their classification pipeline for germline 
variants in inherited diseases, including cancer [34–39], which are all based on the ACMG guidelines 
reported in 2015 [8] and 2017 [12]. For the biological classification of somatic variants the Houston 
Methodist Variant Viewer (HMVV) provides easy access to the required biological information of 
each variant but does not per se harmonize its final outcome [40]. Very recently, the Spanish 
guidelines for the interpretation of NGS variants in myelodysplastic syndrome and chronic 
myelomonocytic leukaemia has been reported by GESMD [16]. 

The expert panel of ComPerMed was installed with the aim to streamline the complete process 
from variant detection up to reporting. We decided to use the five biological classes proposed by the 
ACMG too, even though these were meant for germline variants [8], i.e., Pathogenic, Likely 
Pathogenic, VUS, Likely Benign, and Benign. To uniformly classify variants in either one of these 
biological classes, a consensus ComPerMed workflow was installed (Figure 1). From the Vcf files, we 
first filtered out the technical errors and common population variants. Then, we checked the variants 
in the CPV lists, which included the mutational hotspots of the selected ComPerMed genes to be 
minimally analysed in solid and myeloid tumours. If present, these were scored as Pathogenic. From 
the remaining variants, the clear LoF variants were classified based on their presence in a Ts gene 
(Likely Pathogenic) or oncogene (VUS). Even though nonsense-mediated mRNA decay (NMD) is 
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often not induced when the LoF variant is located in the last exon, the ComPerMed panel decided to 
classify those variants in Ts genes also as Likely Pathogenic because the impact of NMD on cancer 
genes with premature stop codons is complex and therefore, currently unpredictable [41]. Moreover, 
a pathogenic effect of such an event has been proven for Ts genes including ASXL1, BRCA1 and 
BRCA2. Finally, a potential dominant-negative effect of the mutant protein can inhibit the function 
of the wild-type allele product thereby stimulating haploinsufficiency. The non-evident LoF variants 
were subjected to the four parameter Scoring Table in order to discriminate them between the classes 
Likely Pathogenic and VUS. All parameters need to be assessed for every variant as new strong 
evidence-based information can still overrule the outcome of this pipeline. Notably, a list of 
exceptions to the pipeline was compiled to adjust for an inaccurate outcome of some gene-specific 
variants. 

The guidelines for biological classification we propose here differ from those described by 
ACMG [12] and GESMD [16] at some critical points:  

(1) The minor allele frequency (MAF) threshold to assign a variant as a polymorphism (class 
Likely Benign or Benign) was set at 1% by ACMG and GESMD, which is especially important in the 
absence of paired normal tissue. We have lowered this threshold to 0.1% because of the much higher 
number of data since 2015, and the curation of population databases thereby minimising the 
contamination of somatic tumour variants. Moreover, this threshold is valid for ethnic-specific MAFs 
with at least 2000 alleles investigated [42], which can be consulted in gnomAD. Note however, that 
this MAF threshold can be influenced by the targeted NGS method employed [43]. Finally, variants 
in ASXL1, DNMT3A and TET2 with VAFs below 10% can be associated with Clonal Hematopoiesis 
of Indeterminate Potential (CHIP) [44] and thus should be interpreted with caution as their presence 
alone is no evidence for the presence of malignancy; 

(2) ACMG advises to use the genomic coordinates of variants to be able to query genomic 
databases and not to depend on transcripts that are prone to changes. We recommend to use the 
HGVS nomenclature with reference to the transcript ID with the NCBI accession number of the main 
transcript, with version (e.g., BRAF NM_004333.5). We anticipate to change to the Locus Reference 
Genomic (LRG) record (http://www.lrg-sequence.org/) as it contains a stable reference sequence. So 
far, not all genes acquired an LRG number, and since most annotation programs and databases do 
not yet include the LRG transcript numbers, we did not make this switch yet; 

(3) For splice variants, we only consider the intronic −2, −1 (AG) and +1, +2 (GT) consensus splice 
positions, except MET exon 14 and BRACA1/2. ACMG and GESMD also evaluates intronic and exonic 
variants in the proximity of the splice sites, which are subjected to in-silico splice prediction tools. 
However, because of the low specificity of these tools and the inherent requirement for functional 
confirmation, we are not in favour of this option; 

(4) We classify the LoF variants in the last exon in the same way as those in preceding exons. 
GESPD requires the further evaluation of these changes. 

This ComPerMed workflow is mainly generated with the aim to be as objective as possible. For 
that, the indicated threshold values of all steps need to be rigorously applied. If a variant has an 
ethnic-specific MAF of 0.08, it cannot be classified as (Likely) Benign as the MAF is lower than 0.1%. 
However, if detected in the lab in at least three samples at VAF close to 50% it can still obtain the 
(Likely) Benign class, which thus can differ between labs. Also, the exact amino acid change and not 
a similar one has to be searched for in the CPV list and indicated databases. It is therefore crucial to 
make the correct conversion from the three letter to the one letter amino acid code as different 
databases require the input of either of both. For genes not yet present in the CPV list, the lab can add 
the hotspot positions of that gene taking into account strict selection criteria for each variant. The 
cancer hotspot database https://www.cancerhotspots.org/#/home can be of use as a good starting 
point [45]. Finally, the lab-specific coverage and VAF thresholds should be strictly applied. However, 
for some variants these thresholds can be relaxed if sufficiently validated. For example, a type I CALR 
52 bp deletion variant with coverage below the threshold can be considered as a correct call. Similarly, 
detection of a BRAF V600E in hairy cell leukaemia often requires a VAF below the general threshold 
of the panel. Thorough validation of that position can make this detection possible. In general, critical 
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interpretation of each step of the pipeline is always required since it is expected that some variants 
won’t fit our standard pipeline. Any deviation needs to be sufficiently motivated and discussed by 
the ComPerMed expert panel. 

4. Conclusions 

We provide for the first time a detailed workflow for the biological classification of somatic 
variants in solid as well as haematological tumours. This workflow was generated in order to 
harmonize the reporting of targeted NGS variants in diagnostic laboratories in Belgium under ISO 
15189 accreditation. However, it can also be implemented in other countries or serve as a scaffold for 
implementation. In any case, it will foster discussions on this so far neglected topic, which will be 
used to improve the workflow in its future versions. 

Supplementary Materials: The following are available at www.mdpi.com/xxx/s1, Table S1: Classification of the 
most commonly mutated cancer genes as Tumor suppressor gene (TsG) or Oncogene based on 4 sources: 
OncoKb, Vanderbilt TSGene 2.0, Vogelstein et al. 2013 [24] and IntOGen; Figure S1: Definition of levels for 
diagnostic/prognostic or therapeutic biomarkers and molecular tests, according to the Belgian healthcare system. 
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