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Abstract: Colorectal cancer (CRC) is among the leading causes of cancer-related deaths worldwide,
underscoring a need for better understanding of the disease and development of novel diagnostic
biomarkers and therapeutic interventions. Herein, we performed transcriptome analyses on peripheral
blood mononuclear cells (PBMCs), CRC tumor tissue and adjacent normal tissue from 10 CRC patients
and PBMCs from 15 healthy controls. Up regulated transcripts from CRC PBMCs were associated with
functions related to immune cell trafficking and cellular movement, while downregulated transcripts
were enriched in cellular processes related to cell death. Most affected signaling networks were
those involved in tumor necrosis factor (TNF) and interleukin signaling. The expression of selected
immune-related genes from the RNA-Seq data were further validated using qRT-PCR. Transcriptome
analysis of CRC tumors and ingenuity pathway analysis revealed enrichment in several functional
categories related to cellular movement, cell growth and proliferation, DNA replication, recombination
and repair, while functional categories related to cell death were suppressed. Upstream regulator
analysis revealed activation of ERBB2 and FOXM1 networks. Interestingly, there were 18 common
upregulated and 36 common downregulated genes when comparing PBMCs and tumor tissue,
suggesting transcriptomic changes in the tumor microenvironment could be reflected, in part, in the
periphery with potential utilization as disease biomarkers.

Keywords: colorectal cancer (CRC); peripheral blood mononuclear cell (PBMC); transcriptome sequencing;
differential expression; immune regulation; inflammation; disease biomarkers

1. Introduction

Colorectal cancer (CRC) is among the most common malignancies in both men and women
worldwide. Recent statistics showed that 1 in 22 men and 1 in 24 women face the risk of developing
colorectal cancer in their lifetime [1]. Despite extensive research into causes and therapies, CRC remains
the second leading cause of cancer deaths, with 51,020 deaths expected during 2019 in the United
States [2]. This highlights the need to develop novel biomarkers for early detection and more efficacious
therapeutic interventions. Currently, the most common interventions include a combination of surgery,
chemotherapy and radiotherapy [3].
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As with most common cancers, the effects of environmental factors advocate for better lifestyle
choices, including diet and exercise. In addition to sporadic cases of colorectal cancer, a significantly
higher occurrence has been observed with evidence of family history of the disease, presented at earlier
stages of life [4]. Up to 20% of cases can be attributed to inherited mutations and these fall into two main
groups; familial adenomatous polyposis (FAP) related to mutations in the APC gene and hereditary
nonpolyposis colon cancer (HNPCC)—also known as Lynch syndrome—attributed to mutations in
several DNA mismatch repair genes such as MSH2, MSH6, MLH1 and PMS2 [5,6]. Colorectal cancer
also presents high tumor recurrence of up to 50% [7]. Evidence showed the presence of cancer stem
cells with the ability to self-renew and re-form tumors in the colon with added drug resistance [8].
Additionally, CRC exhibits high metastasis rates, where most CRC tumors are diagnosed through
detection of a secondary lesions in the liver or lungs, rather than the primary tumor in the colon itself [9].
The ability of CRC cells to metastasize alludes to a high rate of epithelial-mesenchymal transition
(EMT). This process begins with malignant cells losing their epithelial characteristics including cell–cell
adhesions through integrins, which allows for increased mobility and the potential to metastasize to
other organs [10].

In perusal of alternatives strategies for disease identification, monitoring and therapy, great efforts
have been made for the implementation of a non-invasive tool for CRC characterization. Such strategies
are likely to widen acceptance among patients and increase their willingness to participate, leading to
potential earlier detection and faster diagnosis. Current tools such as colonoscopies are costly and
uncomfortable for patients. Biomarker discoveries will aid in reducing the need for conventional
approaches and enable mass screening through peripheral blood analysis. Ciarloni et al. previously
reported the characterization of a 29-gene panel in peripheral blood mononuclear cells (PBMCs) for the
detection of colorectal adenomas and carcinomas using a nanoliter high throughput qPCR platform for
the development of a novel minimally-invasive test [11].

Our knowledge on the link between cancer and immune surveillance has expanded substantially in
recent years. Manipulating the immune system, thus making it more hostile towards tumors, presents
an inviting target for extensive research. With the rising success rates of immunotherapy on cancers
such as melanoma and non-small-cell lung carcinoma (NSCLC), clinical trials on other solid tumor
such as CRC suggest a combination therapy approach to tackling tumors that have undergone immune
evasion. Food and Drug Administration (FDA) approved CTLA4 inhibitors such as ipilimumab,
PD1 inhibitor nivolumab and PD-L1 inhibitor pembrolizumab in high mismatch repair-deficient high
metastatic CRC [12], along with newly emerging drugs in combination with or without radiotherapy
are just some of the ongoing clinical trials on CRC patients. Single cell transcriptome analysis of tumor
infiltrating T cells (TILs) gave rise to the identification of 20 different T cell subsets, each with distinct
functions, associations and clonalities, highlighting the complex and dynamic relationship between
T cell function and cancer [13]. These data instigated the development of a web tool enabling TIL
characterization using the database on a single-cell level, potentially furthering our understanding of
immune cell functions in CRC [14].

Recent findings in transcriptome analyses have given us a greater understanding of the mechanisms
behind the onset and progression of CRC. We have previously shown that CRC patients have
significantly higher levels of immature and granulocytic myeloid cells in the tumor microenvironment
and granulocytic myeloid cells in circulation, which were associated with advanced stages and poorly
differentiated tumors [15]. However, despite the changes in the composition of immune cells in the
tumor microenvironment, whether these changes are reflected in the circulation of CRC patients using
transcriptomic approaches is not fully addressed.

In the current study, we undertook a comprehensive approach to compare the transcriptome
of PBMCs derived from CRC patients and healthy individuals to the transcriptome of CRC tumor
and adjacent normal tissue. Our data revealed similarities and differences in the transcriptome from
PBMCs and tumor tissues, suggesting systemic effects of tumorigenesis on cells of the immune system,
with potential utilization as disease biomarkers. Further bioinformatics, downstream effectors and
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mechanistic networks revealed deeper insight into the signaling and functional networks affected in
the circulation and tumor tissue of CRC patients.

2. Results

2.1. Transcriptome Analysis of PBMCs From CRC Patients Revealed Systemic Changes in Gene Expression

Whole transcriptome RNA-seq analysis was carried out on PBMCs isolated from 10 CRC patients
and 15 healthy individuals. Patients’ characteristics are shown in Table 1. Using 2.0 fold change (FC)
and ≤0.05 corrected p value, 260 transcripts were upregulated and 508 were downregulated (Table S1).

Table 1. Characteristic Features of Study Populations.

HD CRC Patients

Number 15 10
Age (Median) 30 (21–47) * 41 (36–62) *

Gender (Male, Female) 7:8 6:4
TNM stage

I 0
II 3
III 7
IV 0

Histological grade
7Poorly differentiated

Well/Moderately differentiated 3

HD; Healthy donors.; CRC; Colorectal cancer; *Median range.

Sample log fold hierarchical clustering based on differentially expressed transcripts revealed
distinct clustering of CRC from healthy subjects (Figure 1a). A number of cellular processes and
functional categories were enriched in PBMCs from CRC (regulation of cellular process, regulation of
cell death, regulation of kinase activity, regulation of cell differentiation, immune response, regulation
of cell proliferation, positive regulation of metabolic process, response to liposaccharide and regulation
of protein serine/threonine kinase activity). Enriched genes within each functional category is shown
in Table S2. Similar distinction was observed using principle component analysis (PCA; Figure 1b).
The list of genes included in PC1 and PC2 are presented as Table S3. Interestingly, distinct immune
response clusters were observed in PBMCs from CRC compared to healthy subjects. An immune
signature consisting of BCL3, CCL2, CCL3, CCL4L1, CCL4L2, CCL7, CD83, CTSL1, CXCL2, CXCL3,
DEFA1, DUSP4, EREG, GNL1, GPR183, HBEGF, IL10, IL1R1, IL1R2, IL1RAP, IL6, IL8, IRS2, JUN,
NFIL3, NFKBIA, NLRP3, OASL, OSM, PDCD1, PELI1, PIK3R1, PNP, PTGER4, RGCC, RGS1, RIPK2,
SEMA7A, THBS1, TNFAIP3, ULBP2 and VEGFA, was enriched (p = 2.6 × 10−11) in PBMCs from CRC.
On the other hand, an immune signature consisting of AIM2, APOBEC3D, BLNK, BTK, BTN3A3
CARD9, CASP10, CCR2, CD180, CD19, CD36, CD79B, CIITA, CLEC4C, CMKLR1, CR2, CSF1R, CYBB,
DDX58, HCK, HLA-DOB, IGSF6, LYST, MARCH1, MEF2C, MEFV, MS4A1, MSH2, NAIP, NLRC4,
OAS1, OAS2, P2RX7, PAK1, POU2AF1, POU2F2, SAMHD1, ST6GAL1, TAP2, TLR10, TLR5, TLR7,
TLR8, TNFAIP8L2, TNFSF10, TRGV3 and TRIM5 was enriched (p = 6.7 × 10−8) in PBMCs from healthy
individuals (Figure 2a).
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Figure 1. Transcriptional landscape in peripheral blood mononuclear cells (PBMCs), from colorectal
cancer (CRC) and health donors (HD). (a) Hierarchical clustering of CRC (n = 10) and normal (n = 15)
based on differentially expressed RNA transcripts in PBMCs from each group. Each column represents
one sample and each row represents a transcript. Expression level of each transcript (log2) in a single
sample is depicted according to the color scale. (b) Principal component analysis (PCA) for the RNA
transcriptome of PBMCs from CRC and HD.

Looking further into the altered expression patterns of certain immune related transcripts,
the expression of six up-regulated (CXCL2, IL8, CCL7, CXCL3, IL10 and CCL3) and six down-regulated
(TLR7, TLR5, TLR10, TLR8, TNFSF10 and CD79B) transcripts was validated using qRT-PCR, which was
concordant with the RNA-Seq data. (Figure 2b).
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Figure 2. Altered immune signature expression in PBMCS from CRC and healthy donors (HD).
(a) Heatmap depicting the expression of several upregulated (left) and downregulated (right) immune
regulators in PBMCs from ten CRC and 15 healthy individuals. Data are presented as log2 Transcripts
Per Million (TPM) expression value. Expression values are depicted according to the color scale. (b) The
expression of six upregulated (CXCL2, IL8, CCL7, CXCL3, IL10 and CCL3) and six downregulated
(TLR7, TLR5, TLR10, TLR8, TNFSF10 and CD79B) based on RNA-Seq data in PBMCs from eight CRC
compared to eight health subjects (ran in duplicate) using qRT-PCR. Data are presented as scatter plot
(x axis) while –delta CT value is presented on the y-axis.

2.2. Downstream Effector Analysis of Differentially Expressed Genes in PBMCs from CRC and Healthy Subjects

Further analysis, such as downstream effector analysis, provides deeper insight into the
contribution of those genes into cellular and functional processes. Ingenuity pathway analysis
(IPA) disease and function analysis provides global view of altered functional categories in relation to
changes in gene expression. Figure 3a illustrates a high level tree map, exhibiting affected functional
categories in PBMCs from CRC compared to healthy individuals based on RNA-Seq data. Remarkably,
enrichment in functional categories related to immune cell trafficking and cellular movement was
observed in PBMCs from CRC patients (Figure 3b,c). On the other hand, functional categories related
to cell death and gastrointestinal disease were under presented in PBMCs from CRC (Figure 3d,e).
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Figure 3. Downstream effector analysis of differentially expressed gene transcripts in PBMCs from CRC
and health subjects. (a) Tree map (hierarchical heat map) depicting affected functional categories based
on differentially expressed genes where the major boxes represent a category of diseases and functions.
Illustration of the Immune cell trafficking (b), cellular movement (c) and cell death and survival (d) is
depicted. Each individualy colored rectangle is a particular biological function or disease and the color
range indicates its predicted activation state—increasing (orange) or decreasing (blue). Darker colors
indicate higher absolute Z-scores. In this default view, the size of the rectangles is correlated with
increasing overlap significance.

2.3. Mechanistic Network Analysis Predicts Multiple Altered Signaling Networks in PBMCs from CRC
Compared to Healthy Subjects

Mechanistic network analysis is a powerful tool in predicting how alterations in the transcriptome
observed in CRC patients, in comparison to healthy donors, could have a downstream effect on
signaling networks. Network analysis on the differentially expressed genes using IPA revealed
enrichment in several mechanistic networks (i.e., TNF, IL1A and CCL5) in PBMCs from CRC patients
(Table S4). Figure 4a highlights the predicted activation state of TNF and its direct activational effects
on several downstream molecules with strong confidence (IL1B, NFkB, RELA, NFKB1 and P38 MAPK),
these molecules in turn, have further downstream activational effects on genes such as STAT3, HIF1A
and JUN, all with high confidence. This highlights the cascading effect of the activational state of
TNF and its ability to influence other genes in a complex network, with high confidence, both directly
and indirectly.
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Figure 4. Mechanistic network analysis predicts multiple altered signaling networks in PBMCs from
CRC compared to health subjects. (a) Illustration of the TNF, (b) IL1A and (c) CCL5 mechanistic
networks. Figure legend illustrate the relationship between molecules within the network.

IL1A, as shown in Figure 4b, has an activating effect on P38 MAPK, Ap1, RELA and NFkB complex
predicted with high confidence and IFNG with low confidence. Each of these downstream molecules
affects some of the same reoccurring genes including PPARG, JUN, SP1, NFkB, HIF1A, KLF6 and
STAT3. IFNG, through IL1A, is predicted to activate IRF1 interferon regulator with less confidence and
to inhibit (inconsistence findings) STAT1. STAT1, STAT3, RELA, Ap1 and SP1 are also activated or in
the case of STAT1, inhibited by CCL5 indirectly through the effects of IL4, ERK1/2 and Akt (Figure 4c).

IPA predictions gave rise to the enrichment of multiple cancer-associated networks. These networks
are comprised of several regulators including enzymes, growth factors, kinases, transporters and so forth.
The color intensities of the symbol alludes to the degree of activation or suppression of the respective
network component. Figure S1a illustrates TP53 (tumor suppressor) at the center of the top predicted
network (cancer, organismal injury and abnormalities and reproductive system disease) directly and
indirectly activating 13 downstream effectors and suppressing 15 with varying intensities. The NFkB
complex’s effect on cellular functionality, through IPA predictions is also illustrated (Figure S1b) with
varying activation (red) and suppression (green) effects on molecules involved in cell to cell signaling,
cellular movement and hematological system development and function.

2.4. Alterations in CRC Tumor Tissue Compared to Adjacent Normal Tissue

To gain more insight into changes in gene expression in CRC, RNA-Seq and transcriptome analysis
were conducted on the same cohort of 10 CRC and adjacent normal tissue which revealed distinct
clustering of CRC and adjacent normal tissue based on differentially expressed transcripts presented
as sample log fold hierarchical clustering (Figure 5, Table S5). Using 2.0 fold change (FC) and ≤0.05
corrected p value, 634 transcripts were upregulated and 991 were downregulated. PCA summarizing
the dimensionality of the data set also showed clear distinction between CRC tissue and adjacent
normal tissue, with the exception of one tumor sample which clustered with the adjacent normal
group (Figure 5b). The differentially expressed transcript identified from current study were compared
to differentially expressed genes in colon adenocarcinoma (COAD) from the TCGA/GTEx datasets,
which revealed large degree of similarity (Figure S2). A distinct pattern of enriched cellular processes
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was observed in the tumor tissue (TT) versus normal tissue (NT). Many of the enriched cellular
processes in CRC were those involved in cell cycle processes such as DNA replication, chromosome
segregation, nucleosome assembly, protein heterodimerization activity and cell division. Suppressed
functional categories in CRC compared to NT include biological adhesion, calcium ion binding,
synaptic transmission and regulation of cell development (Figure 5a).

Figure 5. Transcriptional landscape in CRC compared to adjacent normal tissue. (a) Hierarchical
clustering of CRC (n = 10) and adjacent normal tissue (n = 10) based on differentially expressed RNA
transcripts between the two group. Each column represents one sample and each row represents a
transcript. Expression level of each transcript (log2) in a single sample is depicted according to the
color scale. (b) Principal component analysis (PCA) for the RNA transcriptome of CRC and adjacent
normal tissue.

2.5. Multiple Altered Functional Categories and Signaling Networks in CRC

IPA conducted on differentially expressed transcripts reveals several activated networks in CRC
tissue. Figure 6a shows a high level heat map highlighting altered functional categories in CRC tissue
compared to adjacent normal tissue based on RNA-Seq data. Functional categories includes those
involved in cellular movement, growth and proliferation, DNA replication, recombination and repair
were activated (Figure 6b–d), while the under presented functional category in tumor tissue were
mostly those involved in cell death (Figure 6e). Further upstream regulator analysis, presented as
bar chart, showed a number of activated (Figure 7a) and inhibited (Figure 7b) networks. Among the
top enriched networks, ERBB2 was a common upstream regulator for several differentially expressed
genes in our cohort (Figure 7c). Our data findings predict the inhibition of Androgen receptor (AR)
via ERBB2 with low confidence, as well as CDKN1A, in turn, inhibiting TP53 and ESR2 respectively
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and activating RB1 (inconsistent), E2f, ESR1 and EP300. ERBB2 is also shown to activate CHEK1 and
EGFR (inconsistent), which activate HIF1A, CTNNB1 and RB1, while inhibiting SP1. The FOXM1
network was also highly enriched in CRC tissue (Figure 7d), which in turn activates ERK1/2 and SKP2
as predicted from our data. As seen in the ERBB2 pathway, CDKN1A is again inhibited via FOXM1,
leading to TP53 inhibition both directly and indirectly. Many of the same downstream genes are shown
to be affected in both pathways, highlighting the intricacy and complexity of the cascading effects.

Figure 6. Downstream effector analysis of differentially expressed gene transcripts in Tumor Tissue and
adjacent normal tissue. (a) Tree map (hierarchical heat map) depicting affected functional categories
based on differentially expressed genes where the major boxes represent a category of diseases and
functions. Illustration of cellular movement (b), cell growth and proliferation (c), DNA replication,
recombination and repair (d) and cell death and survival (e) is depicted. Each individual colored
rectangle is a particular biological function or disease and the color range indicates its predicted
activation state—increasing (orange) or decreasing (blue). Darker colors indicate higher absolute
Z-scores. In this default view, the size of the rectangles is correlated with increasing overlap significance.
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Figure 7. Multiple altered functional categories and signaling networks in CRC. Bar chart depicting
activated (a) and inhibited (b) upstream regulators networks in CRC compared to adjacent normal
tissue. X axis represent the activation Z score. Illustration of the ERBB2 (c) and FOXM1 (d) networks is
shown. Figure legend illustrate the relationship between molecules within the network.

2.6. Commonality and Differences in Gene Expression Between PBMCs and CRC Tumor Tissue

To integrate the findings from this comprehensive study looking at the global changes in both
circulating PBMCs and tumor tissue from CRC patients, common up and down regulated transcripts
were identified (Figure 8a), along with common up and down regulated upstream effector networks
(Figure 8b) as presented by Venn diagrams. Interestingly, 18 common genes were upregulated in both
CRC tissue and PBMCs. Figure 8c depicts each of these transcripts and their heat maps in more detail
including data from healthy donor PMBCs, CRC PBMCs, normal tissue and tumor tissue. Thirty six
common downregulated transcripts between PBMCs and their matched CRC tumor tissues were
detected (Figure 8d). Several upstream effectors were also commonly activated in both PBMC and TT
(Figure 8b), these include FOXO1, BRD4 ERK1/2, JUN, NEDD9, STAT3, ERK, Jnk, TGFB1, with only
one upstream effector inhibited found to be in common (COL18A1). These differentially expressed
transcripts in both circulating PBMCs and in tissue can give valuable starting points to decipher the
systemic alterations in CRC.
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Figure 8. Commonality and differences in gene expression between PBMCs and CRC tumor tissue.
Venn diagram showing common differentially expressed transcripts comparing CRC and PBMC
data. Upregulated in CRC compared to adjacent normal tissue, downregulated in CRC compared to
adjacent normal tissue, upregulated in PBMCs from CRC patients compared to healthy individuals
and downregulated in PBMCs from CRC patients compared to healthy individuals (a). Commonly
inhibited and activated upstream regulators in CRC versus PBMC (b). Heat map showing the eighteen
common up (c) and thirty-six common down (d) regulated transcripts identified from panel a.

3. Discussion

This study contributes to the growing database of transcriptome data related to CRC, in an effort to
provide data pertaining to the Middle-East region, where instances of CRC are on the rise, with main
emphasis on alteration in the transcriptome in the circulation as well as in the tumor itself [16,17]. In the
current study we explored the transcriptome of PBMCs isolated from CRC patients compared to
healthy controls. Our data revealed substantial differences in gene expression between the two groups
where PBMCs from CRC patients were more enriched in functional categories related to response to
regulation of cell death, kinase activity, cell differentiation, immune response, cell proliferation, positive
regulation of metabolic process, response to liposaccharide and regulation of protein serine/threonine
kinase activity. On the other hand, PBMCs from healthy subjects exhibited different immune signature
indicative of B cell activation, regulation of cytokine and response to viruses. Our data highlights
a clear shift in the transcriptome of PBMCs from cancer patients, suggesting such alterations are
not restricted to the tumor microenvironment but rather are reflected systematically. Our data is in
agreement with previous reports also documenting changes in gene expression in peripheral blood
and/or tumor tissue from patients with CRC using digital gene expression-tag profiling approach [18],
high through-put real time polymerase chain reaction (PCR) [11], single-cell sequencing [19], human
transcriptome array (HTA) [20] and whole genome sequencing [21,22].

IPA downstream effector analyses revealed enrichment in functional categories related to cellular
movement, immune cell infiltration, while processes related to cell death were diminished. Mechanistic
network analysis revealed activation of multiple networks related to TNF, IL1A and CCL5 signaling.
Interestingly, several chemokines such as IL-8 and CXCL3, which promote chemotaxis, migration and
angiogenesis and IL-10 and CXCL2, responsible for immunoregulation and inflammation, were shown
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to be significantly up-regulated in the CRC cohort. Other up-regulated transcripts include cytokines
CCL3 and CCL7, with a notably significant up-regulation of expression in CRC PBMCs, indicating higher
levels of macrophage function and leukocyte recruitment. As for transcripts that were down-regulated
in PBMCs from CRC patients, several of these were in the toll-like receptor (TLR) family. Understandably,
the subsided expression of these transcripts could account for the lacking in innate immune response
in colorectal cancer. TNFSF10, otherwise known as TRAIL, was also shown to be down-regulated in
CRC, reducing the induction of apoptosis in PBMCs CRC patients. qRT-PCR validated the upregulated
expression of selected number of genes involved in inflammation and migration, while transcripts
involved in innate immune response and apoptosis were significantly down-regulated.

Previous reports identified an upregulation in the expression of CXCL2 and CXCL3, promoting cancer
stem cell like properties and tumorigenesis in LoVo colon cancer cells in culture [23,24]. These chemokines,
along with IL8 and IL10, also observed to be overexpressed in this study, all play roles in the inflammatory
microenvironment of tumors and can even be detected in pre-malignant polyps [25]. Sasaki et al. observed
a significant reduction in tumor formation in CCL3 deficient mice compared to wildtype. Studies show
that along with CCL5, CCL3 mediated fibroblast accumulation in the tumor microenvironment [26].
Cancer-associated fibroblasts (CAFs) facilitate tumor progression and metastasis through the production
of growth factors (such as IL8) and enhancing angiogenesis [27]. CCL7, in concordance with our findings,
was also reported to be highly expressed in liver metastasis of colorectal cancer when compared to
non-metastatic CRC in 30 patients [28].

Our study shows the downregulation of several TLRs in CRC patients compared to normal
controls. Integral to immune cell response, TLRs provide the first point of recognition of foreign bodies
or pathogen-associated molecular patterns (PAMPs) once they have evaded physical barriers such as
the skin or gut [29,30]. The Toll/IL-1 receptor (TIR) domain of TLRs, found in the majority of TLRs
including the ones downregulated in our CRC cohort, in association with myeloid differentiation
primary-response protein 88 (MyD88), is responsible for downstream signaling including NF-kB
activation and inflammatory cytokine induction to illicit an adaptive immune response [31]. TLR7,
shown to be down regulated in our study, has been proposed in the use of its ligand as a potential
immunotherapeutic reagent [32]. Loxoribine, a TLR7 ligand was shown to inhibit tumor growth in colon
and lung cancer xenografts in vivo. Wang et al. proposed a mechanism of reversing Treg mediated
suppression via Loxoribine activation of TLR7, promoting CD4+ T cell proliferation and activation [32].
This is complementary to our findings showing a down regulation of TRL7 in CRC patients. With less
TLR7 expression in PBMCs of those affected, this depletes the chances of TRL7 antagonist mediated
Treg suppression, aiding in the progression of tumorigenesis. Loxoribine has also been shown to inhibit
the metastasis of B16 melanoma cells, with significantly better results when given in combination with
IL2 injections [33]. Furthermore, TLR7 agonists such as FDA-approved imiquimod has been used in
the treatment of superficial basal cell carcinomas (sBCCs) and dermatological malignancies [34,35],
with complete tumor clearance after just 6 weeks of treatment with no recurrence [35]. This, yet again
highlights the important role of the NF-κB signaling pathway in CRC as we have shown and as
reported in previous studies [36,37]. In addition to this, polymorphism in the TLR7 gene have
been suggested to predict the outcome of patients with metastatic colorectal cancer in response to
chemotherapy. Longer progression free survival was recorded for patients with TLR7 rs3853839 G/G
variant (11.6 months) in comparison to those with a C variant at the same locus (9.1 months)[38]. Studies
on TLR5 have shown similar results to data found on other members of the TLR family. TLR5 activation
via flagellin significantly reduced CRC tumor xenografts in size indicating high immune response
which could be utilized as potential immunotherapy [39]. Polymorphisms in TLR5 (rs5744174/F616L)
have also been associated with increased survival through their effects in reducing cytokine IL-6
levels [40], which has been linked with a disadvantageous prognosis through IL-6 interaction with
STAT3 in CRC [41]. In a study by Grimm et al. TLR7, -8, -9 and -10 expression was significantly
upregulated in CRC tumor tissue but interestingly rarely detected in TILs [42]. Several other studies
have associated high TLR expression levels with tumor progression [43–45]. However, our data
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revealed suppression of TLR5, TLR7, TLR8 and TLR10 in PBMCs from CRC patients, suggesting a
possible flip in the expression of those receptors between the tumor and periphery which warrants
further investigation.

To gain further insight into finding a potential gene signature associated with CRC, tumor tissue
from the same cohort and their adjacent normal tissue were subjected to whole transcriptome RNA-seq
analysis. Mechanistic network analysis has identified a number of activated and inhibited upstream
regulators based on the differentially expressed genes in CRC. Of the most significantly activated are
ERBB2, RABL6, FOXM1 and MITF. The overexpression of ERBB2, also commonly known as human
epidermal growth factor receptor 2 (HER2), is widely associated with approximately 15–30% of breast
cancers (HER2-positive) [46]. Overexpression of HER2 has also been documented in gastric cancer [47],
salivary duct carcinoma [48] and ovarian cancer [49]. In a cetuximab clinical trial on patients with
CRC, those with HER2 amplification had shorter progression free survival after treatment. The study
suggests that HER2 may confer resistance to cetuximab treatment in patients with wildtype RAS and
BRAF [50]. ERBB2 copy number amplification was also evident in CRC liquid biopsies in patient
plasma. Siravegna et al. reported that when 3 or more copies of ERBB2 were found in circulation,
this led to reduced progression free survival in 46 patients [51]. Even though we did not observe
ERBB2 overexpression at the transcript level, upstream analysis shows it as a common denominator
for several of our up-regulated transcripts, which suggest an activated state of ERBB2 in CRC.

FOXM1, a transcription factor upregulated in several solid tumors, plays a key role in cell
cycle progression and tumorigenesis [52]. We previously reported FOXM1 to be a novel target for
epigenetic regulation by the miR-320 family in CRC [53]. An inverse correlation was found whereby
the overexpress of miR-320 inhibited the progression associate characteristics of colon cancer such as
colony formation and migration and sensitized cancer cells to DNA damage inducing agents which
could translate to prolonged disease free survival in vivo [53]. Furthermore, FOXM1-dependent
CRC cell migration and invasion was described by Li et al. whose results show miR-149 could be
responsible for suppressive activity, acting as tumor suppressor in CRC [54]. Several other groups
have reported over expression of FOXM1 in CRC. One group has suggested the FOXM1 mechanism of
action to be related to EMT transition. Downregulation of FOXM1 resulted in a significant increase in
E-cadherin and a decrease in N-cadherin expression, promoting tumor cell invasion [55]. The same
group describe a potential link between FOXM1 and β-catenin in CRC tissues, as they found that both
were upregulated together compared to normal tissue. As a major player in the Wnt signaling pathway,
β-catenin plays an important role in regulating cell growth and adhesion, therefore its inhibition could
provide a promising target for CRC therapy [56]. In another previous study, we identified the same
upstream effectors (ERBB2, RABL6, FOXM1 and MITF) to be the most effected by palbociclib treatment
in the MDA-MB-231 breast cancer cells, reducing colony formation, cell migration and viability [57].

Among the top inhibited upstream regulators in our cohort is TP53. TP53 (or P53) is a tumor
suppressor that has been widely studied in relation to cancer susceptibility. In fact, p53-deficient mice
develop spontaneous tumors by 6 months due to genome instability [58]. The majority of known
mutations in p53 are located in the DNA-binding domain with a dominant negative mode of action [59]
and in some cases is known to confer drug resistance [60]. Differentially expressed transcripts in our CRC
cohort show inhibition of p53 function as a common upstream regulator, promoting cancer progression.

Being able to perform RNA-seq on both circulating immune cells and tissue from the same
patients gives this study the leverage of being able to look for commonalities within the differentially
expressed transcripts between the two tissue types. Interestingly, a significant number of transcripts
were found in common. This overlap conveys the potential utilization of a less invasive blood sample
collection in deciphering the characteristics of a specific tumor microenvironment on an individual
basis, allowing for personalized medical care. Eighteen common up regulated transcripts were found
between CRC tissue and their respective PBMCs. Among these, AREG, is associated with various
types of cancers and inflammatory conditions [61]. Proto-oncogene c-MET, VEGFA, CXCL3 and
MMP9, which appear to play roles in CRC biology and immune function [62–64] are also up regulated.
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In addition to this, thirty-six common down regulated transcripts were found in common between CRC
PBMCs and their respective tumor tissues. PCDH9, a member of the cadherin superfamily, is among
the gene transcripts under expressed in our cohort. Loss of cadherin promotes metastasis via the loss
of cell–cell adhesions in cancer [65]. CD1c is a T cell surface glycoprotein, structurally related to MHC
molecules [66]. Their decreased expression may affect antigen recognition, leading to deficient immune
cell function associated with cancer progression. Many of these genes seem to have unknown function
in relation to cancer onset and progression but are known to play roles in other abnormalities (e.g.,
GRIP1 in Fraser Syndrome [67]). Further studies are required to elicit the exact role that each of these
play in cancers and the effects of their differential expression in CRC patients.

4. Materials and Methods

4.1. Ethics and Sample Collection

All patients included in the study were treatment-naïve and were provided with a written
informed consent prior to sample collection. The study was performed under ethical approval from
Qatar Biomedical Research Institute, Doha, Qatar (Protocol no. 2017-006). The characteristics of
patients and healthy donors included in the current study are provided in Table 1.

4.2. PBMC Isolation and RNA Extraction

PBMCs were isolated from whole blood using density gradient centrifugation using Ficoll/
Histopaque. The PBMC layer was isolated and washed twice with PBS. RNA was extracted from
PBMCs of 10 CRC patients and 15 healthy subjects using the RNA/DNA/Protein Purification Plus Kit
(Norgen Biotek Corp, Ontario, Canada) as per the manufacturer’s instructions.

4.3. Tumor Tissue and RNA Extraction

Tumor tissues (TT) and adjacent normal tissues (NT) taken away from tumor margins, were cut
from freshly resected tissues by pathologist. RNA was isolated using the RNA/DNA/Protein Purification
Plus Kit (Norgen Biotek Corp, Thorold, Canada) as per the manufacturer’s instructions from TT and
adjacent NT. Briefly, frozen tissues were transferred into a mortar containing adequate amount of
liquid nitrogen and were grinded thoroughly using a pestle followed by resuspending the tissue in
lysis buffer in an Eppendorf tube followed by RNA extraction protocol.

4.4. RNA Concentration and Quality Assessment

The concentration and purity of extracted RNA were measured using NanoDrop 2000c
(Thermo Scientific, Waltham, MS, USA). RNA quality and quantity were assessed using the Agilent
RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, CA, USA) and Agilent 2100 Bioanalyzer
(Agilent Technologies) as per the manufacturer’s instructions. Samples were stored at −80 ◦C.

4.5. Library Preparation and RNA sequencing

The RNA was quantified using Qubit instrument (Invitrogen, Carlsbad, CA, USA) and RNA
BR assay kit (Invitrogen). 100 ng of RNA was used as input for library preparation using TruSeq
RNA Access Library preparation kit (Illumina, San Diego, CA, USA) as per the manufacturer’s
instructions. Briefly, the RNA was fragmented into small pieces under high temperature using divalent
cations. The RNA fragments were immediately reverse transcribed to first strand cDNA using random
hexamers. Following the first strand, second strand was synthesized by incorporating dUTP instead
of dTTP. The sequencing adaptors were ligated to the double-stranded cDNA followed by a single
“A” nucleotide adenylation at 3’ end of blunt fragments. The final library was created by capturing
the coding regions of the transcriptome using sequence-specific probes. The yield of cDNA libraries
was quantified using Qubit dsDNA HS assay kit (Invitrogen) and size distribution of the cDNA
libraries were determined using the Agilent 2100 Bioanalyzer DNA1000 chip (Agilent Technologies).
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The clusters were generated on a cBot cluster generation system (Illumina) and sequencing was done
on Hiseq 4000 with 300 bp paired-ends.

4.6. RNA-Seq and Ingenuity Pathway Analyses

Exported FASTQ files were subsequently pseudo aligned to the human genome and reads
were counted using KALLISTO 0.42.1 and Altanalyze v.2.1.3 software as described before [68–70].
Hierarchical clustering was performed using cosine for columns and cosine for rows while principal
component analysis was perfumed to assess the relatedness of samples. Functional annotation and
enrichment analyses were conducted using Ingenuity Pathways Analysis (IPA) software (Ingenuity
Systems; www.ingenuity.com/) as we previously described [70]. Differentially expressed genes
in colon adenocarcinoma (COAD) from the TCGA/GTEx datasets were retrieved from GEPIA2
(http://gepia2.cancer-pku.cn/#degenes).

4.7. Quantitative Reverse Transcription PCR (qRT-PCR)

Five-hundred ng of RNA was reverse transcribed to get cDNA using the High Capacity cDNA
Reverse Transcription kit (Applied Biosystems, Foster City, CA, USA) product code: 4368814 in
the Veriti™ 96-Well Thermal Cycler (Applied Biosystems). Up regulation and down regulation of
transcripts were validated using qRT-PCR on the QuantStudio 7/6 Flex qPCR (Applied Biosystems).
Real time PCR was performed using PowerUp™ SYBR™ Green Master Mix (Applied Biosystems) and
relative levels of transcripts were determined from their respective CT values normalized againstβ-actin
transcript levels. Sequences of primers used in the current study are listed in Table 2. The primers
were designed using Primer3. (http://www.ncbi.nlm.nih.gov/tools/primer-blast/)

Table 2. Primer Sequences Used For qRT-PCR With PowerUp™ SYBR™ Green Master Mix.

Gene Forward Primer (5′-3′) Reverse Primer (5′-3′) Product Size

CXCL2 GAAAGCTTGTCTCAACCCCG TGGTCAGTTGGATTTGCCATTTT 82

IL8 GGAGAAGTTTTTGAAGAGGGCTG TTTGCTTGAAGTTTCACTGGCA 95

CCL7 TTGCTCAGCCAGTTGGGATTA GCTCTCCAGCCTCTGCTTAG 86

CXCL3 AGATACTGAACAAGGGGAGCAC TCCTTTCCAGCTGTCCCTAGA 150

IL10 TACGGCGCTGTCATCGATTT TAGAGTCGCCACCCTGATGT 191

CCL3 GCTCTCTGCAACCAGTTCTCT TCGCTTGGTTAGGAAGATGACA 159

TLR7 TCAAGAAAGTTGATGCTATTGGGC ACCATCTAGCCCCAAGGAGT 195

TLR5 GTCACCAAACCAGGGATGCT GGGCAAAGTCAATTGCCAGG 100

TLR10 GCCAATTCTGACCGTGTCAAC CTGCTGAATTCCCACGGCTT 79

TLR8 GAAACATGGTTCTCTTGACACTTCA GGCTTCCTTCAAGGTCTCCT 75

TNFSF10 TGAAGCAGATGCAGGACAAGT TGGTTTCCTCAGAGGTTCTCAAAA 174

CD79B CGGAATCCCAAAGGTAGTGCT TCCAGAGCCAGCTCACATTG 130

4.8. Statistical Analyses

Statistical analyses and graphing were performed using Microsoft excel 2016 and GraphPad Prism
8.0 software (GraphPad, San Diego, CA, USA). The Benjamini–Hochberg False Discovery Rate (FDR)
method within AltAnalyze was used to calculate adjusted p values. For comparative qRT-PCR analysis,
p-values ≤ 0.05 (two-tailed t-test) were considered significant. For IPA analyses, a Z score (2.0 ≤ Z ≥
2.0) was considered significant.

5. Conclusions

In the present study using transcriptome analysis, we identified a number of differentially expressed
transcripts reflecting systemic effects of tumorigenesis immune cells, with potential utilization as

www.ingenuity.com/
http://gepia2.cancer-pku.cn/#degenes
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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disease biomarkers. Interestingly, PBMCs from CRC patients exhibited induction of inflammatory
immune response. Potential utilization of changes in circulating immune cells as indicator of CRC
occurrence and to monitor disease progression and response to therapy warrants further investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1994/s1,
Figure S1: Enrichment in multiple cancer-associated networks in breast cancer; Figure S2: Common upregulated
and common downregulated transcripts identified from current study compared to the TCGA/GTEx COAD
dataset; Table S1: List of differentially expressed genes (2.0 fold change and ≤ 0.05 corrected p value) in PBMCs
from 10 CRC compared to 15 health individuals; Table S2: Enriched gene in PBMCs from CRC (C1) and PBMCs
from healthy donors (C2); Table S3: ENSEMBL IDs for genes used in PC1 and PC2 Principle component analysis;
Table S4: Top enriched mechanistic networks in PBMCs from CRC compared to PBMCs from healthy donors;
table S5: List of differentially expressed genes (2.0 fold change and ≤ 0.05 corrected p value) in CRC compared to
adjacent normal tissue.
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