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Abstract: Mangiferin is an important xanthone compound presenting various biological activities.
The objective of this study was to develop, characterize physicochemical properties, and evaluate
the anti-topoisomerase activity of poly(lactic-co-glycolic acid) (PLGA) nanoparticles containing
mangiferin. The nanoparticles were developed by the emulsion solvent evaporation method and the
optimal formulation was obtained with a response surface methodology (RSM); this formulation
showed a mean size of 176.7 ± 1.021 nm with a 0.153 polydispersibility index (PDI) value, and
mangiferin encapsulation efficiency was about 55%. The optimal conditions (6000 rpm, 10 min,
and 300 µg of mangiferin) obtained 77% and the highest entrapment efficiency (97%). The in vitro
release profile demonstrated a gradual release of mangiferin from 15 to 180 min in acidic conditions
(pH 1.5). The fingerprint showed a modification in the maximum absorption wavelength of both
the polymer and the mangiferin. Results of anti-toposiomerase assay showed that the optimal
formulation (MG4, 25 µg/mL) had antiproliferative activity. High concentrations (2500 µg/mL) of
MG4 showed non-in vitro cytotoxic effect on BEAS 2B and HEPG2. Finally, this study showed an
encapsulation process with in vitro gastric digestion resistance (1.5 h) and without interfering with
the metabolism of healthy cells and their biological activity.

Keywords: nanoparticles; mangiferin; anti-topoisomerase activity; cytotoxicity

1. Introduction

Mangiferin (2-C-β-Dglucopyranosyl-1,3,6,7-tetra-hydroxyxanthone) is a xanthone C-glucoside,
present in several plants [1]. It is considered as a bioactive compound (BC) that has been
studied for its biosynthetic and medicinal properties. In Mangifera indica L. tree stem in an
aqueous extract the mangiferin is the major BC [2]. Despite the potential broad applications,
some chemical problems have limited its clinical use; for instance, its low solubility and poor
intestinal permeability [3]. About 40 mangiferin metabolites can be biotransformed in processes like
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deglycosylation, dihydroxylation, methylation, glucuronidation, glycosylation, and sulfatation [4].
These metabolites are the basis to consider that mangiferin can have multiple applications, overcoming
the chemical limitations for its clinical use, considering different physicochemical strategies that improve
its permeability and solubility [5–7]—since several studies indicate the power of this compounds to
prevent a TNF-α and nitric oxide (NO) production [8] and down-regulating COX-2 expression [9].
However, the use of pure BC is very limited due to fast release, low solubility, poor bioavailability,
as well as easy deterioration [10,11]. Therefore, to preserve the quality of a BC or to enhance its
applicability in food, nutraceutical, or biological formulations, a feasible alternative has been considered,
namely, nanoencapsulation. Nanoencapsulation is an important technology for the protection of
bioactive compounds (BCs) [12], recently, it has focused on increasing functionalities, such as high
entrapment efficiency, bioavailability, mechanical stability, controlled release, and masking undesirable
flavors [13,14]. Some of the applications in the food and pharmaceutical industry seek to encapsulate
BCs, with the objective of forming protective barriers that increase the specialized application in the
development of nutraceuticals [15].

Generate nanoparticles (NPs) of mangiferin, a BC that has shown biological activities such as
antioxidant, antihypertensive, and anti-inflammatory, will allow to increase its resistance to acidic
conditions, which is related to human digestion. These NPs are encapsulated with a biocompatible
polymer such as poly(lactic-co-glycolic acid) (PLGA), which can resist this process and consequently
have a controlled release [13]. Thereby, the aim of this study was to develop PLGA nanoparticles
containing mangiferin and to evaluate their physicochemical properties, effect cytotoxic, and the
anti-topoisomerase activity.

2. Results and Discussion

2.1. Encapsulation Efficiency (EE%) and Entrapment Efficiency (AE%)

In the NP preparation, it was observed that one of the critical steps was the previous solubilization
of mangiferin (MG) in polyvinyl alcohol (PVA) solution; therefore, solubility tests were performed,
obtaining the maximum concentration of MG in the formulations of 435 µg/mL of PVA solution.
The EE% and AE% in each treatment were obtained for each NP formulation. EE% indicates the
amount of compound that is inside the NPs, and that its behavior is reflected in a gradual release with
respect to time, while the AE% is the one that is in the first layers of the nanoparticles added to the
surface of the particles [14].

In Figure 1a, the EE% and EA% corresponding to the MG formulations are shown. The treatment
that presented the highest encapsulation efficiency was MG4 (6000 rpm, 10 min, 300 µg) and MG14
(9000 rpm, 5 min, 435 µg) with EE% of 77 ± 3.02% and 76 ± 1.09%, respectively; while those of lower
EE% were MG3 (6000 rpm, 5 min, 435 µg) and MG6 (7000 rpm, 3 min, 435 µg) with EE% values
of 34 ± 1.22% and 36 ± 1.80%. Regarding the EA%, only MG4 presented significant difference with
respect to the other treatments, presenting an AE% of 93 ± 4.95%, while the lowest corresponding to
MG2 (6000 rpm, 5 min, 200 µg).
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Figure 1. Optimization of mangiferin (MG) encapsulation. (a) Percentage of mangiferin encapsulation
efficiency (EE%) and percentage of mangiferin entrapment efficiency (AE%) for each treatment.
(b) Pareto chart of standardized effects; variable: Percentage of mangiferin encapsulation efficiency
(EE%); (L) and (Q) describes the linear and quadratic interactions effects on the variable. (c) Desirability
surface contours of percentage of mangiferin encapsulation efficiency; method: Spline.

Some studies reported that different polymers have shown that the EE% of some compounds is a
function of the charges present between the polymer and the compound [15–17]. The different charges
between the molecules of mangiferin and PLGA promote the interactions between both, so when the
mangiferin concentration increases, the EE% increases; however, some authors have described that
this increase of encapsulating compounds promotes the saturation of the system, as is observed in
the MG3 and MG6 treatments, which increased the concentration of mangiferin—however, the EE%
was about 36% [18]. With high stirring speeds, EE% can be increased, since there is an increase in
electrostatic charges but at short times [19]; this explains why MG14 presents EE% values close to the
best MG4 treatment. However, low concentrations of the compound to be encapsulated are trapped
on the surface of the particles, and this behavior is observed in MG13 and MG15. According to
statistical analysis (p < 0.5), the factor that has the greatest effect on the EE% is the speed, followed by
concentration ratio and the interaction between this variables, as shown in the Pareto chart (Figure 1b);
MG4 showed the highest EE% with the lowest homogenization rate studied, unlike other treatments
with the same concentration but at higher speeds (MG9 and MG15). Some studies have shown that
the time in which the molecules are exposed to a certain speed can be decisive, so that a molecular
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interaction can be exerted [20]. Therefore, the treatment with the highest EE% was formulated with the
following conditions: 6000 rpm, 10 min, and 300 µg of mangiferin according to the response surface
obtained in the statistical analysis (Figure 1c), which is expressed in Equation (1).

Z = 283.56242804966 + 62.848482862581 × x4.3090184425532 × xˆ22.7320158696753 ×
y.36691981479872 × yˆ2 + 1.1853803871635 × x × y +0.012224096786592 × 300 × x +

0.00024480875382114 × 300 × y + 69.8885631
(1)

where R-sqr = 0.90756, z describes EE%, x describes the homogenization speed, and y is the time at
fixed concentration (300 µg).

An optimal condition was obtained when 317 µg of mangiferin was used in accordance to
response surface, but this concentration can generate an increase in the size of the particles and in
the polydispersity index. The size obtained in MG4 was 171 nm with a polydispersity index of 0.153
(Figure 2e).

Figure 2. Mangiferin release profile and size distribution of best treatment; (a) best release profiles,
(b) treatments at 6000 rpm, (c) treatments at 7000 rpm, and (d) treatments at 9000 rpm. (e) Size
distribution on optimal condition (MG4).
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2.2. Mangiferin Release Profile

The results of the kinetic release assay are described in Figure 2, where the release profiles of each
encapsulated mangiferin formulation are shown (Figure 2a–d), includeing the polydispersibility index
(PDI) and the average size of the resulting particle as an optimal treatment (Figure 2e). MG2 (Figure 2a)
shows a rapid release, which coincides with the results of AE% for this treatment, since the highest
concentration of mangiferin is found on the surface of the NPs; MG1 and MG3 (Figure 2a) show similar
release profiles, since the release presents with variations without significant differences after 60 min.
Figure 2c shows the treatments obtained at 7000 rpm, observing that there is no significant difference in
the release after 60 min in the MG12, MG13, and MG15 treatments. Finally, in Figure 2d, it is observed
that the differences between the release profiles are related to the concentrations of mangiferin used
in the treatments (MG5, MG6, MG10, and MG11), observing that at long times of homogenization,
EE% and EA% trend to be of the same values, which is reflected in a release of 50% before 60 min and
then in three intervals (120, 180, and 240 min), with a release of 16.6% by interval.

Three fluctuations can be identified; the first occurs at 15 min, the second at 60 min, and the last
after 2 h, almost in all the treatments. Nevertheless, some treatments such as MG4 (Figure 2a), MG14
(Figure 2c), and MG8 (Figure 2d) showed the highest mangiferin fluctuation after 1 h of exposure in an
acid medium.

These treatments are shown in Figure 2b, which shows that MG14 presents its maximum release
at 20 min and then presents a controlled release, while MG4 presents its maximum release at 60 min
and subsequently shows a linear release until 180 min, without significant differences between 180 and
240 min. Studies carried out with the same phytochemical, but with a different polymer, showed a
behavior like that shown in this study; this irregular behavior (ascending, descending, and ascending)
was attributed mainly to the interactions between the present molecules (electrostatic interactions
and hydrogen bridges) and the diffusivity of the nanoparticles [21,22]. Another result showed that
when PLGA was used as an encapsulating agent, but under other encapsulation conditions, a similar
diffusivity was observed [23]. During the first phase of release, agglomeration of nanoparticles occurs,
and this strongly depends on the particle size, further affecting the release of the drug (amount and
rate of release) from the nanoparticles.

The PLGA might have a higher tendency to agglomerate due to smaller sizes, and the release of
the drug was also higher from these particles compared to other polymers. Among the factors that
affect drug release, particle size is very important. We know that the particles with smaller sizes can
degrade faster due to the increased surface area to volume ratio, and this might be a reason for the faster
release of the mangiferin from PLGA particles in some treatments, but it is shown that at least three of
the treatments (MG4, MG8, and MG14) show a controlled release in acidic conditions, maintaining the
highest amount of MG and releasing it completely after 2 h of acidic exposure, which sets a pattern for
the emulation of the gastrointestinal tract [24].

2.3. Scanning Electron Microscopy (SEM)

Figure 3 shows, scanning electron microscopy images of the optimal treatment (Figure 3a,b,
MG4; Figure 3c, control). In the images related to MG4, agglomerations of nanoparticles can be seen,
which were counted 100 particles independents, and Figure 3d shows the Pareto diagram of the size
distribution of NPs. Previous studies show a similar behavior in agglomerated nanoparticles of the
same polymer loaded with catechins larger than 500 nm; however, there is evidence that nanometer
sizes are achieved with PLGA-loaded gold [25,26]. The results shown by SEM coincide with peak two
of Figure 2e, which shows an average size of 67.14. It is possible that the dispersion of the particles
is not adequate, and therefore, the distributions in that technique were greater, thus quantifying
conglomerates of smaller particles.
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Figure 3. Scanning electron microscopy (SEM) of the mangiferin optimal nanoparticles (MG4);
(a,b) images of optimal treatment; (c) control PLGA whitout mangiferin; (d) Pareto diagram of size
distribution of optimal treatment.

Moreover, it has been described that the chemical structure of mangiferin creates a xanthone
framework made up of four phenolic units and a glucose moiety [27]. Hence, it may be assumed
that mangiferin might exhibit high affinity by PLGA and PVA forming a long structure that occurs
for interaction of OH groups in the chemical composition [28]. In addition, the phenolic and glucose
units present in mangiferin can efficiently stabilize the formed nanoparticle. Despite its bio-relevance
and strong reducing capability, the use of mangiferin is not limited towards the preparation of
nanoparticles [29].

2.4. UV-Visible Spectroscopy

The spectra obtained and reported in Figure 4 represents the optimal treatment (MG4) and only
PLGA; this is related to the table that describes the same figure, in which the MG4 treatment is
identified in two signals traveling to the infrared spectral region. The wavelength of greater absorption
(λmax) in the PLGA-only was identified at 220 nm; this value was obtained for other authors [30].
The λmax for MG was 415 nm; according to this result, mangiferin slightly modified its orientation
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towards a different value UV signal. Atoms and molecules only absorb and emit radiation of certain
frequencies, which implies the quantization of their energy levels. The electronic levels of a molecule
are widely separated and usually only the absorption of a high energy photon can excite a molecule.
UV spectroscopy studies the absorption of visible ultraviolet radiation by a molecule. By influencing
UV-visible radiation of adequate energy, the molecules pass from the ground state to a state of higher
energy (excited). If energy of the radiation matches the energy difference between the last occupied
state and the first empty state, the transition from an electron to a higher energy state occurs. Therefore,
a molecule absorbs the excitation of its busy orbital of higher energy (HOMO) to one occupied by
a single electron (SOMO), according to the molecular orbital theory [31]. Some molecules have the
ability to transfer between 1 to 3 electrons in this way, generating interactions and structural–energetic
modifications which occur in the orbitals of each molecule; when this change take place is very likely
that a molecule absorbs energy of certain wavelength modifying its spectral area [32–34]. Although it is
not a specific method for identification of link vibration, it is possible to elucidate whether the formation
of a new complex exists, or simply molecules are found. Contrary to the functionalized treatments
where a modification of the spectral area of each component is shown, as there are interactions between
polymeric matrix and phytochemicals, resistance of these occurs in an aqueous system.

Figure 4. Fingerprint UV-vis of mangiferin optimal nanoparticles (MG4) and poly (lactic-co-glycolic
acid) (PLGA).

2.5. Powder X-ray Diffraction (XRD)

The powder X-ray diffraction patterns of MG and PLGA are illustrated in Figure 5. PLGA
was in a crystalline form; however, in contrast, the XRD of the MG4 shows amplified signals
corresponding to mangiferin between the θ 10–30 already described by other authors, indicating the
change from a highly crystalline nature to an amorphous state of the complex mangiferin–PLGA [35,36].
However, these morphologies can also be attributed to the remnants of phosphate salts present in the
formulation [36].
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Figure 5. Powder X-ray diffraction patterns of mangiferin optimal nanoparticles (MG4) and poly
(lactic-co-glycolic acid) (PLGA).

2.6. Anti-Topoisomerase Activity

It has been shown that during the development of a carcinoma, there is an increase in
topoisomerases, because these enzymes are involved in cell replication [37]. Previous studies confirmed
that mangiferin is capable of inhibiting the topoisomerase I enzyme (Topo I), involved in the splitting
of DNA during cell division [38], Therefore, for this study, it was considered to evaluate its activity
on Topo I in order to evaluate if there is loss of biological power or if it can be increased due to
the controlled release of MG. Due to this, the used JN394 genetically modified strain (Matα ura3-52,
leu2, trp1, his7, ade1-2, ISE2, rad52::LEU2) promotes a deficiency in the regeneration of DNA, greater
permeability in the cell membrane y JN362a (Matα, ura3–52, leu2, trp1, his7, ade1–2, ISE2) resistant to
DNA repair but sensitive to antimicrobial agents.

The concentration of extracts used in the assay was based on the solubility factor for each solid
extract in dimethylsulfoxide (DMSO). As shown in Figure 6, the strain JN394 was hypersensitive to
camptotecin (CPT) (69± 2.3% inhibition), which is a Topo I poison. MG4 showed 14.71± 1.2% inhibition
(14.28 µg mangiferin/mg encapsulated) in this strain, while MG without encapsulation showed a
percentage of inhibition of 28.5 ± 1.8% at the same concentration as CPT (50 µg/mL). The evaluated
concentration of MG in MG4 is 5.71 times higher than that used in the camptothecin; so, to have a 69%
inhibition, 66.98 µg of mangiferin (4.69 mg/mL of nanoparticles) is required.

JN394 is a strain that is DNA repair-deficient and drug-permeable (carry ise2 and rad52
mutations) [39]. These mutations increase the sensitivity of these cells to drugs [40]. The yeast
JN362a, a DNA repair-proficient strain [35], was not affected by any NP treatment (+8 ± 0.43%) PLGA
and (+5.3 ± 0.21%) MG4. These results mean that the MG4 has compounds with anti-topoisomerase
activity against Topo I. Mangiferin has been identified as an inhibitor of the enzyme topoisomerase I
by other authors [41].

The difference observed with respect to inhibition is related to the controlled release of MG4,
since there is a time difference of 45 min, so that the total concentration of the encapsulated MG can be
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released in the media grown while CPT and MG come in contact with the yeasts from time 0 of growth.
However, it has been shown that encapsulation can ensure that the amount of compound released can
have a direct effect, without undergoing possible alterations during the process to reach the target cells.
Mangiferin studies at a concentration of 50 µM have demonstrated an antiproliferative effect on cancer
cells without affecting healthy cells; this is due to the activation of Nrf2–ARE signaling cascades [42],
the controlled release of the phytochemical contributes to the inhibition of the topoisomerase enzyme,
when mangiferin is expelled during the different phases of the cellular reproduction of the yeast,
promoting cell death due to encapsulation [43]. A similar behavior was observed in the encapsulation
of topotecan, which is a selective topoisomerase II inhibitor. A difference in cell viability between the
encapsulated and non-encapsulated compound was observed—when the compound was encapsulated,
the cytotoxicity remains constant after 24 h, whereas the non-encapsulated compound tended to
decrease, confirming a controlled released on cell proliferation inhibition [44]. Modify strains from
Saccharomyces cerevisiae have been used in cytotoxicity studies against topoisomerases, which were
found in greater proportion in cancer cells, in addition to the modification in the gene that codes for
topoisomerase [45], and these strains were like those used in the present study.

Figure 6. Growth rate of Camptotecin (CPT), poly (lactic-co-glycolic acid) (PLGA), mangiferin (MG),
and mangiferin nanoparticles (MG4) in the proliferation of modified strains of Saccharomyces cereviseae
JN362a and JN394.

2.7. Cell Viability

The NPs may have a high risk on human health, and to evaluate this, different types of cell cultures
have been used as toxicity models under in vitro condition. HEPG2 derivate from hepatocellular
carcinoma is a cell line well established and widely used as a model for drug metabolism and cytotoxicity
studies, because these cells display many features of normal liver cells [46]. BEAS2B is an immortalized
cell line isolated from normal human bronchial epithelium, and it has been employed to evaluate
in vitro toxicity of some nanomaterials, because it is a non-cancerous epithelial cell type [47,48]. Thus,
we selected HEPG2 and BEAS2B cells as a model system for studying the in vitro toxic effects of MG4.

HEPG2 and BEAS-2B cells were treated with varying concentrations of MG4. MTT is a tetrazolium
salt that is converted to formazan salt (blue color) by mitochondrial dehydrogenase enzymes; thus,
color can be measured, and it correlated with cell metabolic activity or live cells. Violet crystal dye stains
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cell proteins and DNA, and the cells that suffer cell death lose their adhesion; thus, adherent cells can be
stained, and color can be quantified. Both methods showed that MG4 high concentrations (2500 µg/mL)
were not able to decrease cell viability in BEAS-2B or HEPG2 cells (Figure 7). Furthermore, MG4 did not
alter cell morphology in either cell line. Reports have shown that glycosylated bioactive compounds
do not have an hepatotoxic effect on the in vitro model. Furthermore, the mangiferin conjugated with
other similar compounds could have a positive role on hepatic glucose metabolism [44], as well as
studies on encapsulation with PLGA showing that it does not appear to have an hepatotoxic effect on
HEPG2, and therefore, it has been cataloged as a safe biopolymer [49].

Particularly, at 1250 mg/mL, an increase in the cell viability of HEPG2 is shown compared to the
negative control. Other studies with this cell line have shown that some plant phenol extracts promote
cell growth, but with isolated phenolic compounds, and the viability in healthy liver cells decreases at
concentrations greater than 2 mg/mL [50,51]. Therefore, it is likely that this concentration allows the
cellular replication of healthy cells; nevertheless, studies in cancer cells to corroborate this hypothesis
are lacking.

Figure 7. Cell viability of the various mangiferin nanoparticle concentrations for HepG2 and BEAS-2B
cells using the violet crystal and MTT assay. * p < 0.05, statistical difference between treatment
and control.
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3. Materials and Methods

3.1. Reactives

Poly (lactic-co-glycolic acid) (PLGA), 75:25, Mw 25,000; polyvinyl alcohol (PVA) Mw 85,000–124,000,
mangiferin, and dicloromethane (DCM) were obtained from Sigma-Aldrich (St. Louis, MO 63118, USA).

3.2. Preparation of Nanoparticles (NPs)

The NPs were developed following the method of solvent evaporation [52] using 15 mg of
PLGA (75:25) and adding 500 µL of DCM in a flask. The aqueous phase composition was 5 mL of
PVA solution (0.5%), and the quantity of mangiferin was added according to the amount required
(Figure 1). The emulsion was sonicated for 5 min. Samples were homogenized by an Ultra-turrax®

(IKA, T18; Germany) disperser and the organic phase was added drop-by-drop. Organic solvent
was separated by rotoevaporation (Buchi, R-300; Essen, Germany). After, NPs were kept for 2 h
at −80 ◦C and freeze-dried at −50 ◦C in a freeze-dryer (Labconco, FreeZone 6; Kansas, MO, USA).
Finally, the lyophilized samples were stored in a desiccator and placed in the freezer (−20 ◦C) (Torrey,
CHTC-255; Monterrey, Nuevo León, México). Loaded NPs were named MG1 to MG15, depending on
the processing conditions. Unloaded NPs (PLGA) were also prepared and used as control.

3.3. Experimental Design

According to Box–Behnken design, a total number of 15 experiments, including 12 factorial points
at the midpoints of the edges of the process space and three replicates at the center point for estimation
of pure error sum of squares, were performed to choose the best model among the linear, two-factor
interaction model and quadratic model due to the analysis of variance (ANOVA). An obtained p-value
less than 0.05 was considered statistically significant. The selected independent variables were speed
(A), time (B), and concentration (C) at three different levels as low (−1), medium (0), and high (+1).
Dependent variables were encapsulation efficiency (EE%) and entrapment efficiency (AE%). The coded
factors and responses of the variables are given in Figure 1.

3.4. Evaluation of Mangiferin Encapsulation Efficiency (EE%) and Entrapment Efficiency (AE%)

The samples were dissolved in phosphate-buffered solution (PBS) at pH of 7.0 solution and
mangiferin AE% was determined indirectly [53]. An aliquot (200 µL) of sample was placed in a
microplate reader (Biotek, Synergy HT; Winooski, VT, USA), the reading was recorded at 365 nm, and
the concentration was obtained by a calibration curve of manguiferin (0.4, 0.8, 1.6, 3.2, and 6.4 µg/mL)
using Equation (2).

AE% =
(A1−AA

A1

)
× 100 (2)

where A1 is the initial amount of mangiferin, and AA is the amount of free no-entrapped mangiferin
determined by UV-vis [54].

EE% was determined later to expose the NPs under the conditions mentioned above; nevertheless,
for this analysis, aliquots were taken at the time 0.15 min and 24 h. EE% was obtained using Equation (3).

EE% =
(E1− E24

E1

)
× 100 (3)

E1 is the difference in time concentration from t0 to 15 min, E24 is the total concentration released
at 24 h. With this model it can wash the surface of the NPs with the objective of obtaining the
concentration retained inside the particle.
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Optimization of Data Using Response Surface Methodology (RSM)

Optimization by RSM was based on the highest possible value of EE% and AE% that we evaluated
in terms of statistically significant coefficients and R2 values. A Pareto chart was used for identification
the quadratic and lineal effects from independent variables.

3.5. Mangiferin Release Profile in NPs

The in vitro release profile of mangiferin from NPs was evaluated suspending a 1.0 mg of NPs
into 5 mL of PBS solution at different pH value (1.13 and 7.05) [55]. The suspension was maintained
at 37 ◦C and 150 rpm (magnetic stirrers). The samples were read at 0, 15, 30, 45, 60, 120, 180, 240,
and 360 min. The kinetic analyses of the release data were performed using various mathematical
models [56–58]. From the optimum condition, particle size, size distribution, and the physicochemical
properties were evaluated.

3.6. Optical Characterization

3.6.1. Size Distribution of Mangiferin NPs

The size distribution was determined in pure water at 18 ◦C using a particle size analyzer (Malvern,
Mastersizer 2000; UK). For the measurements, 200 mL of the NP suspension was dispersed in 2 mL
of filtered water. The analysis was performed at a scattering angle of 90◦, refractive index of 1.590
(corresponding to PLGA), and 18 ± 3 ◦C.

3.6.2. Evaluation Morphology by Scanning Electron Microscopy (SEM)

The NPs were observed under scanning electron microscope (Tescan, MIRA3 LMU, London,
UK). The samples were sputter-coated with gold before observation under SEM. Both low and high
magnification images were obtained to confirm the uniformity of the particle sizes and to determine
the exact size of the particle, respectively. The high magnification SEM images were interpreted by
ImageJ software to determine the size of the particles.

3.6.3. UV-Visible Spectroscopy

UV–visible spectrums of NPs were recorded from 300 to 600 nm. Particle size distribution was
carried out by a Dynamic Light Scattering (DLS) analyzer (Shimadzu, UV- 26000; Kyoto, Japan).

3.6.4. Surface Composition of the Np´s by X-ray Diffraction (XRD)

The XRD patterns were obtained using a Bruker D8 Advance equipment diffractometer (Tokyo,
Japan) (k = 1.5460 Å, 40 KV, 30 mA), The diffraction intensity as a function of the diffraction angle (2θ)
was measured between 10 and 90◦, using a step of 0.02◦ and counting time of 0.25 s per step.

3.7. Biological Material

Mutant yeasts of Saccharomyces cerevisiae, JN362a and JN394 cells, were donated by Dr. John Nitiss
of St. Jude Children’s Research Hospital, Memphis, Tennessee. Cell lines were obtained of American
Type Culture Collection: Primary and immortalized human bronchial epithelial cells, BEAS-2B (ATCC
CRL-9609), and hepatocarcinoma adherent epithelial cell, HEPG2 (ATCC HB-8065).

3.8. Yeast Anti-Topoisomerase Assay

The anti-topoisomerase activity was evaluated using mutants S. cerevisiae JN362a and JN394
strains [59]. Briefly, yeast cells were grown in YPDA media at 30 ◦C for 18 h in a shaking incubator.
The logarithmically growing cells were then counted using a hemocytometer and adjusted to a
concentration of 2 × 106 cells/mL media. Yeast cells (6 × 106 cells) were incubated at 30 ◦C for 24 h in
the shaking incubator (Thermo scientific, SHKE4450; Bedford, MA, USA) in the presence of the NPs,



Cancers 2019, 11, 1965 13 of 17

mangiferin, or CPT previously dissolved in 50 µL DMSO. DMSO (1.66%) was used as negative control,
while CPT (50 µg/mL), a topoisomerase I inhibitor, was the positive control. Treated cells from each
mixture were then duplicate plated to petri dishes containing 1.75% Agar bacto solidified YPDA media.
Cells were incubated at growth temperature of 30 or 25 ◦C for 48 h. The anti-topoisomerase activity
was determined as number of counted colonies in each plate by comparing to that of the negative
control (DMSO).

3.9. Cell Line Culture

The cell lines BEAS-2B and HEPG2 were cultured in Dulbeco’s Modified Eagle’s Medium (Gibco
12320-032 and 12100-038, respectively; Gaithersburg, MD, USA) supplemented with 10% fetal bovine
serum (JRScientific Inc., 43640-500; Woodland, CA, USA) and 1% streptomycin/penicillin (PAA,
P11-002). Cultures were maintained at 37 ◦C in 5% CO2.

3.10. Cell Viability Assay

Cell lines were seeded (1 × 104 cells/100 µL/well) in 96-well plates for 24 h in complete
media [60]. Then, cells were treated with MG4 in concentrations of 2500, 1250, 625, and 312 µL/mL,
medium volume was completed at 200 µL, and cells were incubated by 72 h at 37 ◦C in 5% CO2.
The DMSO (at the same volume that NPs, 1%) was used as a negative control and DMSO to high
concentration (10%) was used as a positive control. Citotoxicity was evaluated by violet crystal and
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), where all experiments were
performed in triplicate in three independent experiments; thus, all data are reported as the mean
value ± the standard error of the mean. The cells were observed with an inverted optical microscope
(Olympus, CKX-41; Waltham, MA, USA.) and photographs were taken with the Microscope Eyepiece
camera (AmScope, MU130; Irvine, CA, USA).

3.10.1. Staining with Violet Crystal

After 72 h of exposure to the NPs, cells were fixed with p-formaldehyde 4% (75 µL each well), and
incubated at 37 ◦C for 1 h. Next, three washes were performed with PBS, and the plate was inverted
and dried for 2 h in absorbent paper. Then, violet crystal 0.5% (50 µL to each well) was added and
incubated at 37 ◦C for 20 min. Each well was washed three times with PBS, and subsequently, it was
dried for 24 h. Finally, methanol (200 µL) was added to each well, and the plate was shaken and read
at 570 nm in a BioRad microplate reader (iMark™Microplate Absorbance Reader). The cell viability
percentage was calculated as a ratio to the values obtained by the untreated cells. The results were
analyzed with GraphPad Prism 5.0 software.

3.10.2. MTT Tetrazolium Assay

The cell cytotoxicity was evaluated using MTT stock solution (0.5 mg/mL); for that, MTT was
dissolved in phosphate-buffered saline (PBS) (pH 7.4), and then it was filtered and stored at −20 ◦C in
the absence of light. The assay was performed according to [61]; briefly, cells treated with NPs were
washed once with PBS, then MTT (50 µL) and PBS (50 µL) were added to each well and incubated for 4 h
at 37 ◦C in 5% CO2. MTT solution was removed, and 100 µL DMSO was added to each well to dissolve
the formazan crystals. Then, the plate was shaken and read at 570 nm in a BioRad microplate reader
(iMark™Microplate Absorbance Reader). The cell viability percentage was obtained by comparing the
results with those of untreated cells. The results were analyzed with GraphPad Prism 5.0 software.

4. Conclusions

The nanoparticles made under the solvent emulsion and evaporation method with PLGA are
potentially resistant to acidic conditions for up to 45 min; the best encapsulation and entrapment
efficiency (77% and 93%) was achieved at a concentration of mangiferin of 300 µg. It was observed that
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the three factors studied (concentration, time, and speed of homogenization) affect the efficiency of
encapsulation and modify the release profile of mangiferin. Interactions between the molecules in the
formulation affected the fingerprint of the compounds when encapsulated; however, this formation of
bonds does not produce a negative effect on the antipopoisomerase activity of mangiferin and does not
present hepatotoxicity in vitro.
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