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Abstract: Understanding tumor progression and metastatic potential are important in cancer biology.
Metastasis is the migration and colonization of clones in secondary tissues. Here, we posit that clone
migration events between tumors resemble the dispersal of individuals between distinct geographic
regions. This similarity makes Bayesian biogeographic analysis suitable for inferring cancer cell
migration paths. We evaluated the accuracy of a Bayesian biogeography method (BBM) in inferring
metastatic patterns and compared it with the accuracy of a parsimony-based approach (metastatic
and clonal history integrative analysis, MACHINA) that has been specifically developed to infer clone
migration patterns among tumors. We used computer-simulated datasets in which simple to complex
migration patterns were modeled. BBM and MACHINA were effective in reliably reconstructing
simple migration patterns from primary tumors to metastases. However, both of them exhibited a
limited ability to accurately infer complex migration paths that involve the migration of clones from
one metastatic tumor to another and from metastasis to the primary tumor. Therefore, advanced
computational methods are still needed for the biologically realistic tracing of migration paths and to
assess the relative preponderance of different types of seeding and reseeding events during cancer
progression in patients.
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1. Introduction

Cancer’s uniqueness emerges from its fundamental traits (hallmarks) of tumor growth,
cell expansion, and dissemination from a tumor of origin (primary) to surrounding and distant
tissues (metastases) [1]. Cancer cells gain the ability to migrate, invade, and modulate tumor
microenvironments. Metastasizing clones may also trigger cellular plasticity and eventually colonize
secondary tissues [2]. Due to genomic instability [3–6] and the generation of intratumor genetic
heterogeneity, metastatic lesions cause failures of therapeutic approaches to eradicate metastases,
subsequently making metastasis the dominant cause of cancer mortality [7,8]. A comprehensive
understanding of the metastatic processes is essential for cancer biology, including cancer prognosis [9]
and response to treatment [10].

Metastasis involves the migration of clones (i.e., cancer cells with identical genotypes) between
primary and metastatic tumor sites, both of which accumulate somatic mutations over a patient’s
life [11]. Thus, clones that originated from primary and metastatic tumors are evolutionarily related
to each other, and their evolutionary relationship is depicted in a phylogeny. Moreover, tumor clone
seeding or migration events are generally visualized in the form of migration graphs that show the
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relationship between the source and recipient-tumor site(s). These migration graphs can be constructed
by using clone and tumor phylogenies that are frequently inferred from bulk sequencing and single-cell
sequencing data [12–16].

In the past, clone seeding events were inferred by careful manual examination of cell and tumor
phylogenies. However, as clone phylogenies are becoming larger due to sampling intensity (single-cell
sequence data, collection of more metastases within a patient), it is expected that clone migration paths
will also become more complex [17–20].

Currently, there is only one computational approach for inferring migration events between tumors
(metastatic and clonal history integrative analysis, MACHINA) [21]. For a given clone phylogeny,
the MACHINA method first estimates the source-tumor site as the tumor of origin for the ancestral
clones at the internal nodes. A migration event is inferred whenever the location of an ancestral node in
the clone tree is different from its descendant node. MACHINA uses the maximum parsimony principle
in which the optimality criteria (i.e., conditions to be reached for optimum migration inferences)
include: (i) the number of migration events, i.e., an event where a clone migrates from one tumor to
another, (ii) the number of comigration events, i.e., an event where two separate clones from a tumor
site migrate to the same tumor (polyclonal seeding event); and (iii) the number of sources of the tumor
site, i.e., sources of seeding clones [21]. This approach favors solutions that minimize the number of
evolutionary and migration steps involved, which may underestimate the number of sources that
contribute clones to metastases. The dataset of Figure 1 is one such example where the parsimony
approach taken in MACHINA failed to infer clone seeding events between metastases, as it inferred
the primary tumor as the only source of tumor cells for all seeding events. The BBM method performed
better than MACHINA in this example dataset, as it produced the correct migration paths.

As a result, we wondered if the limitation of parsimony criteria could be overcome by the
use of Bayesian approaches that do not use such counting principles. In the field of biogeography,
many methods exist for inferring the origin and movement of species/populations between (geographic)
areas. Some of these methods are expected to be well suited for understanding tumor migration paths
because certain biogeographic processes are analogous to tumor clone seeding and colonization events,
as seen in Figure 2. More specifically, clone seeding events between distinct tumor sites could be
inferred by applying biogeographic methods that model events of species/populations movement
between different areas (dispersal), genetic divergence of cell lineages within an area (diversification),
and the disappearance of lineage(s) from an area (extinction), as shown in Figure 2 [22,23].

In the current study, we applied a Bayesian biogeographic approach that uses an evolutionary and
spatial framework for inferring species migration routes to predict migration paths between tumor sites.
Specifically, we tested the Bayesian Binary MCMC (BBM) method for inferring ancestral states [24]
because this method uses a full hierarchical Bayesian approach to infer dispersal, diversification, and
extinction events. We also compared BBM’s performance to that of MACHINA. We found that the
performance of both methods is dictated by the number of tumor sites and the complexity of migration
paths. Finally, we discuss the advantages of these methods and issues to be aware of when inferring
tumor migration graphs.
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in which one tumor (M2) was seeded by clones from two other tumors (P and M1). This example 

dataset consisted of 16 clones and 52 characters from one primary and four metastatic tumors. 

Metastatic and clonal history integrative analysis (MACHINA) failed to infer the correct M1→M2 
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phylogeny inferred by MACHINA. (d) Migration graph predicted by MACHINA. Tumor clones and 

Figure 1. Analysis of an example dataset (m5Mseed76) with multisource seeding events (pM datasets)
in which one tumor (M2) was seeded by clones from two other tumors (P and M1). This example dataset
consisted of 16 clones and 52 characters from one primary and four metastatic tumors. Metastatic and
clonal history integrative analysis (MACHINA) failed to infer the correct M1→M2 path. (a) The true
(expected) clone phylogeny. (b) The true (expected) migration path. (c) Clone phylogeny inferred by
MACHINA. (d) Migration graph predicted by MACHINA. Tumor clones and ancestral clones at the
internal nodes are colored based on the source-tumor site: primary (green), and metastases M1 (blue),
M2 (pink), M3 (gray), and M4 (brown).
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Figure 2. Cancer cells in tumors accumulate somatic mutations. Clones evolve over time within a
tumor site and may go extinct or migrate to secondary tissues. In this figure, the example shows a tumor
clone phylogeny with one primary and four metastatic tumor sites, each with multiple clones. Tumor
migration events might be described by biogeographic processes (examples marked in dashed boxes)
such as (i) dispersal: movements between areas, (ii) diversification: genetic divergence of lineages
within an area, and (iii) extinction: disappearance of lineage(s) from an area. Tumor clones are colored
based on the source of tumor site: primary (green), and metastases M1 (blue), M2 (pink), M3 (gray),
and M4 (brown).
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2. Results

We considered four different tumor clone seeding scenarios based on the numbers of seeding
clones (1–3), sources of the seeding clones (primary and/or metastatic), and the presence of reseeding of
the primary tumors by clone(s) from metastases. For more details see the Methods section and Figure 3.
These criteria dictated the pattern and complexity of simulated migration graphs that were different
for all datasets. The monoclonal Single-source (mS) seeding was the simplest scenario followed by the
polyclonal Single source seeding (pS), the polyclonal Multisource seeding (pM), and the polyclonal
Reseeding (pR). Our test sample contained 20 simulated datasets for each type that were further
subdivided into m5 and m8 datasets based on the number of tumor sites considered (5–7 and 8–11
tumors, respectively).
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Figure 3. Examples of the four clone seeding scenarios as simulated by El-Kebir et al. [21], showing the
direction of clone seeding events that were allowed to occur among tumor sites: (a) monoclonal
single-source seeding (mS); (b) polyclonal single-source seeding (pS); (c) polyclonal multisource
seeding (pM); (d) polyclonal reseeding (pR).

In our computational analyses, we used the Bayesian BBM method and the parsimony-based
MACHINA algorithm (Parsimonious Migration History, PMH). We tested two different approaches
based on the way that tree polytomies were treated in MACHINA: PMH-con, which does not attempt
to resolve polytomies in the clone phylogeny, and PMH-TR, which does. More specifically, PMH-TR
explores different tree topologies under which migration inferences are minimized, and jointly,
refines any polytomies using the migration paths (for more details see the Methods section). For all
analyzed methods, the source origin of the clone at the root of the phylogeny was assumed to be the
primary tumor site. We evaluated these three approaches (BBM, PMH-con, and PMH-TR) to estimate
their accuracy in inferring tumor migration paths.

2.1. Interpretation of BBM Results in the Context of Cancer

BBM infers ancestral distributions (locations) of species/populations at each node based on a given
phylogeny and the distribution of species/populations in different locations. In cancer, clones constitute
species/populations, and locations are the tumor (sampling) sites. BBM produces a source of origin of
descendant clones at each ancestral node in the clone phylogeny, as well as the migration path with the
highest posterior probability.

Figure 4 shows a set of multiple and reseeding clone migrations, as seen in panel a, between
primary and seven metastases, and the associated clone phylogeny, as seen in panel b. In panel
c, we observe the predicted tumor sites at an internal node along with their posterior probabilities
produced by BBM using the clone phylogeny in panel a. Corresponding results from MACHINA are
shown in panel d. Both PMH-con and PMH-TR approaches produced the same result for this dataset.
The predicted ancestral tumor sites (source-tumor sites at ancestral nodes) and migration paths were
congruent with the expected (true) migration paths for this example dataset and all methods, as seen
in panel e.
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Figure 4. Inferred migration graphs for an example dataset (m8Rseed9; pR dataset). This dataset
consisted of 18 clones and 66 characters from primary and seven metastatic tumors. (a) True (expected)
clone phylogeny used as input tree for the migration inferences. (b) True migration path. (c) Ancestral
areas predicted by Bayesian biogeography method (BBM) approach. Values next to the predicted
ancestral ranges indicate Bayesian posterior probabilities. (d) Ancestral tumor sites predicted by
PMH-con. PMH-TR produced the same result as PMH-con. (e) Predicted migration paths by
MACHINA and BBM, which were consistent with the true migration graph. Tumor clones and ancestral
clones at the internal nodes are colored based on the predicted source-tumor site: primary (green),
and metastases M1 (blue), M2 (pink), M3 (gray), M4 (brown), M5 (orange), M6 (purple), and M7 (red).
Unknown location of origin is marked as yellow in the pie charts of BBM.

2.2. Impact of the Complexity of Migration Paths on the Inference Accuracy

To evaluate the effect of the complexity of the dataset on the accuracy of the method, we computed
F1-scores for each dataset (see Methods). Larger values of F1-scores indicate a more accurate inferred
migration graph. We averaged the accuracy across all 20 datasets in each category and found that
MACHINA and BBM to have similar overall performance, as seen in Figure 5. That is, there was not a
significant accuracy difference between PMH-con and BBM (F1 = 0.82 and 0.79, respectively), but the
performance of PMH-TR was consistently worse (F1 = 0.71), as seen in Figure 5. PMH-TR attempts to
reduce the incorrect polyclonal seeding events inferred by PMH-con by jointly resolving polytomies
and inferring migration paths. However, this feature introduces more errors in the migration inferences
than PMH-con, most likely because PMH-TR often resolves polytomies incorrectly, as seen in Figure 5.

We next examined the impact of the increasing complexity in the history of metastatic tumor
evolution, i.e., the presence of polyclonal seeding events (pS), the presence of multiple source tumor
sites for seeding a metastatic tumor (pM), and the presence of reseeding event (pR). The inference
of correct metastatic patterns is clearly a function of the complexity of the migration graphs, as the
accuracy decreases with increasing complexity, as seen in Figure 6a. Migration paths in datasets with
monoclonal seeding events (mS) were the easiest to reconstruct correctly, with overall accuracy ranging
from 0.84–0.92. In contrast, the presence of polyclonal reseeding (pR) made the inference of metastatic
patterns very challenging, as the accuracy declined to 0.58–0.76.
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Figure 6. Overall performance (F1-score, which is the harmonic mean of precision and recall) of
different approaches for (a) increasing complexity of migration paths and (b) different number of tumor
sites. Complexity of the migration graph for different seeding types was in the order: mS < pS <

pM < pR. The number of tumor sites were categorized as m5 and m8 datasets (5–7, and 8–11 tumors,
respectively). Differences in values of F1-score on seeding category and tumor count were examined
through t-test and are marked when significant (*: p < 0.05 with mS; **: p < 0.05 with pS).

Next, we conducted statistical tests to compare F1-scores across complexity classes, as seen
in Table S1. The null hypothesis of equal effect between different (simple or complex) migration
schemes on the accuracy was rejected for eight out of 18 pairs of seeding scenarios at p < 0.01.
Interestingly, a comparison of the accuracy for mS with pM (BBM and PMH-con) and pR scenarios
(BBM, PMH-con, and PMH-TR) showed no significant impact of the complexity. The difference
of F1-scores between BBM and PMH-con was also not substantial in any clone seeding scenario,
but PMH-TR always produced much lower F1-score than BBM and PMH-con. PMH-TR was also not
robust to these complexities, and F1-scores decreased with increasing complexity. Thus, the inference of
migration paths becomes hard for both BBM and MACHINA when the migration patterns are complex.

We also examined the impact of the number of tumor sites within a dataset. Datasets were grouped
into two categories, those with a small number of tumors (5–7 tumors per dataset, m5 datasets) and
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those with a larger number of tumors (8–11 tumors per dataset, m8 datasets). Although the average
F1-scores of m5 datasets were slightly higher than those of the m8 for all methods (0.82 and 0.76 for
BBM; 0.85 and 0.79 for PMH-con; and 0.74 and 0.67 for PMH-TR, respectively), as seen in Figure 6b,
these differences were not statistically significant in the t-tests.

2.3. Accuracy for Different Types of Migration Paths

Migration paths can be classified into three categories based on the type of clone seeding from (i)
primary to metastatic tumor site(s) (P→M), (ii) metastatic to another metastatic tumor site (M→M),
and (iii) metastatic to primary tumor site (M→P). We assessed the proportion of inferred paths that
were incorrect (false positives; FPs) and the proportion of correct paths that were not identified (false
negatives; FNs), as seen in Figure 7.
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Figure 7. Error rate of incorrectly (false positives; FPs), and not identified (false negatives; FNs) inferred
migration paths for the two categories of clone seeding events between different tumor sites: (i) primary
and metastatic site(s) (P→M), and (ii) metastatic sites (M→M).

2.3.1. Accuracy of Migration Paths from Primary to the Metastatic Tumor Site (P→M Path)

We found that PMH-con outperformed other methods in identifying correct P→M paths.
The average error rate of FNs of P→M paths was only 3%, while the errors inferred by BBM
and PMH-TR were 13% and 12%, respectively, as seen in Figure 7. However, PMH-con produced more
incorrect P→M paths than BBM with error rates of 16% and 14% for PMH-con and BBM, respectively.
PMH-TR produced a much larger number of incorrect P→M paths than other methods, with an error
rate of incorrect paths equal to 22%. That being said, the PMH-con method might have recovered more
correct P→M paths than BBM, but the collection of paths inferred included many incorrect P→M paths.
This pattern of performance of MACHINA may be explained by the fact that MACHINA minimizes
the number of source-tumor sites in the inference of migration graphs. Consequently, MACHINA
tends to generate migration schemes with a minimum number of source sites for a given dataset,
e.g., one-step P→M paths will be favored over multistep P→M→M paths.
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2.3.2. Accuracy of Migration Paths from Metastatic to another Metastatic Tumor Site (M→M Path)

We found that PMH-con outperformed the other methods in identifying correct P→M paths.
The average error rate of FNs of P→M paths was only 3%, while the errors inferred by BBM and
PMH-TR were 13% and 12%, respectively, as seen in Figure 7. However, PMH-con produced more
incorrect P→M paths than BBM with error rates of 16% and 14% for PMH-con and BBM, respectively.
PMH-TR produced a much larger number of incorrect P→M paths than the other methods, with an
error rate of incorrect paths equal to 22%. That being said the PMH-con method might have recovered
more correct P→M paths than BBM, but these include incorrect P→M paths.

2.3.3. Accuracy of Migration Paths from Metastatic to the Primary Tumor Site (M→P Path)

Similar to the inference of M→M paths, the ability to detect M→P paths was low for all of the
methods (pR datasets). BBM and PMH-con produced only half of these M→P paths. Among the
methods, PMH-TR performed the worst, as it rarely identified M→P paths.

Nevertheless, MACHINA did not produce any more incorrect M→P paths than BBM, most likely
because MACHINA minimizes the number of source tumor sites and restricts producing migration
paths that start from metastatic tumor sites. Consequently, inferences of incorrect M→P paths can be
prevented more efficiently while using MACHINA than BBM. However, it is important to note that
this restriction in the MACHINA method produces, more frequently, incorrect inferences of P→M
paths, and less frequently, correct inferences of M→M paths, compared to BBM.

2.3.4. Overall Accuracy of Migration Paths

Overall, the BBM and MACHINA methods can detect only P→M accurately. We found that 26
and 30 inferred migration graphs among 80 datasets by BBM and PMH-con, respectively, were entirely
correct, i.e., they were identical to their correct migration graphs. Around half of these datasets (11 and
15 datasets, respectively) did not contain any M→M or M→P paths. We need to be aware of this error
pattern when these methods are used for empirical data analysis.

Moreover, BBM is easy to run as it is part of the RASP toolkit, but runs required ~1.5 hours,
on average, and depended on the number of areas considered for the analysis (1–3.5 hours). BBM does
not produce a plot of migration paths, and so, at present, it has to be drawn manually. MACHINA
software is less user-friendly than BBM, as we found it to be challenging to install. It runs very fast (only
a few seconds). MACHINA produces a plot of migration paths, which can be easily visualized by using
software such as Graphviz (some online versions are also available, e.g., http://www.webgraphviz.com/).

3. Discussion

In this study, we evaluated a Bayesian biogeographic method as a potential alternative approach for
inferring accurate cancer cell migration events between tumor sites (tumor biogeography). Although a
method in biogeography has been applied to this purpose in the past [23], the accuracy of biogeographic
methods is being explored for the first time in this study. Here, we applied BBM [24], because it uses a
phylogenetic tree and infers dispersal patterns. We also tested the accuracy of the MACHINA method
for inferring migration paths in metastasis.

Overall, we found that BBM and MACHINA produced similar results, with high accuracy in
predicting a large number of migration paths correctly as long as the clone migration patterns were
simple. More specifically, the complexity of datasets, i.e., presence of polyclonal seeding tumors (single
source polyclonal, e.g., P→M1 and P→M1, or multiple source seeding, e.g., P→M1→M2 and P→M2)
and reseeding events (M→P), impinged on the performance of the evaluated methods. On the other
hand, single clone seeding events from a primary to metastasis (P→M) or between metastases (M→M)
were less problematic to infer.

In more complex migration patterns between tumors, such as those with multiple source seeding
in which a tumor is seeded from more than one tumor, e.g., P→M1→M2 and P→M2, the accuracy of

http://www.webgraphviz.com/
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both methods became low. The number of tumor sites and the complexity of migration graphs strongly
impacted the performance of both methods. We also found that the performance of BBM excels in
inferring migration paths between metastases (M→M), while MACHINA performs better for paths
between primary to metastasis (P→M), and vice versa (M→P).

Each inferred migration graph generally contained one or a few incorrect migration paths.
We found that most of P→M paths can be identified, but incorrect P→M paths will be additionally
produced. Inferences of M→M and M→P paths are hard to identify correctly. This result could be
explained by the constraint of the primary tumor as the starting tumor site for migration inferences in
both MACHINA and BBM. The latter finding might indicate that the two methods are complementary
to one another in validating and improving the accuracy of the metastatic inferences.

Even though BBM did not perform better than MACHINA in our direct comparisons, it is likely to
be more useful because it provides more detailed information about migration paths than MACHINA.
Being a Bayesian approach, BBM assigns posterior probabilities to ancestral range states for nodes in the
clone phylogeny, and thus, relative probabilities of different biogeographical (dispersal, diversification,
and extinction) events (if any) are produced for each ancestral node. An example is shown in Figure 4,
in which the dataset included a large number of tumors, migration of multiple clones from one tumor
to another, and reseeding events. In this case, the migration inferences from MACHINA and BBM were
congruent with the true migration path. MACHINA produced only one possible ancestor tumor site,
as seen in Figure 4d, but BBM assigns one location (or more) as a probable origin for the lineage and
suggests the migration path (including probable dispersal, diversification and extinction events) for
the ancestor node along with the probability for the location(s) of origin assigned at the node (for more
details, see Methods section). Figure S1 shows the prediction of BBM migration paths as a result of
dispersal events. For example, for the node with the assigned migration path M1→M1M7→M1 |M7 on
the top of the phylogenetic tree of the Figure S1, we observe that the tumor M1 is suggested as the source
of origin for the lineage. BBM further indicates that a clone from M1 migrated to tumor M7 through
dispersal (event marked as blue circle around the ancestral node), where clones eventually diverged.

Examining more thoroughly the inferred migration paths in Figure S1, we also observe
diversification events, denoted as, e.g., M2ˆM2. In cancer, the spread of clones is modelled through
seed composition (number of clones that migrated), seed source (tumors participating in metastatic
cascades), and timing (when clones diverged) [17]. BBM essentially delineates the location where genetic
divergences of clones have occurred, indicating the series of tumor genetic divergence. The information
on biogeographic processes inferred by BBM could be used to describe tumor clone evolutionary events
in more detail. We argue that BBM is a potentially good method for modeling metastatic progression.
The patterns produced by BBM may be used as a scaffold to begin to generate information on the source
tumor for metastases, the number of clones involved in the initial formation of metastasis, and the
route of metastatic clones among tumors in a cancer patient. This knowledge will ultimately inform
the relative contribution of mutation and migration in causing intratumor heterogeneity, which is the
leading cause of treatment failure and cancer mortality.

Ultimately, we must conclude that the methods available for tumor biogeography [21,23] are
indeed in their infancy, as the overall accuracies are rather modest for both MACHINA and BBM.
In spite of these limitations, our results clearly show promise for the application of computational
methods in biogeography to infer migration graphs in cancer. By uniting the fields of population
and species biogeography with tumor biogeography, we hope that it will be possible to accelerate the
progress in developing more accurate computational methods for inferring migration paths between
metastatic tumors. These developments will likely come from advancing the statistical framework of
contemporary biogeographic methods that can integrate phylogenetic, longitudinal, and spatial signals
in sequence variation. Progressively higher resolution data capturing finer details of spatiotemporal
heterogeneity and evolution of tumors is likely to aid in the reliable reconstruction of migration patterns.
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4. Materials and Methods

4.1. Simulated Datasets and Seeding Scenarios

To ensure a direct comparison, we used the same simulated datasets as those used to evaluate
MACHINA [21]. In brief, these datasets were simulated based on the model of clone evolution and
tumor growth with cell migration events modeled based on ref. [25]. Tumor migration schemes
were designed and simulated based on migration (seeding) events occurring after cell cycle events
(replication and death). The probabilities of clone seeding events were proportional to the number of
cells in a tumor site and of the drivers considered therein. Tumor cells were allowed to migrate from
an existing to another anatomical site (tumor site).

Based on the number of seeding clones (single cell, monoclonal; and group of cells, polyclonal),
the number of source sites of seeding clones (single source site and multiple source site), and the
presence of reseeding events (from metastatic to primary), datasets were classified into four categories.
The first category of simulated tumor migration schemes included cells from one clone that could
migrate from a tumor site (primary or metastatic) to another (single-source monoclonal seeding events,
mS). In the second category, at least one clone per tumor site seeded another tumor site (single-source
polyclonal seeding events, pS). In the third category, at least one clone per tumor site seeded two
different tumor sites (multisource seeding events, pM). The fourth category contained reseeding events
from metastasis to primary site, together with monoclonal seeding, single-source polyclonal seeding,
and/or multisource polyclonal seeding events (reseeding, pR), as seen in Figure 3.

All the datasets were further subdivided into m5 and m8 datasets based on the number of tumor
sites considered (5–7 [7] and 8–11 tumors, respectively). In total, we obtained 80 simulated datasets of
clone sequences and clonal composition of primary and metastatic tumor sites, together with their
histories of clone seeding events from ref. [21]. The number of primary and metastatic tumor sites
ranged from 5–11. Datasets included 7–28 clones, and the number of single nucleotide variants (SNVs)
was 9–99, as seen in Table S2, [21]. All clone phylogenies and the information of tumor sites that
contain clones are available at https://github.com/raphael-group/machina/tree/master/data.

4.2. Methods for Migration Events Inference

To infer migration paths, we used the MACHINA and BBM methods. Because our interest was
in testing the ability of computational methods to infer migration paths, we provided the true clone
phylogenies and tumor sites. In the input tree phylogenies, branch lengths are the number of mutations,
because such phylogenies are generally used on cancer research [7,26–29]. The computer-simulated
data were in a binary (i.e., two-state) character system, where there were two character states for
nucleotides corresponding to the normal (germline) base and to the base substitution. Mutations in
the simulated sequence arose only once, meaning that the substitution process happens only towards
one direction with no backward or parallel substitution changes at each nucleotide position (no
homoplasy). This substitution process is in accordance with the clonal evolution model which proposes
that tumors arise from a single mutated cell accumulating additional mutations [30]. When sequence
data have no homoplasy, then maximum parsimony is expected to produce the correct phylogeny [31].
For that reason, we used maximum parsimony (MP) method in MEGA-CC [32] to reconstruct correct
phylogenies from simulated clone sequences. All phylogenies were rooted by normal (germline) cells
without any somatic mutations.

4.2.1. MACHINA Method

The Parsimonious Migration History (MACHINA) approach uses (joint) inferences of tumor clone
phylogenies and/or metastatic migration histories by using DNA sequencing data [21]. We are neither
examining nor discussing further the part related to clone phylogenies inferred by MACHINA, as it
is beyond the scope of this study and has been discussed elsewhere [33]. We focus on the inference
of migration path given the correct clone history. The MACHINA method predicts and assigns a

https://github.com/raphael-group/machina/tree/master/data
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location for each ancestral clone by using a provided list of connections between nodes and locations
of tip nodes.

For MACHINA tumor migration inferences, we performed two types of analyses. In the first
analysis, we constrained the ancestor at the root of the tree to be a primary tumor, and in the second,
we used the Sankoff algorithm, which allowed any tumor site to be the ancestor at the root. We found
that the second option produced many results, as many as 800 solutions for some datasets, as seen
in Figure S2; thus, we primarily discussed findings from the constrained analysis. We also used the
Parsimonious Migration History with Tree Resolution (PMH-TR) with primary tumor site constrained
to examine the effect of tree polytomies in the migration inferences (analyses named as PMH-TR).
PMH-TR resolves polytomies of a given clone phylogeny by searching for topologies that reduce the
number of migration events and, subsequently, refining polytomies in a given clone tree using the
migration pattern). For each approach, we allowed all possible seeding scenarios (monoclonal seeding,
single/multisource polyclonal seeding, and reseeding events) to be explored. No upper bounds were
placed on the number of migrations and comigrations.

4.2.2. BBM Method

To infer tumor migration patterns, we used the biogeographic Bayesian Binary MCMC (BBM)
method for ancestral state [24]. BBM follows analogous transition state changes among (discrete)
areas similar to nucleotide changes during DNA substitution models [34,35]. Several biogeographic
methods are developed to infer migration events of species and populations with each method treating
the evolutionary (cladogenesis and anagenesis events) and biogeographic (dispersal, diversification,
extinction, vicariance) processes differently (for a thorough review, see ref [22]). Here, we have used a
Bayesian approach, BBM, because it integrates different types of information such as phylogenetic signal
in terms of posterior probabilities and/or topology (which yield Bayesian posterior probabilities for
ancestor’s ranges), longitudinal (divergence times), and geological/spatial (in the form of geographical
coordinates or unit areas). In the current analysis, we provided the true clone phylogeny as
evolutionary-type information, together with true tumor sites’ locations as spatial information.
This way, the same inputs were given to BBM and MACHINA.

We employed BBM analyses in RASP v4 [36]. The Markov-chain Monte Carlo chains were run three
times for 5,000,000 generations to assure that MCMC chains would reach stationarity and convergence.
The stationary rate frequencies and reconstructed states were sampled every 1000 generations. The first
1000 states (burn-in) were eliminated. The three independent runs were combined into a single result,
which contained the inferred ancestor ranges and their probabilities. BBM ancestor ranges were
estimated under the fixed Jukes–Cantor (JC69) [37] with equal dispersal rates, i.e., equal seeding rates
among clones. In particular, we considered that clone seeding events between tumor sites are plausible
in a migration scenario in which (a) size of the tumor site is considered not to affect dispersal patterns;
(b) carrying capacities of areas and dispersal rates between tumor sites are equal; and (c) directionality
of dispersal routes is allowed from any location to another [35]. The number of areas in ancestral nodes
was constrained based on the number of tumor sites simulated for each dataset: (A) P, (B) M1, (C) M2,
(D) M3, (E) M4, (F) M5, (G) M6, (H) M7, (I) M8, (J) M9, and (K) M10, where P, stands for primary tumor,
and Mn for metastatic tumor site with n = 1–10.

The BBM method does not have the option to constrain a specific area as the ancestor at the root
of the tree. To induce this constraint, we used clone phylogenies with the germline sequence as an
outgroup, and we assigned the primary tumor site to be the location of the outgroup (analyses named
as BBM).

4.3. Performance Measures

We evaluated the performances of the MACHINA and BBM methods by comparing the
inferred G and simulated (expected) G* migration graphs, which were composed of migration
paths, e.g., Figure 1b,d. We counted the number of correctly inferred migration paths (true positives;
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TPs), those not identified (false negative; FNs), and incorrect paths (false positives; FPs). We then
computed F1-score (1) for each dataset, which is the harmonic mean of precision (2) and recall (3):

F1 = 2 ×
precisi(1)on × recall
precision + recall

(1)

where
precision(G, G∗) =

TP
TP + FP

(2)

and
recall(G, G∗) =

TP
TP + FN

(3)

We conducted Z-tests to assess the significance of the difference in F1-scores between seeding
scenarios and for each approach.

5. Conclusions

Currently, there is only one computational method in cancer research that infers metastatic
histories. Here, we introduce a ‘tumor biogeography’ approach for delineating clone migration events
between tumors. We have shown that overall biogeographic methods perform equally as well as
MACHINA in inferring migration patterns in metastasis. Both methods produce accurate migration
inferences for datasets with simple migration graphs. The performance of both methods was impacted
by the complexity of datasets in terms of the number of tumor sites, presence of polyclonal seeding
tumors, or multiple source seeding and reseeding events.

In conclusion, we endorse the use of biogeographic methods for inferring metastatic origin
and routes as a sophisticated alternative framework. Biogeographic methods can integrate
phylogenetic, longitudinal, and spatial signals of sequence data, while the current method for
migration inferences between tumors cannot accommodate cancer heterogeneity in such a continuum.
Progressively, more sequence data, featuring the great evolutionary and spatiotemporal heterogeneity
of tumors, are becoming available. A cohort of high-accuracy that would bridge this three-dimension
scale will be of high value in determining treatment strategies, appropriately designed to target the
heterogeneity of metastases.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1880/s1,
Figure S1: Inferred migration graph by BBM for the example dataset of Figure 4. Here the inferred migration
paths due to dispersal events (blue circles around the nodes) are shown, e.g., M1→M1M7→M1 |M7. Values next
to the predicted ancestral ranges indicate Bayesian posterior probabilities, Figure S2: Parsimonious Migration
History (PMH) under the unconstrained mode. Inferred number of migration graphs ranged from 1–800 with the
majority of the datasets to have less than 50 inferred migration graphs per input, Table S1: Comparison of the
overall performances (F1-scores) between the four seeding scenarios for each analyzed approach. The z-scores are
shown below the diagonal, and the corresponding P values are shown above the diagonal, Table S2: Datasets
information regarding the number of anatomical (tumor) sites, clones, and SNVs included. Datasets in which a
clone from a metastatic tumor site was found at the root at the rest of datasets are marked in boldface.
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