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Abstract: Breast cancer is the most commonly diagnosed cancer in women and is a leading cause
of cancer death in women worldwide. Despite the significant benefit of the use of conventional
chemotherapy and monoclonal antibodies in the prognosis of breast cancer patients and although
the recent approval of the anti-PD-L1 antibody atezolizumab in combination with chemotherapy
has been a milestone for the treatment of patients with metastatic triple-negative breast cancer,
immunologic treatment of breast tumors remains a great challenge. In this review, we summarize
current breast cancer classification and standard of care, the main obstacles that hinder the success of
immunotherapies in breast cancer patients, as well as different approaches that could be useful to
enhance the response of breast tumors to immunotherapies.
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1. Introduction

1.1. Breast Cancer

According to the last Global Cancer Statistics (GLOBOCAN 2018), breast cancer represented 11.6%
of all cancers, which places this disease as the second most commonly diagnosed cancer after lung
cancer, and caused 6.6% of the total cancer deaths in 2018 [1]. Among women, incidence rates for
breast cancer significantly exceeded those for other cancers in both transitioned and transitioning
countries, remaining as the most frequently diagnosed cancer and the leading cause of cancer death in
women worldwide [1].

Although for the majority of breast cancer patients it is not possible to identify a specific risk
factor [2], these are diverse and well documented and include obesity, physical inactivity, alcohol
consumption, use of hormone therapy, high breast density, and hereditary susceptibility due to
mutations in autosomal dominant genes [3], which represents between 5–10% of all breast cancer
cases in women [3]. Among these genetic alterations, mutations affecting BRCA1 and BRCA2 genes,
which control DNA repair and transcriptional regulation in response to DNA damage, can lead to
the accumulation of genetic alterations and greatly increase lifetime risk to develop different types
of malignancies, including breast cancer [4]. Indeed, mutations in BRCA1 and BRCA2 genes are
associated with an increased risk of inherited breast and ovarian cancer, representing the strongest

Cancers 2019, 11, 1822; doi:10.3390/cancers11121822 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
http://dx.doi.org/10.3390/cancers11121822
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/11/12/1822?type=check_update&version=2


Cancers 2019, 11, 1822 2 of 18

susceptibility markers that have been identified for breast cancer worldwide, with an estimated 45–80%
lifetime risk of breast cancer for BRCA1-BRCA2 mutation carriers [4]. In a similar manner, mutations
affecting TP53 are also related to triple negative breast cancer [3].

As with other types of cancer, early diagnosis greatly increases the chances for successful treatment,
allowing for a 20% reduction in overall mortality rates [5]. In this regard, despite reported handicaps
of screening programs like high overdiagnosis rates and costs, risks that are derived from ionizing
radiation, or false positive biopsy recommendations, both mammography, breast self-examinations,
clinical breast examinations, digital breast tomosynthesis, ultrasonography, magnetic resonance
imaging, and oncogene identification represent the main tools for early diagnosis, sorting out, and
prevention of risk factors as well as timely treatment to lessen breast cancer morbidity [5].

Besides screening programs, adjuvant chemotherapy has also had a significant impact on the
prognosis of breast cancer patients, having significantly improved their overall survival, disease-free
survival [6], and death rates related to breast-cancer since the early 1990s [7]. In this respect, breast
cancer has traditionally been classified into three subtypes with different prognoses and treatment
responses [8,9] (Table 1).

Table 1. Breast cancer classification and standard of care.

Subtype Overview Standard of Care

HR+: Luminal-A,
Luminal-B

This subtype accounts for up to 75% of breast
cancer tumor cases [10] and is characterized by
being hormone receptor positive. Luminal A
breast tumors, which represent 50–60% of all
breast cancers, are defined as ER+ and/or PR+,
HER2-, and low Ki67 (<14%) [9,10]. These
tumors usually exhibit low histological grade,
low mitotic activity, and good prognosis [10].
Luminal B tumors, which represent 15–20% of
breast cancers, are defined as ER+ and/or PR+/-
(PR<20% + Ki67≥14%) with HER2- as well as
ER+ and/or PR+/- (any PR+ and any Ki67) and
HER2+ [9,11]. These tumors are generally
characterized by a more aggressive phenotype
with a higher histological grade and proliferative
index than Luminal A tumors [10]. Indeed,
although Luminal B tumors respond better to
neoadjuvant chemotherapy, they usually present
worse prognoses [10].

Sensitive to hormone-targeted
treatments, with a response rate of
approximately 50–60%. Tamoxifen
(TMX, Novaldex®) and aromatase
inhibitors are the most common
drugs that are used in clinical
practice as first-line treatments.
However, natural or acquired
resistance to treatment along with
long-term toxicities limit the
effectiveness of the treatment [8].

HER2-Enriched

Constitutively activated in 20–30% of breast
cancers, being responsible for dysregulated cell
proliferation [12] and aggressive biological and
clinical behavior [10]. These tumors are defined
as ER-, PR-, and HER2+ [11].

Humanized monoclonal antibodies
against HER2 extracellular domain
and small kinase inhibitors [8].
Acquired resistance to treatment is a
recurrent problem for
HER2-enriched breast cancer
patients.

Basal-Like

TNBC tumors, which constitute approximately
80% of the basal-like tumors and account for
10–15% of breast carcinomas [8], are defined as
ER-, PR-, HER2-, CK5/6+, and/or EGFR+ [11].

Chemotherapy is the current
standard of care for advanced TNBC
despite limited efficacy and poor
survival outcomes [13]. Different
targeted treatments for TNBC are
under pre-clinical or clinical
development [13,14].

HR+: Positive for Hormone Receptors. ER+: Expressing Estrogen Receptors. PR+: Expressing Progesterone
Receptors. HER2: Positive for Human Epidermal Growth Factor Receptor 2 (Receptor tyrosine-protein kinase
ERBB2, CD340). TNBC: Triple Negative Breast Cancer. CK5/6+: Expressing cytokeratin 5/6. EGFR+: Expressing
Epidermal Growth Factor Receptor.
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Even though most breast cancer patients are diagnosed early enough to be successfully treated
with surgery, chemotherapy, radiotherapy, or a combination thereof [8], nearly 30% of women that are
initially diagnosed with early-stage disease will eventually develop a metastatic disease [7], which
ultimately leads to patient death. In this scenario, and given their high efficacy and selectivity, the
development of cancer immunotherapies and other treatment strategies targeting tumor cells have
positioned themselves as promising options to win the battle against breast cancer in opposition to
conventional treatments that lack tumor selectivity and cause more side effects.

1.2. Immunotherapy as an Option for Cancer Treatment

According to the cancer immunoediting model [15], the relation between tumor cells and the
immune system is a dynamic process which consists of three main phases (Figure 1):

1. Elimination: During this phase, cancer cells are successfully recognized and destroyed by the
body’s immune system [16]. The success of the immune system to eliminate tumor cells depends
on the ability of the antigen to trigger the immune response, or immunogenicity, which can be
summarized as follows:

• Genetic abnormalities lead to the production of new antigens by tumor cells, which are
processed and presented as antigen-derived peptides on the cell surface in association with
Human Leukocyte Antigen class I (HLA-I).

• Neoantigens that are present in tumor microenvironment are recognized, processed, and
presented on the surface of Antigen Presenting Cells (APCs) as antigen-derived peptides in
association with Human Leukocyte Antigen class-II (HLA-II), which can be recognized by
helper T-cell receptors and leads to B-cell and cytotoxic T-cell stimulation and maturation.

• After T-cell activation by co-stimulatory signals provided by APCs, T-cells recognize
neoantigens presented by HLA-I and attack the targeted tumor cell by the secretion of
cytotoxic granules and/or via Fas cell surface death receptor (FAS) and caspase activation.

2. Equilibrium: During this phase, transformed cells with a resistant or non-immunogenic phenotype
escape the elimination phase and proliferate, although the immune system is able to control the
tumor growth [16].

3. Escape: The selective pressure caused by anti-cancer treatments or immune-surveillance promotes
the uncontrolled proliferation of cells with a resistant or a non-immunogenic phenotype, leading
to tumor progression and metastasis.

One of the characteristics of advanced tumors is their capability to evade adaptive immune
responses [17], which would explain the direct relationship between tumor growth and immune
evasion [18]. Since mechanisms leading to tumor evasion are diverse [19] (Table 2), a significant effort
has been made in recent years to develop new strategies to trigger tumor cell death by stimulating the
patient’s natural defenses to recognize and destroy tumor cells.

Table 2. Immune system mechanisms of tumor evasion.

Target Mechanism Overview

Alterations in
APCs

Inhibition of APC maturation and
activation which impedes the appropriate
co-stimulatory and cytokine signals to T
cells and triggers the generation of
regulatory T cells [20].

Different factors present in the tumor
microenvironment such as IL-6, M-CSF,
IL-10, VEGF, and TGF-β negatively regulate
antigen-presenting cell functions [21].

Selective increase in regulatory APCs that
prevent immune responses by secreting
TGF-β and stimulating the proliferation of
regulatory T-cells [20].

Tumor microenvironment can induce a
selective increase in the number of
regulatory APCs, which can induce T-cell
unresponsiveness by controlling T-cell
polarity [20].
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Table 2. Cont.

Target Mechanism Overview

Dysfunction of
effector cells

Enhanced proliferation of regulatory
T-cells that suppress inflammation and
regulate immune system activity.

Tumor microenvironment induces the
proliferation of regulatory T-cells, which are
able to inhibit T-cell proliferation and
cytokine production, leading to immune
suppression, which favors the immune
escape of tumor cells [20].

Induction of effector T-cells apoptosis
through tumor-generated CD95L and
activation of the T-cell CD95 receptor.

CD95 and CD95L are critical survival
factors for cancer cells that protect and
promote cancer stem cells [22]. Apart from
suppressing the immune response, CD95L
promotes tumor growth and invasiveness
and triggers the acquisition of cancer stem
cell phenotypes [22].

Alterations in T-cell signal transduction
after antigen stimulation which leads to a
decreased response.

Alterations such as the decreased
expression of CD3ζ, p56lck, and JAK-3,
decreased mobilization of calcium signaling,
inability to translocate NF-kB-p65, or
decreased production of IL2 are frequently
found in cancer patients [19].

Changes in
tumor cells

Selection of tumor cells that are resistant
to apoptosis, one of the hallmarks of
cancer [17].

The pressure of immune surveillance or
chemotherapeutic drugs enhances the
selection and proliferation of cancer cells
with mutations or alterations affecting one
or various pathways controlling apoptosis.

Alterations in HLA I expression.

Since the initiation of adaptive immune
response occurs after T-cell receptor binding
to antigen-loaded HLA-I presented by
tumor cells, alterations in HLA-I expression,
which is found in approximately 40–90% of
human tumors derived from HLA-I positive
tissues [23], impedes T-cell activation or
causes loss of recognition.

Alterations in the immune checkpoints.

After recognition of peptide antigen
associated with the HLA-I, T-cell activation
is controlled by co-stimulatory and
co-inhibitory receptors and their ligands
(immune-checkpoints). The over-expression
of co-inhibitory molecules or the absence of
co-stimulatory molecules typically leads to
a T-cell exhausted phenotype.

CD95: Fas/APO-1. CD95L: CD95 ligand. APC: Antigen Presenting Cell/Dendritic Cell. HLA: Human Leukocyte
Antigen. IL: Interleukin. JAK-3: Janus kinase 3. M-CSF: Macrophage Colony-Stimulating Factor. NF-kB:
Nuclear Factor-kappa-B transcription complex. TGF: Transforming Growth Factor. VEGF: Vascular Endothelial
Growth Factor.

These findings have been the basis for the development of different modalities of anticancer
immunotherapy, including tumor-targeting immunotherapies, oncolytic viruses, anticancer vaccines,
or adoptive cell immunotherapies [24] that are designed to target tumor cells and work with the
immune system at different levels (Figure 2). As a result of the great success achieved in different
studies and trials that demonstrate the efficacy of immunotherapies not only against primary tumors,
but also preventing metastasis and recurrence [25], cancer immunotherapy has become the fourth
pillar of cancer care, complementing surgery, cytotoxic therapy, and radiotherapy [26].
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the surface of antigen presenting cells, associated with HLA-II. (5) T-cell activation in the presence of 

co-stimulatory signals. (6) Transformed cell recognition by activated T cells and elimination. 

EQUILIBRIUM: (7) Transformed cells with a resistant or non-immunogenic phenotype escape 

elimination and proliferate, although the immune system is still able to control the tumor growth. 

ESCAPE: (8) Uncontrolled proliferation of cells with a resistant or a non-immunogenic phenotype, 

leading to tumor progression and metastasis. 
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Figure 1. Cancer Immunoediting. ELIMINATION: (1) Neoantigen production by transformed cells.
(2) Neoantigen presentation on the surface of transformed cells, associated with HLA-I. (3) Neoantigen
recognition and processing by antigen presenting cells. (4) Neoantigen presentation on the surface of
antigen presenting cells, associated with HLA-II. (5) T-cell activation in the presence of co-stimulatory
signals. (6) Transformed cell recognition by activated T cells and elimination. EQUILIBRIUM:
(7) Transformed cells with a resistant or non-immunogenic phenotype escape elimination and proliferate,
although the immune system is still able to control the tumor growth. ESCAPE: (8) Uncontrolled
proliferation of cells with a resistant or a non-immunogenic phenotype, leading to tumor progression
and metastasis.
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Figure 2. Modalities of cancer immunotherapy.

In this regard, the recent approval of treatments based on the use of checkpoint inhibitors has been
a turning point for the treatment of patients with different tumors including melanoma, non-small cell
lung cancer, renal cell carcinoma, Hodgkin’s lymphoma, bladder cancer, head and neck squamous
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cell carcinoma, Merkel-cell carcinoma, microsatellite instability high, or mismatch repair deficient
solid tumors [27], since they have demonstrated that they significantly increase survival rates when
compared to standard therapy among different tumor types [23]. The impact of the basic studies
allowed the development of checkpoint inhibitor therapies, which is the reason that James P. Allison
and Tasuku Honjo won the Nobel Prize in Physiology and Medicine in 2018.

1.3. Checkpoint Inhibitors

Provided that activated CD8+ (cytotoxic T lymphocytes or T-cells) recognize and destroy
pathogen-infected or aberrant cells like cancer cells, they are considered the main effectors of
cell-mediated immunity. On the other hand, since T cells also increase antibody responses through the
action of CD4 (T-helper cells) and the enhancement of antibody production by B cells, their activation
represents a critical step for the initiation and regulation of the immune response [28].

In accordance with the two-signal model of lymphocyte activation, both co-stimulatory signals
and antigen-specific signals mediating the engagement of T-cell receptor (TCR) to HLA-II expressed
on the surface of antigen-presenting cells participate in T-cell activation and maturation [29].
The subsequent response is regulated by a balance between co-stimulatory and inhibitory signals,
or immune-checkpoints [30], at multiple steps during the immune response [31], which limits tissue
damage and allows for the maintenance of self-tolerance. Given their immunosuppressive functions,
dysregulated expression of inhibitory signals implies a major advantage in the tumor microenvironment,
leading to immune evasion (Table 2).

Nowadays, and due to their association with the inhibition of lymphocyte activity and subsequent
anergy, different immune checkpoint receptor-ligand combinations are the subject of intense study
as tools for cancer treatment by restoring immune system function either as mono or in combination
therapies [30,32]. Among these, and because of their central role during the immune response
and peripheral tolerance, both Cytotoxic T-Lymphocyte-Associated Antigen 4 (CTLA4, CD152) and
Programmed Cell Death Protein 1 (PD-1, CD279)/Programmed Cell Death Protein 1 Ligand (PD-L1,
CD274) pathways have proved to be valid targets for the development of new cancer treatments and
have allowed for the clinical approval of a number of CTLA and PD-1/PD-L1 checkpoint inhibitors
(Table 3).

Table 3. Approved checkpoint inhibitors for cancer treatment.

Immune
Checkpoint
Target

Overview Approved Drugs

CTLA4 (CD152)

One of the co-inhibitory proteins
constitutively expressed on the surface of
regulatory T cells (Tregs) and frequently
upregulated in other types of T cells, like
CD4+ T, cells upon activation, and
exhausted T cells, among other inhibitory
receptors [33].
CTLA-4 blockade prevents interaction with
CD80/86 resulting in up-regulation of T-cell
activity.

Yervoy ® (ipilimumab, Bristol Myers Squibb)
was first approved by the FDA in 2011 and is
classified as monotherapy for the treatment of
advanced melanoma [34]. In combination with
nivolumab (Opdivo®), ipilimumab is also
classified as a first-line treatment for adult
patients with intermediate/poor-risk advanced
renal cell carcinoma, patients with
nonresectable or metastatic melanoma across
BRAF status, and previously treated MSI-H or
dMMR metastatic colorectal cancer [35].

PD-1 (CD279)
PD-1 is one of the co-inhibitory membrane
receptors of which its expression can be
induced in active T cells upon stimulation
of T-cell receptor complex or exposition to
different cytokines [33]. Since PD-1 binding
to its ligands, PD-L1 and PD-L2, leads to
T-cell inactivation, PD-1 blockade enhances
T cell-mediated immune responses.

Opdivo® (nivolumab, Bristol-Myers Squibb) is
a PD-1 blocking antibody that, after first being
approved by the FDA in 2014, is recommended
for the treatment of advanced melanoma,
advanced non-small cell lung cancer, advanced
small cell lung cancer, advanced renal cell
carcinoma, classical Hodgkin lymphoma,
advanced squamous cell carcinoma of the head
and neck, urothelial carcinoma, MSI-H or
dMMR metastatic colorectal cancer, and
hepatocellular carcinoma [36]. A combined
regimen with ipilumubab increases
progression-free survival and overall survival
only in patients with low tumor PD-L1
expression [37].
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Table 3. Cont.

Immune
Checkpoint
Target

Overview Approved Drugs

Keytruda® (pembrolizumab, Merck KGaA) is a
human PD-1-blocking antibody that was first
approved by the FDA in 2014 and is
recommended for the treatment of advanced
melanoma, non-small cell lung cancer, head and
neck cancer squamous cell carcinoma, classical
Hodgkin lymphoma, primary mediastinal large
B-cell lymphoma, urothelial carcinoma, MSI-H
cancer, gastric cancer, cervical cancer,
hepatocellular carcinoma, Merkel cell
carcinoma, and renal cell carcinoma [38].

Libtayo® (cemiplimab-rwlc, Sanofi S.A.) is a
PD-1 blocking antibody that was first approved
by the FDA in 2018 and is indicated for the
treatment of patients with metastatic cutaneous
squamous cell carcinoma [39].

PD-L1 (CD274)
One of the immune inhibitory receptor
ligands expressed by hematopoietic,
non-hematopoietic cells such as T-cells and
B-cells and different types of tumor cells.

Tecentriq® (atezolizumab, Genentech Inc.) is a
PD-L1 blocking antibody that was first
approved by the FDA in 2016 and is
recommended for the treatment of advanced
urothelial carcinoma, metastatic non-small cell
lung cancer, and extensive-stage small cell lung
cancer for use in combination with Abraxane®

for the treatment of metastatic triple-negative
breast cancer [38].

Bavencio® (avelumab, Merck EMD Serono) is a
PD-L1 blocking antibody that was first
approved by the FDA in 2017 and is used for
the treatment of patients with metastatic
Merkel cell carcinoma, advanced or metastatic
urothelial carcinoma, and in combination with
axitinib for patients with advanced renal cell
carcinoma [40].

Imfizi® (durvalumab, AstraZeneca plc) is an
anti PD-L1 human monoclonal antibody that
was first approved by the FDA in 2017 and is
used for the treatment of patients with
unresectable non-small cell lung cancer that has
not progressed after chemoradiation [41].

CTLA4: Cytotoxic T-lymphocyte associated protein 4; PD-1: Programmed Cell Death Protein 1; PD-L1: Programmed
Cell Death Protein 1-Ligand; MSI-H: Microsatellite instability high; dMMR: Mismatch repair deficient.

As previously mentioned, apart from T-cell receptor interaction with HLA-II, T-cell activation is
controlled by further antigen-independent costimulatory signals such as CD28 (Cluster of Differentiation
28) and CTLA-4. In this respect, and contrary to CD28 signals, which are required for T-cell activation
and cytokine secretion, CTLA-4 signaling inhibits T-cell activation, which is especially important in
lymph nodes where CTLA4 neutralizes potentially autoreactive T-cells at the initial stage of naïve CD4
and CD8 cell activation [31]. Both CD28 and CTLA-4 can be stimulated by CD80 (B7-1) and CD86
(B7-2) ligands that are expressed on activated APCs, leading to T-cell proliferation and differentiation
through the production of growth cytokines when there is an elevated CD28:CD80/CD86 ratio [42] or
to dephosphorylation of T-cell receptor signaling proteins by tyrosine phosphatases [43], leading to
T-cell inactivation and anergy, in the case of an increased CTLA-4:CD80/CD86 ratio [42].

Since CTLA-4 binds to CD80/86 with very high affinity, this receptor mediates immunosuppression
by competing for CD28 and also by inducing CD80/86 removal from antigen presenting cells’ surface [33].
For this reason, by blocking the interaction between CTLA-4 and CD80/86 ligands, CTLA-4 inhibitors
can prevent T-cells exhaustion and boost the antitumor T-cell response [44]. Despite the demonstrated
survival benefit of ipilimubab in patients with advanced melanoma, severe immune-mediated
adverse effects, high cost, and modest response rates (ranging between 4% and 16% when used in
monotherapy) [44] remain as the main impediments for its use.

On the other hand, PD-1 predominantly regulates previously activated T-cells at the later
stages of an immune response [31], mainly within tissue and tumors [30,31]. The expression of
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this membrane receptor, which can be temporarily induced in activated CD8 T-cells, natural killer
T-cells, or myeloid cells following the activation and stimulation of T-cell receptor by cytokines and
interleukin, is constitutive in T-cells exhibiting the exhausted phenotype [23]. PD-1 binding to its ligand,
PD-L1, promotes the dephosphorylation of T-cell receptor proximal signal components and leads to the
inhibition of signaling pathways commanded by protein kinases including PI3K/AKT (phosphoinositide
3-kinase/Protein Kinase B), PTEN (phosphatase and tensin homolog), CK2 (casein kinase 2) [37], and
RAS/MEK/ERK (mitogen-activated protein kinase MAPK/extracellular-signal-regulated-kinase), which
decreases T-cell proliferation, survival, cytokine production, and other effector functions [23]. Thus,
by interrupting the interaction between PD-1 and PD-L1, checkpoint inhibitors can restore antitumor
immune responses and promote immune-mediated elimination of tumor cells [32]. Although nivolumab
alone or combined with ipilimumab significantly improves the overall and complete response rates
compared with ipilimumab alone in patients with metastatic melanoma [45], response rates to
PD-1/PD-L1 blocking therapies only ranges between 20–38% among different tumor types [23], which
implies that the majority of advanced stage patients cannot benefit from these therapies.

Despite the low response rates and immune-related adverse events in some cancer patients, both
CTLA4 and PD-1/PD-L1 inhibitors have broadly demonstrated their value to boost potent and durable
anti-tumor responses and to increase the average life expectancy for metastatic cancer patients [23].

2. Breast Cancer Immunotherapy

2.1. First Approaches

The first cancer immunotherapy treatments were based on the use of humanized monoclonal
antibodies with the ability to bind and neutralize a targeted altered molecule expressed by cancer
cells and on which their survival and proliferation depends. The approval in September 1998 of
trastuzumab (Herceptin®, Genentech, Inc., South San Francisco, CA, United States) represented the
release of the first antibody for the treatment of metastatic breast cancer patients with HER2 (Receptor
tyrosine-protein kinase ERBB2, CD340) overexpression and/or gene amplification, which represented a
milestone in the treatment of breast cancer. After trastuzumab, other different anti-HER2 monoclonal
antibodies including lapatinib (Tykerb®, GlaxoSmithKline, Brentford, United Kingdom), neratinib
(Nerlynx®, Puma Biotechnology, Los Angeles, CA, United States), gefitinib (Iressa®, AstraZeneca,
Cambridge, United Kingdom), or afatinib (Giotrif®, Boehringer Ingelheim Pharmaceuticals, Inc.,
Ingelheim am Rhein, Germany) [8] as monotherapy or in combination with conventional treatments
have contributed to increasing the number of therapeutic options for breast cancer patients.

Although the use of monoclonal antibodies targeting altered proteins has definitely improved the
outcome of cancer patients, modest response rates (Table 4) and resistance development [46] remain
as the major impediments for treatment success and require the search for new approaches apart
from combined therapies, among which antibody-drug conjugates (ADC) such as the recently FDA
approved ado-trastuzumab emtansine (Kadcyla®, Genentech, Inc., South San Francisco, CA, United
States) [47] and T cell bispecific antibodies stand out among the most promising strategies for breast
cancer patients [48].

Table 4. Approved humanized monoclonal antibodies for breast cancer treatment.

Monoclonal
Antibody Response Rates (Monotherapy) Most Common Treatment-Related

Adverse Events

Trastuzumab

35% (95% CI, 24.4% to 44.7%) and none in patients
with 3+ and 2+ HER2 overexpression by
immunohistochemistry, respectively [49]. Further,
34% (95% CI, 23.9% to 45.7%) and 7% (95% CI, 0.8%
to 22.8%) in patients with and without HER2 gene
amplification by fluorescence in situ hybridization
analysis, respectively [49]. Approximately 15% of
patients relapse after therapy [50].

Chills (25%), asthenia (23%), fever (22%),
pain (18%), nausea (14%), cardiac
dysfunction (2%) [49].
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Table 4. Cont.

Monoclonal
Antibody Response Rates (Monotherapy) Most Common Treatment-Related

Adverse Events

Pertuzumab
3% to 7.6% complete response and 16.7% partial
response in previously trastuzumab-treated breast
cancer patients [51,52].

Diarrhea (48.3%), Nausea (34.5%),
vomiting (24%), fatigue (17%), asthenia
(17%), back pain (10%) [51].

Lapatinib

24% in trastuzumab-naïve and less than 10% in
trastuzumab-refractory breast tumors [53].
Partial response in 39% (95% CI, 30% to 48%) of
patients with relapsed or refractory HER2-positive
inflammatory breast cancer [54].

Diarrhea (59%), fatigue (20%), nausea
(20%), rash (18%), anorexia (16%),
dyspnoea (14%), vomiting (13%), back
pain (11%) [54].

Neratinib

Pathological complete response in 56% of
HER2-positive but HR- breast cancer patients
compared to 33% in the control group. Further, 84%
response rate in HER2-positive and hormone
receptor-positive compared to a 59% response rate
in HER2+ and hormone receptor-negative [55].

Diarrhea (83.9%), nausea (37.9%),
abdominal pain (28.4%) [55].

Gefitinib
No complete or partial responses observed in
previously treated patients with advanced breast
cancer [56].

Diarrhea (45.2%), skin rash (12%) [56].

Afatinib

Partial response in 10% and progressive disease in
39% of extensively pretreated HER2-positive
patients metastatic breast cancer progressing after
trastuzumab. No complete response observed [57].

Diarrhea (24.4%), skin rash (9.8%) [57].

As a result of the latest studies in this field and in line with the encouraging long-term success
of checkpoint inhibitors in the treatment of different tumors, distinct research groups have focused
their efforts in developing analog treatments for breast cancer patients. In fact, as a result of the
findings from the Phase III double-blind IMpassion130 trial (ClinicalTrials.gov ID NCT02425891),
which reported a 40% reduced risk of disease progression or death in patients receiving atezolizumab
plus nab-placlitaxel or placebo [58–60], in March 2019, the FDA approved the first checkpoint inhibitor
immunotherapy drug, the anti-PD-L1 antibody atezolizumab (Tecentriq ®), in combination with
chemotherapy (Abraxane®) for the treatment of triple-negative, metastatic breast cancer patients
with positive PD-L1 protein expression [61]. However, despite this great milestone, modest complete
response rates (7.1%, 95% CI, 4.9–9.9 and 10.3%, 95% CI, 6.3–15.6 in PD-L1 positive subgroup) and
immune-mediated serious adverse events such as pneumonitis, hepatitis, colitis, and endocrinopathies
that can cause treatment discontinuation [59] remain as notable impediments for the success of this
treatment and justify the search of new therapeutic strategies.

2.2. Mechanisms of Immune Evasion in Breast Cancer

As stated above, tumor immune evasion can occur as a result of defective tumor-directed T-cell
activation, deficient activated T-cell infiltration into the tumor microenvironment, or because of the
tumor cell resistance to cytotoxic action of the immune cells [62].

2.2.1. Breast Tumor Microenvironment

Immunogenicity is defined as the ability to induce a humoral and/or cell-mediated adaptive
immune response. In fact, both the burden of tumor mutations and the load of neo-epitopes represent
two of the factors that are linked to response to checkpoint inhibitors in different malignancies like
melanoma or lung cancer [63]. However, although tumor neoantigens that are produced as a result
of breast cancer cells’ genomic instability can be recognized by the immune system and induce
T-cell responses and antitumor immunity [62,64], the immunogenicity of breast cancer can be rather
heterogeneous, depending to a large extent on the specific subtype of breast cancer [65].
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In the particular case of HER2-positive breast tumors, gene profiling studies have shown that
highly suspicious calcifications are associated with decreased immune system activity and ERBB2
overexpression [66]. For this reason, breast calcifications would be useful not only in the radiological
assessment of breast lesions [67], but also in the management of breast cancer patient candidates
for immunotherapy. On the other hand, although estrogen receptor-negative and HER2-positive
have shown evidence of immunogenicity [65], these types of inflammatory breast tumors are rare
(1–5% of cases) [68] when compared to triple negative breast tumors, which are unique among breast
cancer subtypes in having strong antigen expression [69] and high stromal and tumor-infiltrating
lymphocytes, parameters with a strong prognostic and predictive significance to immunotherapy
and chemotherapy [62,63,70,71]. Accordingly, triple negative breast tumors with high infiltration of
tumor-associated macrophages have been found to have a higher risk of metastasis and lower rates
of disease-free survival and overall survival, having been proposed as potentially useful prognostic
markers for triple negative breast cancer patients [72,73].

Except for these immunogenic subtypes, breast tumors have historically been classified as
immunologically silent [62] or “cold” tumors, characterized by the presence of low mutation and
neoantigen burden and few effector tumor infiltrating lymphocytes, factors proposed as prognostic
markers [62], and metastasis to lymph nodes correlation [74].

Since non-inflamed tumors represent a significant impediment to the success of T-cell-based
immunotherapies, different studies have aimed their efforts towards developing new strategies to
increase the presence of immune infiltrates and hence, to improve patient prognosis. Among these, in
addition to directly causing cell damage [75], the use of local tumor hyperthermia has proven to be a
valuable tool as an immunotherapy strategy for cancer [76] by boosting immune cell activation and
increasing the sensitivity of tumor cells to anti-tumor immune responses by different mechanisms,
including:

• Enhancing the expression of tumor surface HLA class I polypeptide-related sequence A (MICA)
and HLA type I, which promote tumor cell sensitivity to lysis by NK cells and CD8+ cells,
respectively [75].

• Increasing the release of heat shock proteins, which leads to NK cells activation as well as to APCs
activation and antigen presentation to CD8+ cells [75].

• Increasing the release of tumor cells exosomes, which apart from containing chemokines, transfer
potential tumor antigens to APCs and subsequent CD8+ activation [75].

• Promoting changes in the tumor vasculature, which facilitates better trafficking of immune cells
between the tumor and draining lymph nodes [75].

In this context, different studies are reporting promising results for hyperthermia as complementary
treatment to surgery, chemo, radio, and immunotherapy in breast cancer patients [75,77–79]. However,
convincing data about the benefit of the combination of hyperthermia with checkpoint inhibitors for
breast cancer treatment should be provided by multicenter clinical trials in which related side-effects
are also evaluated [79]. Likewise, radiation has also shown to increase mutational load of tumors,
optimize antigen presentation, and decrease immune suppressors in the tumor microenvironment,
priming the tumor for immunotherapy [71], which justifies additional studies in these fields.

Besides the presence of high tumor infiltrating lymphocytes, recognition of tumor cells is a critical
step for the success of the immune response. In this regard, although estrogen has an immunoenhancing
impact on the immune system [80] with an apparent effect in all major innate and adaptive immune
cells [81], high levels of estrogens may interfere with HLA-II expression and IFN-γ signaling, with
significant implications for tumor immune escape [82]. Estrogens are also well known to be a risk factor
for breast cancer by enhancing the expression of genes involved in tumor cell survival and proliferation
as well as growth factors including vascular endothelial growth factor (VEGF) [83], epidermal growth
factor (EGF), insulin growth factor (IGF), fibroblast growth factor (FGF) [69,84], and their receptors [8].
Since estrogen presence in tumor microenvironment can also play a significant immunosuppressive
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role by promoting tolerance of weakly immunogenic tumor cells [69], the use of antiestrogen therapies
in combination with aromatase inhibitors could be a rational strategy to enhance the response to
immunotherapies. However, although adjuvant hormonal therapy combined with HER2-targeted
agents in hormone receptor-positive and HER2-positive breast cancer patients already represents a
standard treatment, recent studies have shown that estrogen deprivation promotes transcriptional
programs that favor immune evasion and increases PD-L1 expression in metastasis arising from breast
cancer patients receiving adjuvant hormonal therapy for their local disease [85]. For this reason, the
use of hormone-therapies in combination with PD-1/PD-L1 blocking immunotherapies should be
thoroughly investigated. On the other hand, and for the reasons mentioned above, the application of
conventional monoclonal antibodies targeting one or more growth factors would be a useful adjuvant
to enhance the efficacy of breast cancer immunotherapy by improving APCs function [86,87].

2.2.2. Changes in Breast Tumor Cells

Instead of loss of the targeted protein, resistance to cancer immunotherapies, such as monoclonal
antibodies, is frequently due to the activation of alternate pathways [53] like immunosuppressive
checkpoint pathways.

Among these, and largely due to the FDA approval of atezolizumab, blockade of the PD-1/PD-L1
pathway constitutes one of the most promising strategies for breast cancer immunotherapy. Despite
this important addition to the number of therapeutic options available for metastatic breast cancer
patients, it is important to note that the objective response rate achieved by atezolizumab was 53%
versus 33% for the placebo group [88] and that to date, it has been approved for the treatment of the
triple-negative subtype, which only constitutes 10–15% of breast carcinomas [89], with positive PD-L1
protein expression, which occurs in approximately 20% of breast cancers (mainly HER2-positive and
triple negative) [62].

Similarly to the PD-L1 pathway, different randomized clinical trials are currently evaluating the
effect of PD-1 inhibitors as monotherapy or in combination with conventional and non-conventional
treatments [62,65] in breast cancer patients with results that although modest, are encouraging. In this
respect, even though PD-L1 status remains the core predictor for anti-PD-1/PD-L1 therapies and patient
selection [23], the validity of PD-L1 expression as a prognostic marker remains controversial [62]
and justifies the need to develop new immunotherapy biomarker panels as well as new strategies to
improve response rates.

Another major impediment to immunotherapy success in breast cancer patients is the selection of
apoptosis-resistant cells, which constitutes one of the hallmarks of cancer [17]. Since both chemo- and
immunotherapies directly or indirectly activate the cellular apoptosis machinery, tumor sensitivity to
anti-cancer treatments will significantly depend on the level of expression of anti-apoptotic proteins [24]
in general and, more specifically, on the existence of a pro-survival profile characterized by an increased
ratio between anti-/pro-apoptotic proteins [24,90,91].

Provided that antiapoptotic proteins such as clusterin (APO-J) [91,92], BCL-2, BMF [24] as well as
different pro-survival kinases [8] are frequently altered in metastatic breast cancer, the use of profiling
techniques or systematic mapping of anti-apoptotic gene dependencies would be justified in order to
effectively select those patients that could better benefit from combined treatments of protein inhibitors
and immunotherapy. In this regard, different studies have already evidenced the need to use therapies
with a combination of inhibitors targeting different anti-apoptotic proteins in order to achieve better
clinical benefits and avoid the activation of alternate pro-survival pathways [8,23,24].

HLA-I expression on the surface of breast tumor cells, which is positively correlated with
tumor-infiltrating lymphocytes, is essential for an effective cytotoxic response [93] and the subsequent
success of T-cell mediated immunotherapies. For this reason, loss or changes in HLA-I expression,
which is another of the hallmarks of cancer [17], also represent a significant impediment for breast
cancer immunotherapy.
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Total loss of HLA-I is found in 37% of in situ breast carcinomas, 43% of the primary tumors,
and 70% of the lymph node metastases [94]. Since HLA-I expression in these tumors is related
with a pro-death phenotype characterized by an increased proapoptotic BAX/antiapoptotic BCL2
ratio [94], preliminary studies for patients’ selection would be justified in order to ensure the success of
immunotherapies in breast cancer patients.

In the case of triple negative breast tumors, HLA-I expression is variable, contributing when altered
to the development of an immunosuppressive tumor microenvironment and immune escape [69].
However, since the activation of the HLA-II presentation pathway occurs in approximately 30% of triple
negative breast cancer patients [95], associated with the presence of tumor infiltrating lymphocytes
and improved prognosis [95,96], the expression of both receptors are factors that must be taken into
consideration prior to the application of immunotherapy treatment.

With respect to HER2 overexpressing tumors, although this receptor-tyrosine kinase represents
a valuable target for T-cell based immunotherapies, these tumors may escape cytotoxic T
lymphocyte-mediated lysis by downregulating HLA-I, since the expression of both receptors is
inversely correlated with breast cancer cells [69,97]. Similarly, in normal and cancerous breast tissues,
HLA-I expression is inversely correlated with the expression of estrogen receptors, which may be
related to the low level of tumor-infiltrating lymphocytes [93], and hence, with the failure of the T-cell
cytotoxic response. It is worth emphasizing at this point that provided that agents targeting different
protein kinases such as Mitogen Activated Protein Kinase (MAPK) or HER2 may increase HLA-I
expression in breast cancer cells [97,98], the use of kinase inhibitors would be a valuable strategy to
increase the antitumor effects of T-cell based immunotherapies. Similarly, strategies aimed at inducing
HLA-II expression in tumor cells may be valuable tools to increase patient response and prognosis to
such therapies [96].

3. Conclusions

Where to go

The improvement of the response rates for immunotherapies remains a great challenge for cancer
treatment in general and for breast cancer in particular. Considering the relatively limited T-cell
infiltration in most breast cancers, the development of novel strategies that are aimed to enable
sufficient lymphocyte infiltration as well as to generate de novo T-cell responses that overlap the
immunosuppressive tumor environment may be key to the success of this kind of therapy in breast
cancer patients [63].

Among the different approaches that are currently being considered and despite their limited
efficacy when delivered as a monotherapy [99], oncolytic viruses have demonstrated their safety [100]
and ability in targeting and killing cancer cells as well as in stimulating immunotherapeutic effects in
patients [101], positioning themselves as a promising strategy to increase treatment efficacy when used
in combination therapy [99–101] and as a unique platform for personalized treatment of patients with
advanced breast cancer [101].

Recent evidence on the role of tumor-associated macrophages in breast tumor growth,
progression, treatment resistance, and metastasis has paved the way for the development of novel
macrophage-targeted breast treatment strategies, such as the inhibition of macrophage recruitment,
repolarization of tumor-associated macrophages to an antitumor phenotype, and the enhancement
of macrophage-mediated tumor cell killing or phagocytosis, which are currently being evaluated in
clinical trials [102]. Despite the promising results of preclinical studies, these therapies have proved
limited clinical efficacy, therefore the development of new strategies that improve the effectiveness of
such treatments is necessary.

On the other hand, results of adoptive cell immunotherapies, which includes Chimeric Antigen
Receptor (CAR) T cell therapy and Tumor-Infiltrating Lymphocyte (TIL) therapy, based on the
isolation of antitumor T cells from the primary tumor, further ex vivo expansion and activation,
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and subsequent reinfusion of such cells into the patient [65], are also proving valuable in both
preclinical and clinical studies for the treatment of patients with breast cancer in general and HER2
positive tumors in particular [65,103]. In a similar line, next-generation sequencing and bioinformatic
technologies have become a fundamental tool to facilitate neoantigen identification and the consequent
improvement of personalized neoantigen-based translational immunotherapy studies [104], as well as
to develop neoantigen vaccines to induce neoantigen-specific T-cell responses through the activation
of antigen-presenting cells [105,106].

Results obtained with nanoparticles are no less important, having been postulated as the great
asset to overcome the limitations of existing immunotherapy, being able to improve overall anti-cancer
immune responses with minimal systemic side effects [107]. However, although nanoparticles in
different in vitro and in vivo breast cancer models [108] have already proven their efficacy in defeating
the immune-suppressive effect of tumor microenvironment [107] and drug resistance [108], as well as
in delivering neoantigens and adjuvants to tumor cells [107], reducing the side effects of anticancer
drugs [109], certain nanoparticles like titanium dioxide, silica, and gold complexes can lead to the
formation of micrometer-size gaps in the blood vessel’s endothelial walls and the intravasation of
surviving cancer cells into the surrounding vasculature, which increases the risk of metastasis [110].

Another main drawback of immunotherapies, especially within a combined regimen, is the
occurrence of immune-related side-effects affecting different organs such as the skin (rash, pruritus)
or gastrointestinal tract (diarrhea, colitis) (Table 4). Although the severity of these immune-related
adverse events are generally mild, life-threatening complications may also occur [111] and would end
up, in many cases, in a reduction of the optimal treatment dose or medication discontinuation. For this
reason, there is still a strong need for further research in order to develop biomarker panels that allow
for patient selection and predict the response to immunotherapies and immune-related adverse events.
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