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Abstract: Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers.
They are essential for a number of cellular processes, including intracellular trafficking and mitosis.
Tubulin-binding chemotherapeutics are used to treat different types of tumors, including malignant
melanoma. The transcription factor c-Jun is a central driver of melanoma development and progression.
Here, we identify the microtubule network as a main regulator of c-Jun activity. Monomeric α-tubulin
fosters c-Jun protein stability by protein–protein interaction. In addition, this complex formation is
necessary for c-Jun’s nuclear localization sequence binding to importin 13, and consequent nuclear
import and activity of c-Jun. A reduction in monomeric α-tubulin levels by treatment with the
chemotherapeutic paclitaxel resulted in a decline in the nuclear accumulation of c-Jun in melanoma
cells in an experimental murine model and in patients’ tissues. These findings add important
knowledge to the mechanism of the action of microtubule-targeting drugs and indicate the newly
discovered regulation of c-Jun by the microtubule cytoskeleton as a novel therapeutic target for
melanoma and potentially also other types of cancer.
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1. Introduction

Melanoma is a highly aggressive type of skin cancer that originates from pigment producing
melanocytes [1]. In recent decades, many altered pathways regulating the development and progression
of melanoma and the high migratory and invasive potential of melanoma cells have been identified, but
a detailed molecular understanding of this disease is largely lacking [2,3]. Despite the recent spectacular
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improvements in targeted melanoma treatment (i.e., BRAF (B-Raf Proto-Oncogene, Serine/Threonine
Kinase) and MEK (mitogen-activated protein kinase kinase enzymes) inhibitors or immunotherapies),
more than half of the patients will be in treatment failure and chemotherapy may still be important in
the palliative treatment of refractory, progressive, and relapsed melanoma [4,5].

Microtubule-targeting agents such as paclitaxel have been used in chemotherapy against metastatic
melanoma for decades [6,7]. They interfere with intracellular transport, inhibit eukaryotic cell
proliferation, and promote cell death by suppressing microtubule dynamics [8].

C-Jun is a member of the activator protein 1 (AP-1) transcription factor family and its activity is
known to play an important role in melanoma development and progression [9–11]. Recent studies
further indicated a crucial role of the c-Jun/AP-1 transcription factor complex in therapy resistance,
including checkpoint inhibition [12,13] and immune response [14]. Therefore, the identification of the
molecular mechanisms leading to c-Jun protein expression and thus AP-1 activation in melanoma is of
very high clinical interest.

In this study, we show for the first time that microtubule dynamics significantly influence AP-1
activity by regulating the c-JUN protein. Furthermore, we detect an interaction between monomeric
α-tubulin and c-JUN protein, which stabilizes the transcription factor, influences its transport to the
nucleus, and subsequently affects c-JUN and thus AP-1 activity in malignant melanoma. Moreover, we
newly demonstrate that microtubule-targeting agents effectively inhibit c-Jun/AP-1 transcription factor
activity in melanoma.

2. Results and Discussion

Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin, and until
the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic
target in cancer [6,15]. Interestingly, paclitaxel (PX), which promotes assembly and causes increased
microtubule density and bundling [16], and nocodazole (NX), which promotes disruption of microtubule
assembly [17], led to opposed changes in the transcriptional activity of AP-1 in melanoma cells.
Microtubule dynamics are known to play a crucial role during tumor progression and development,
and some recent studies have focused on the function of microtubule alterations in cancer cells [18],
but the detailed molecular mechanisms have not been investigated so far.

In luciferase reporter gene assays, treatment with NX increased, whereas PX decreased AP-1
activity in primary (Mel Juso) and metastatic (Mel Ju, Mel Im) human melanoma cells (Figure 1a
and Figure S1a). In line with this, electrophoretic mobility shift assays (EMSA) revealed a
PX-dependent decrease and an NX-dependent increase in the direct DNA-binding capacity of AP-1 to the
12-O-tetradecanoylphorbol-13-acetate (TPA) responsive element 5′-TGAG/CTCA-3′, the classical AP-1
consensus sequence (Figure 1b and Figure S1b). Supershift experiments with an anti-c-Jun antibody
confirmed the direct involvement of c-Jun in the AP-1-DNA binding complex in melanoma cells (Figure 1b
and Figure S1b). To analyze the effects of microtubule-targeting drugs on nuclear c-Jun protein levels in
melanoma cells, we performed western blot analyses. PX treatment resulted in a decreased accumulation
of c-Jun protein in the nucleus, whereas NX treatment led to a nuclear enrichment of c-Jun (Figure 1c).

To further study the regulation of c-Jun by microtubule dynamics, we applied Hmb2-5 cell clones,
a model system resembling melanocytes and almost lacking c-Jun expression [19,20]. In accordance
with the lack of c-Jun, luciferase reporter gene analyses showed low basal AP-1 activity in Hmb2-5
cell clones, and PX treatment did not result in further reduced activity (Figure 1d). However, NX
treatment significantly induced basal AP-1 activity in these cells (Figure 1e). Furthermore, transfection
with a c-Jun expression construct led to a strong induction of AP-1 activity, which significantly
decreased after PX (Figure 1d) and increased after NX treatment (Figure 1e). These results suggest that
microtubules regulate the activity of AP-1 in melanoma cells in a c-Jun-specific manner. In line with our
results, Ishiguro and colleagues showed that α-tubulin (TUB1A) functions as an adaptor for the nuclear
transport of the transcription factor NFAT (Nuclear factor of activated T-cells) by importinβ to modulate
immune responses [21]. Moreover, the tumor suppressor CYLD (cylindromatosis) was reported to
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be associated with microtubules. Furthermore, it was demonstrated that CYLD enhances tubulin
polymerization into microtubules by lowering the critical concentration for microtubule assembly [22].
Additionally, the transcription factor HIF-1α was also regulated by microtubule dynamics. Here, the
polymerized microtubules were critically involved in the nuclear trafficking and transcriptional activity
of HIF-1α [23]. In this study, we described a novel regulatory mechanism for c-Jun stabilization by the
c-Jun/α-tubulin interaction.
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Figure 1. Microtubule-targeting drugs (paclitaxel and nocodazole) affect activator protein 1 (AP-1)
activity in melanoma cells in vitro and in vivo. (a) Analyses of AP-1 luciferase reporter gene activity of
human melanoma cells Mel Juso, Mel Ju, and Mel Im after treatment with the microtubule-stabilizing
agent paclitaxel (PX; 5 µM) or nocodazole (NX; 30 µM), an agent promoting disruption of microtubule
assembly. Control cells (ctrl) were treated with solvent DMSO (Dimethyl sulfoxide). (b) Electrophoretic
mobility shift assays (EMSA) with nuclear extracts of PX or NX treated Mel Ju cells using the classical
AP-1 consensus sequence (Oligo). Supershift experiments with an anti-c-Jun antibody demonstrate
the direct involvement of c-Jun in the AP-1–DNA-binding complex. (c) Western blot analyses and
densitometry of c-Jun in nuclear extracts of PX and NX treated Mel Juso cells and control cells (ctrl).
Histone H2A was used as the loading control. (d,e) AP-1 luciferase reporter gene activity in (d) PX
and (e) NX treated Hmb2-5 cells transfected with a c-Jun expression plasmid (c-Jun) or empty vector
(pCDNA3; ctrl). (f) Immunohistochemical analyses of c-jun in melanoma tissues from ret transgenic
mice (n = 3) after the treatment with PX (15 mg/kg) or PBS (ctrl). PX application was performed at day
0 and 5, and mice were sacrificed on day 7. (g) Immunohistochemical analyses of c- Jun in melanoma
tissues from five patients before and after PX treatment. (f,g) The right panels depict the quantification
(mean ± s.e.m.) of c-Jun positive nuclei per viewing field. (*: p < 0.05; ns: not significant).
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To further verify whether microtubule density influences the nuclear accumulation of c-Jun in vivo,
we treated ret transgenic melanoma bearing mice [24] twice (day 0 and day 5) with PX (15 mg/kg body
weight) or vehicle (Phosphate buffered saline (PBS) control group). Immunohistochemical analyses
of murine melanoma tissues revealed less nuclear c-Jun accumulation in the PX group compared to
control (Figure 1f). Also, in human melanoma tissues derived from five patients before and after
PX treatment, immunohistochemistry confirmed that the nuclear c-Jun accumulation significantly
declined after PX therapy (Figure 1g).

To further investigate the mechanism of c-Jun regulation via the cytoskeleton, we first
examined whether there was a direct molecular interaction. However, co-sedimentation by
ultra-centrifugal spin-down assays showed that there was no binding between c-Jun and polymerized
microtubules (Figure S2). We next determined whether c-Jun interacted with monomeric TUB1A.
The immunoprecipitation of c-Jun from whole melanoma cell lysates (Mel Juso and Mel Ju) and
subsequent western blot analyses of TUB1A showed an interaction between c-Jun and TUB1A (Figure 2a;
protein input depicted in Figure S3a). Conversely, immunoprecipitation with an anti-TUB1A antibody
corroborated the association between c-Jun and monomeric TUB1A (Figure 2b; protein input depicted
in Figure S3b). Confocal microscopy and immunofluorescence analyses confirmed the co-localization
between c-Jun and TUB1A in the cytoplasm of melanoma cells (Figure 2c and Figure S3c).

To further investigate the association between TUB1A and c-Jun, we analyzed the effect of
TUB1A knockdown with si-RNA on c-Jun protein levels in melanoma cells. Western blot analyses
demonstrated decreased c-Jun protein in TUB1A suppressed cells (siTub1A) compared to control
(siCtrl) transfected cells (Figure 2d and Figure S4). After treatment with cycloheximide, an inhibitor of
protein synthesis, c-Jun protein levels declined faster in TUB1A suppressed cells (Figure 2e), suggesting
that TUB1A contributes to the stability of the c-Jun protein. Moreover, western blot analyses revealed
decreased c-Jun protein levels in nuclear extracts of TUB1A suppressed compared to control cells
(Figure 2f). Accordingly, luciferase reporter gene assays showed a significant decrease in AP-1 activity
after silencing TUB1A compared to control-transfected cells (Figure 2g and Figure S5). These results
suggest that TUB1A promotes the transcriptional activity of c-Jun. However, in an EMSA applying
a classical AP-1 DNA-binding sequence and nuclear extracts of melanoma cells, supershift analyses
demonstrated that there was no direct association of TUB1A with c-Jun at DNA-binding (Figure S6). In
line with this, immunofluorescence staining of TUB1A and c-Jun showed no (co)localization of TUB1A
to the nucleus of melanoma cells (Figure 2c).

This prompted us to investigate whether TUB1A affects the nuclear import of c-Jun. Different
importins (IPOs) have been shown to play a role in the nuclear import of c-Jun in other cancer
entities [25,26]. Hence, we performed AP-1 luciferase reporter gene assays in melanoma cells
with si-RNA suppression of five different importins (siIPO7, siIPO8, siIPO9, siIPO13, and siIPOβ).
Interestingly, only IPO13 suppression had a significant effect on AP-1 activity (Figure 3a and Figure S7),
indicating this importin as a so far unknown mediator of c-Jun activity in melanoma cells. Western blot
analyses of nuclear extracts confirmed the impact of IPO13 on c-Jun regulation (Figure 3b). Notably,
we also observed reduced c-Jun protein levels in total protein lysates of melanoma cells with IPO13
suppression compared to control cells (Figure 3c). Therefore, we speculated that IPO13 is involved in
stabilizing c-Jun for nuclear import. To address this hypothesis, we performed co-immunoprecipitation
analyses applying antibodies directed against IPO13, c-Jun, or TUB1A in total cellular lysates of
melanoma cells. After controlling the input protein amounts (Figure S3), we determined an association
between IPO13 and c-Jun in precipitates extracted with an anti-c-Jun antibody (Figure 3d). Furthermore,
we detected an association between IPO13 and TUB1A in precipitates extracted with an anti-IPO13
antibody (Figure 3e). Finally, the application of an anti-TUB1A antibody showed that IPO13 and
TUB1A can also be co-precipitated (Figure 3f). Control experiments confirmed the specificity of the
IPO13, c-Jun, and TUB1A interactions (Figure S8). These results implicate that c-Jun protein utilizes
TUB1A for its stabilization and binds to IPO13 for nuclear import.
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Figure 2. c-Jun protein interacts with TUB1A (Tubulin alpha chain) in melanoma cells and TUB1A
affects AP-1 activity and stabilizes c-Jun protein. (a,b) Immunoprecipitation (IP) analyses of melanoma
cell (Mel Juso, Mel Ju) lysates revealed co-precipitation of TUB1A with an (a) anti-c-Jun antibody
and vice versa, (b) c-Jun with anti-TUB1A antibody. (c) Immunofluorescence analyses showed
co-localization (white arrows) of c-Jun (red) and TUB1A (green) in the cytoplasm of melanoma
cells. (d) Western blot analyses and densitometry of c-Jun and TUB1A in whole cell lysates of
Mel Juso cells after TUB1A si-RNA (siTub1A) or control si-RNA (sictrl) transfection. GAPDH
(Glyceraldehyde-3-Phosphate Dehydrogenase) was used as a loading control. The bar graph depicts
the quantification of protein amounts (mean ± s.d.) of three independent experiments. (e) Analyses
of c-Jun protein expression in TUB1A-suppressed (siTub1A) and control (sictrl) Mel Juso cells after
cycloheximide (CHX) treatment showed a faster decline of c-Jun levels in siTub1A compared to control
cells. The bar graph (mean ± s.d. of three western blot analyses) depicts c-Jun levels normalized to
GAPDH. (f) Western blot analyses and densitometry of nuclear extracts of Mel Juso cells showed
lower c-Jun protein levels in TUB1A-suppressed (siTub1A) compared to control (sictrl) cells. The bar
graph depicts c-Jun levels of three western blot analyses relative to LAMIN (Lamin A/C), which
was used as a loading control. (g) AP-1 luciferase reporter gene analyses showed reduced AP-1
activity in TUB1A-suppressed (siTub1A) Mel Juso cells compared to control (sictrl) cells. Bars show
the means ± s.d. of three independent experiments; measurements were performed in replicates.
(*: p < 0.05).

To identify the nuclear import association complex, we knocked down TUB1A or IPO13 in
melanoma cells and carried out co-immunoprecipitation analyses with an anti-c-Jun antibody. These
analyses revealed that in TUB1A- or IPO13-knockdown cells the interaction between c-Jun/IPO13 and
c-Jun/TUB1A was no longer detectable (Figure 3g; protein input is depicted in Figure S3). This result
indicates that the nuclear activity of c-Jun in melanoma cells depends on the presence of both TUB1A,
which stabilizes and transports c-Jun, and IPO13, which is required for the nuclear import of c-Jun.
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Figure 3. Stabilization of c-Jun by TUB1A influences nuclear import of c-Jun by IPO13. (a) AP-1
luciferase reporter gene activity in Mel Juso cells with si-RNA mediated suppression of several importins
(siIPO7, siIPO8, siIPO9, siIPO13, siIPOβ) and cells transfected with control si-RNA (sictrl). The bar
graph shows the means ± s.d. of three independent experiments. (*: p < 0.05 compared to sictrl; ns: not
significant). (b,c) Analyses of c-Jun protein levels in (b) nuclear extracts and (c) whole cell extracts
of melanoma cells with IPO13 suppression (siIPO13) and control cells (sictrl) by western blot and
densitometry. GAPDH or LAMIN served as loading controls. (d–f) Immunoprecipitation (IP) analyses
of whole cell lysates from Mel Juso and Mel Ju cells performing co-precipitation of (d) IPO13 using
an anti-c-Jun antibody, (e) TUB1A using an anti-IPO13 antibody, and (f) IPO13 using an anti-TUB1A
antibody. (g) Co-IP of Mel Juso cell lysates with si-RNA mediated suppression of TUB1A (siTub1A)
or IPO13 (siIPO13) and sictrl using an anti-c-Jun-antibody. (h) Co-IP of extracts from Hmb2-5 cells
transfected with wildtype JUN nuclear localization sequence (Jun NLS WT) or a Jun plasmid with
mutated NLS (Jun NLS Mut) applying anti-TUB1A- or anti-IPO13-antibodies. Depicted are western
blots using an anti-HA-tagged antibody for c-Jun detection. (i) Western blot analyses and densitometry
showing the expression of HA-tagged c-Jun in Hmb2-5 protein lysates after transfection with Jun WT
NLS or Jun MUT NLS. β-Actin served as a loading control. (j) Western blot analyses and densitometry
showing the expression of HA-tagged c-Jun in Hmb2-5 nuclear extracts after transfection with Jun WT
NLS or Jun MUT NLS. LAMIN served as a loading control. (k) AP-1 luciferase reporter gene activity of
Hmb2-5 cells after transfection with Jun NLS WT or Jun NLS Mut. Bar graph shows the means ± s.d.
of three independent experiments. (*: p < 0.05).

Next, we analyzed whether the nuclear localization sequence (NLS) of c-Jun plays a role in the
c-Jun/TUB1A or c-Jun/IPO13 interaction. To address this question, we transfected Hmb2-5 cell clones
with hemagglutinin (HA)-tagged c-Jun expression plasmids carrying either the wild type NLS or a
mutated form. Co-immunoprecipitation experiments with cell lysates using anti-TUB1A or anti-IPO13
antibodies showed that mutation of the c-Jun NLS binding resulted in a loss of both TUB1A and IPO13
interaction with c-Jun (Figure 3h). Western blot analyses revealed significantly lower c-Jun protein
levels in both total cell lysates (Figure 3i) and nuclear extracts (Figure 3j) of cells transfected with the
mutated c-Jun NLS. In line with this, AP-1 luciferase reporter gene assays revealed that the c-Jun
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expression construct with the mutated NLS is not able to induce AP-1 activity in Hmb2-5 cell clones
(Figure 3k). These findings indicate that the NLS is required for the stabilization as well as the nuclear
import and transcriptional activity of c-Jun.

Together, our results describe a novel regulatory mechanism for c-Jun in malignant melanoma,
which is summarized as a graphical abstract in Figure 4. C-Jun, monomeric TUB1A and IPO13
bind to each another in the cytoplasm of melanoma cells. Formation of this complex stabilizes c-Jun
protein and is required for its nuclear translocation and activity. The complex assembles in a nuclear
localization sequence (NLS)-dependent manner. Based on our latest findings and the homology of
the regulatory regions shared by AP-1 family members [27], other AP-1 transcription factors could
follow the same identified mechanism for nuclear translocation. Moreover, this molecular regulatory
mechanism could also be present in other cancer cell types. Thus, targeting specific molecules stabilized
by microtubules controlling cell proliferation and differentiation could lead to the development of
improved chemotherapeutics against cancer [28].
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Figure 4. Schematic overview of the c-Jun/TUB1A/IPO13 complex in melanoma cells. Monomeric
α-tubulin (TUB1A) stabilizes the transcription factor c-Jun for nuclear transport via importin 13 (IPO13).
The complex assembly of c- Jun, TUB1A, and IPO13 occurs in a nuclear localization sequence (NLS)-
dependent manner, however, TUB1A remains in the cytoplasm whereas c-Jun translocates into the
nucleus via IPO13, and hence, affects AP-1 activity in melanoma cells.

3. Materials and Methods

3.1. Cells and Cell culture

Melanoma cells were maintained in RPMI- Media (Sigma Aldrich, Steinheim, Germany)
supplemented with penicillin (400 units/mL), streptomycin (50 mg/mL), L-glutamine (300 mg/mL), 10%
FCS (Fetal Calf Serum, Sigma- Aldrich, Steinheim, Germany) and split 1:5 every three days. The human
melanoma cell lines Mel Juso, Mel Ju, and Mel Im were cultured as described [29]. The human cell clone
Hmb2-5, which resembles human melanocytes, was generated in our laboratory [19]. A panel of Mel Ju
cells was established by stable transfection with either the pGL2 reporter plasmid or the AP-1 luciferase
reporter plasmid and co-transfected with pCDNA3 (Invitrogen NV Leek, Holland), containing the
selectable marker for neomycin resistance. Control cells received the empty pCDNA3 plasmid. The cells
were transfected using the Lipofectamine LTX (Invitrogen Groningen, The Netherlands) method.
One day after transfection, the cells were placed in selection medium containing 50 mg/mL Geneticin
(G418) Sigma Aldrich Deisenhofen, Germany). After 14 days of selection, individual G418-resistant
colonies were subcloned. The amount of either the pGL2 reporter plasmid or the AP-1 luciferase
reporter plasmid was determined by measuring the luciferase activity of the cells by a luminometric
assay (dual-luciferase reporter assay; Promega, Mannheim, Germany). These cell lines were treated
with G418 (2 mg/mL) once a week to ensure selection. Nocodazole and paclitaxel (Calbiochem Merck
Biosciences, Darmstadt, Germany) were used as specific cytoskeleton-disrupting agents.



Cancers 2019, 11, 1806 8 of 12

3.2. Analysis of Gene Expression by Quantitative PCR

cDNAs of total RNA fractions were generated using SuperScript II Reverse Transcriptase Kit
(Invitrogen, Groningen, The Netherlands). qRT–PCR (quantitative real time PCR) was performed on
a Lightcycler (Roche, Mannheim, Germany). cDNA template (500 ng), 0.5 µL (20 µM) of forward
and reverse primers and 10 µL of SybrGreen LightCycler Mix in a total of 20 µL were applied to the
following PCR program: 30 s at 95 ◦C (initial denaturation); 20 ◦C/s temperature transition rate up to
95 ◦C for 15 s, 3 s at 62 ◦C, 5 s at 72 ◦C, 81 ◦C acquisition mode single, repeated 40 times (amplification).
The PCR reaction was evaluated by melting curve analysis and determining the PCR products on
agarose gels, applying specific sets of primers. β-Actin or GAPDH were used for normalization.
Primers sequences are listed in the Table 1 below.

Table 1. Primers for mRNA quantification by qRT-PCR and mutation studies.

Gene Primer Nucleotide Sequence (fwd/rev)

β-actin 5′-CTACGTCGCCCTGGCTTCGAGC-3′

5′-GATGGAGCCGCCGATCCACACGG-3′

importin β/ karyopherin 5’-CAGCAGAACAAGGACGGCCCC-3′

5′-TGCTGCTTTGCAGGGGTTCCA-3′

importin 7 5′-AGTGAGTGGCGCTATTCCTG-3′

5′-CCCTGGTGCTGTTTCTCGAT-3′

importin 8 5′-GAACCTCCACCAGGAGAAGC-3′

5′-AGCTTGCACTGCTCTGTGAT-3′

importin 9 5′-AATTCAGACCAGGCTCACCG-3′

5′-AGGCGGGGCAAAATAATCCA-3′

importin 13 5′-TTCCCTGAGGCACCTACTGT-3′

5′-GCCTCCTTGATCCACATGCT-3′

α-tubulin 5′-GAAGCAGCAACCATGCGTGA-3′

5′-GTGCCAGTGCGAACTTCATC-3′

MUTPrimer NLS c-Jun R273A/R275A 5′-CCTCCAAGTGCGCGAAAGCGAAGCTGGAGAGAATCGCCC-3′

5′-GGGCGATTCTCTCCAGCGCCGCCGCCGCGCACTTGGAGG-3′

MUTPrimer NLS c-Jun K274A/K276A 5′-GCCTCCAAGTGCGCGGCGGCGGCGCTGGAGAG-3′

5′-CTCTCCAGCGCCGCCGCCGCGCACTTGGAGGC-3′

3.3. Western Blot Analysis

To obtain whole cell protein lysates, 3 × 106 cells were resuspended in 200 µL RIPA buffer (Roche)
and lysed for 15 min at 4 ◦C. Insoluble fragments were removed by centrifugation at 13,000 r.p.m.
for 10 min at 4 ◦C and the supernatant was stored at 20 ◦C. Western blot analyses were performed as
described previously [25]. Briefly, 20–40 µg of RIPA complete cell lysates was loaded per lane and
separated on SDS–PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) gels (Invitrogen,
Carlsbad, CA, USA) and subsequently blotted onto a PVDF (polyvinylidene difluoride) membrane.
After blocking for 1 h with 5% BSA/TBS-T (Phosphate buffered saline/Tris-buffered saline plus Tween 20)
in case of anti-c-Jun, anti-Karyopherin 13 (IPO13), anti-LAMIN, anti-H2A, and anti-TUB1 and 5%
non-fat dry milk/Tris-buffered-saline-Tween-20 (TBS-T) in the case of anti-CYLD and anti-HA-tag, the
membrane was incubated for 16 h with one of the following antibodies: anti-c-Jun (1 in 1000 dilution;
Cell Signaling, Frankfurt am Main, Germany), anti-β-ACTIN (1 in 5000 dilution; Sigma-Aldrich,
Steinheim, Germany), anti-TUB1 (1 in 2000 dilution; Millipore, Billerica, MA, USA), anti-HA-tag (1 in
1000 dilution; Cell Signaling), anti-LAMIN (1 in 500 dilution; Millipore), anti-H2A (1 in 1000 dilution;
Cell Signaling), and anti-Karyopherin 13 (IPO13) (1 in 1000 dilution; Santa Cruz, CA, USA). After three
washing steps with TBS-T (0.1%), the membrane was incubated for 1 h with an alkaline phosphate
coupled secondary anti-mouse (1 in 3000 dilution in TBS-T), anti-rabbit (1 in 3000 dilution in TBS-T),
anti-rat (1 in 3000 dilution in TBS-T), or anti-goat IgG (Immunglobulin G) antibody (Chemicon,
Hofheim, Germany), and then washed again three times in TBS-T. Finally, immunoreactions were
visualized by NBT/BCIP (Sigma-Aldrich) staining.



Cancers 2019, 11, 1806 9 of 12

3.4. Co-Immunoprecipitation

Mel Juso or Mel Ju cells (3 × 106) were lysed in 100 µL of RIPA buffer (Roche) and incubated for
15 min at 4 ◦C. Insoluble fragments were removed by centrifugation at 13,000 r.p.m. for 10 min at
4 ◦C, and the supernatant was stored at −20 ◦C. Protein-G-sepharose beads (GE Healthcare, Munich,
Germany) were rinsed four times with ice-cold PBS (used in all subsequent washing steps) and incubated
with 100 µg of pre-cleared protein at a total volume of 500 µL at 4 ◦C overnight. The protein-linked
G-sepharose beads were incubated with anti-c-Jun, anti-TUB1, anti-CYLD, anti-Karyopherin 13 (IPO13),
or anti-β-ACTIN primary antibodies at 4 ◦C overnight. The beads were washed four times with
ice-cold PBS and resuspended in 30 µL of 4 × Roti®Load (Carl Roth GmbH + Co. KG, Karlsruhe,
Germany). Each experiment was repeated at least three times.

3.5. Reporter Gene Analysis

A total of 800,000 cells (in case of 96h transfection experiments) or 2 × 105 cells (in the case of
24 h transfection experiments) were seeded into each well of a six-well plate and transfected with
0.5 µg of reporter constructs using Lipofectamine LTX (Invitrogen). For co-transfection experiments,
0.5 µg of expression plasmid or related empty vector were transfected in addition to the reporter
constructs. The cells were lysed with Passive Lysis Buffer 1× (Promega, Mannheim, Germany) 24–96 h
after transfection, and luciferase activity was determined. To normalize transfection efficiency, 0.2 µg
of a pRL-TK plasmid (Promega, Mannheim, Germany) was co-transfected in each sample reaction
and Renilla luciferase activity was measured by a luminometric assay (dual-luciferase reporter assay;
Promega, Mannheim, Germany). Each experiment was repeated at least three times.

3.6. Gene Suppression Using siRNA

siRNA transfection of Mel Juso cells was performed using the reverse transfection protocol of the
Lipofectamine RNAiMAX reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
instructions. Eight times, 104 cells were transfected with 10 nM of Tub1A (Hs_TUBA3_2; Qiagen,
Germantown, MD, USA) and 40 nM of IMPORTIN13 siRNAs (Biomers.net GmbH, Ulm, Germany) or
negative control siRNA (Qiagen, Germantown, MD, USA) for 96 h. Each experiment was repeated at
least three times.

3.7. Spin-Down Assay

The microtubule spin-down assay was performed using a Microtubule Binding Protein Spin-down
Assay Kit (BK029; Cytoskeleton, Denver, CO, USA) according to the manufacturer’s instructions.
Mel Im protein lysates were pre-centrifuged to prevent the protein from pelleting in the absence of
polymerized microtubules. The supernatant and pellet were combined with 4× Roti®Load buffer (Carl
Roth GmbH + Co. KG, Karlsruhe, Germany), and equal amounts of sample were loaded on a 12.5%
SDS-PAGE gel for analysis by western blotting.

3.8. Immunofluorescence Staining

Cells (5 × 104 each well) were seeded on four-well culture slides (Becton Dickinson Labware,
Franklin Lakes, NJ, USA). After 24 h, slides were washed in PBS, fixed with 4% paraformaldehyde
for 30 min and non-specific binding was blocked using 1% BSA/PBS. Slides were then incubated
with an anti-c-Jun antibody (1:40; Santa Cruz Biotechnology, Heidelberg, Germany) or anti-TUB1
antibody (1:500; Sigma-Aldrich, Steinheim, Germany), washed three times with PBS, and incubated
with the AlexaFlour-anti-rabbit or AlexaFlour-anti-mouse antibody (1:150; Invitrogen, Groningen,
The Netherlands). Afterwards, they were washed again and finally sealed with VectaShield mounting
medium (Vector Laboratories, Burlingame, CA, USA) including 1 mg/mL DAPI (Sigma-Aldrich,
St. Louis, MO, USA). Images were collected by fluorescence microscopy or confocal microscopy.
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3.9. Gel Shift Experiments

Nuclear extracts of Mel Juso and Mel Ju cells were prepared and a double stranded oligomeric
binding site for AP-1 (5′-CGC TTG ATG AGT CAG CCG GAA-3′; Promega, Mannheim, Germany) was
phospholabeled and used for gel mobility shift assays, as described previously [20,30]. For gel shifts,
an anti-c-Jun antibody (Upstate, Merck, Darmstadt, Germany) and an anti-TUB1 antibody (Millipore,
Billerica, MA, USA) were used.

3.10. Mutation of the c-Jun Nuclear Localization Sequence

The human c-Jun expression vector (Ha-tagged c-Jun Mut miR-125b; [25]) was used for the
mutagenesis study. This vector led to the expression of stable c-Jun because the miR-125b seed
sequence was destroyed. To destroy the c-Jun nuclear localization sequence (c-Jun NLS), 10 nucleotides
were exchanged using a QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA)
according to the manufacturer’s instructions. The primers used, MUTPrimerNLS, are listed in Table 1.

3.11. Paclitaxel Treatment of Melanoma Bearing Mice

Seven -week-old Melanoma-bearing ret transgenic mice [24] were treated with 15 mg/kg of
paclitaxel (two injections of paclitaxel at day 0 and 5). Control mice received solvent (PBS) only. Mice
were sacrificed at day 7. Mouse experiments were carried out within the framework of the animal
application with the number 35-9185.81/G-67/13 (Regierungspräsidium Karlsruhe, Germany).

3.12. Melamoma Tissues from Patients before and after Paclitaxel Treatment

Paraffin-embedded metastatic melanoma tissue of five patients before and after treatment with
paclitaxel (TaxolR) was obtained from the SCABIO tissue bank at the Department of Dermatology, West
German Cancer Center, University Hospital Essen. The sampling and handling of patient material was
carried out in accordance with the ethical principles of the Declaration of Helsinki and IRB approval
(protocol code: #12-5152-BO).

3.13. Immunohistochemical Analysis

Human metastatic melanoma tissue and murine melanoma tissues were screened for c-Jun protein
expression by immunohistochemistry. The samples were prepared as described previously [31].
The tissues were incubated with primary monoclonal rabbit anti-c-Jun antibody (1:400; Cell Signaling,
Frankfurt am Main, Germany). Immunohistochemical analyses were performed by an experienced
pathologist (R.K.).

3.14. Statistical Analysis

Results are expressed as means ± s.d. (range). Comparison between groups was made using
the Student’s unpaired t-test or two-way ANOVA as appropriate. A p-value of <0.05 was considered
statistically significant (*: p < 0.05; ns: not significant). Densitometric analysis was performed
using LabImage 1D (Kapelan Bio-Imaging, Leipzig, Germany). Whole cell protein expression was
normalized to β-Actin or GAPDH and nuclear protein expression to H2A or LAMIN. All calculations
were performed using the GraphPad Prism Software (GraphPad Software, Inc., San Diego, CA, USA).

4. Conclusions

The results of our study provide novel insights into molecular functions of microtubules and
their interacting partners in malignant melanoma. These findings enlarge our understanding of the
mechanism of action of microtubule-targeting drugs and may help to improve their therapeutic success.
Furthermore, they indicate novel therapeutic targets and prognostic markers for malignant melanoma
and potentially also other types of cancer.
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