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Abstract: Cell surface GRP78 (csGRP78, glucose-regulated protein 78 kDa) is preferentially
overexpressed in aggressive, metastatic, and chemo-resistant cancers. GRP78 is best studied as a
chaperone protein in the lumen of endoplasmic reticulum (ER), facilitating folding and secretion of the
newly synthesized proteins and regulating protein degradation as an ER stress sensor in the unfolded
protein pathway. As a cell surface signal receptor, multiple csGRP78 ligands have been discovered
to date, and they trigger various downstream cell signaling pathways including pro-proliferative,
pro-survival, and pro-apoptotic pathways. In this perspective, we evaluate csGRP78 as a cell surface
death receptor and its prospect as an anticancer drug target. The pro-apoptotic ligands of csGRP78
discovered so far include natural proteins, monoclonal antibodies, and synthetic peptides. Even the
secreted GRP78 itself was recently found to function as a pro-apoptotic ligand for csGRP78, mediating
pancreatic β-cell death. As csGRP78 is found to mainly configur as an external peripheral protein
on cancer cell surface, how it can transmit death signals to the cytoplasmic environment remains
enigmatic. With the recent encouraging results from the natural csGRP78 targeting pro-apoptotic
monoclonal antibody PAT-SM6 in early-stage cancer clinical trials, the potential to develop a novel
class of anticancer therapeutics targeting csGRP78 is becoming more compelling.
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1. Introduction

Glucose-regulated protein 78 kDa (GRP78), also referred to as HSPA5 (heat shock 70 kDa protein
5) and BiP (immunoglobulin heavy-chain binding protein), was first discovered and characterized as
an endoplasmic reticulum (ER) resident protein [1,2]. The traditional function of GRP78 is a molecular
chaperone in the ER lumen, helping to regulate protein quality control, facilitating protein folding,
assembly, and misfolded protein degradation in the unfolded protein response (UPR) pathway [3].
GRP78 serves as a major ER stress sensor and is upregulated under ER stress, helping to maintain ER
homeostasis and cell survival. In cancer, GRP78 is significantly upregulated due to the highly stressful
microenvironment of cancer, serving as a pro-survival and anti-apoptotic protein for cancer cells [4].

In addition to function as an ER chaperon and stress sensor, GRP78 is also found in other
sub-cellular locations such as on the cell surface or secreted into the extracellular environment. Cell
surface GRP78 (csGRP78) functions as an important signal receptor, transmitting signals from the
extracellular environment into cells [5]. To date, several ligands have been discovered to interact
with csGRP78, including secreted proteins and plasma membrane-anchored proteins. Through
interactions with these ligands, csGRP78 activates multiple intracellular cell signaling pathways,
impacting cell proliferation, survival, migration, or apoptosis. Various pro-proliferative, pro-survival
ligands, and pro-apoptotic ligands have been discovered, including natural proteins, monoclonal
antibodies (Mabs), and synthetic peptides, even the secreted extracellular GRP78 itself [6]. In addition
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to extracellular ligands, several plasma membrane-bound proteins have also been demonstrated to
interact with csGRP78, such as the glycosylphosphatidylinositol-anchored (GPI-anchored) proteins
Cripto, T-cadherin, and CD109 [7–9].

Due to its preferential presence on the cell surface of cancer cells, csGRP78 has emerged as an
attractive target for anticancer drugs [4]. Many excellent previous reviews have presented the diverse
roles of GRP78 in multiple subcellular locations, and the different functions that GRP78 plays in cancer
as well as other diseases [5,10–18]. However, the role of csGRP78 as a cell surface death receptor has
not been comprehensively evaluated. In this perspective, we focus on csGRP78 as a death receptor and
discuss its significance as a target for proapoptotic ligand-mediated anticancer drug development.

2. csGRP78 as a Death Receptor

The classical death receptors are members of the tumor necrosis receptor superfamily characterized
by the presence of a cytoplasmic death domain, which is critical for the death receptor to initiate
downstream cytotoxic signaling pathways involving caspases [19]. However, csGRP78 has been shown
to be a predominantly external peripheral protein on the plasma membrane in several cultured cancer
cell lines, with no transmembrane and cytosolic domain present [20]. A substantial level of csGRP78
achieved plasma membrane localization by interacting with GPI-anchored proteins. A membrane
embedded form of csGRP78 was shown to be present only under ER stress conditions in these cancer
cells, and at a very low level. Hence, how csGRP78 functions as a death receptor to transmit extracellular
death signals to intracellular cytotoxic signaling pathways is intriguing and remains largely unknown.
The known pro-apoptotic ligands of csGRP78, including natural proteins, monoclonal antibodies, and
synthetic peptides, are summarized in Figure 1.
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3. Natural Proapoptotic Protein Ligands of csGRP78

To date, at least four naturally secreted proteins have been shown to function as proapoptotic
ligands of csGRP78, triggering cell death signaling (Figure 1).

3.1. Prostate Apoptosis Response-4 (Par-4)

A well-studied proapoptotic ligand of csGRP78 is the secreted prostate apoptosis response-4
(Par-4) protein [21]. Par-4 is expressed in various tissues and was first identified as a tumor suppressor
localized in the cytosol and nucleus. It promotes apoptosis through the mitochondrial mediated
intrinsic apoptotic pathway [22]. Subsequently, Par-4 is found to be secreted into the extracellular
environment by both cancer cells and normal cells. Extracellular Par-4 functions as a proapoptotic
protein, selectively targeting csGRP78 on cancer cells to trigger cancer-specific apoptosis via its SAC
(selective for apoptosis induction in cancer cells) domain. Par-4 induces apoptosis by recruiting
and activating the adaptor protein, Fas-associated protein with death domain (FADD), leading to
downstream caspase-8 activation [21,23]. Moreover, apoptosis induced by the death ligand TRAIL
(TNF-related apoptosis-inducing ligand) is dependent on extracellular Par-4 signaling via csGRP78.
Notably, Par-4 interacts with the N-terminal region of csGRP78 (Figure 2). Systemic application of
recombinant Par-4 or its proapoptotic domain SAC potently inhibited tumor growth in mice [21,24].
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Figure 2. Schematic illustration of the region of human GRP78 that the various proapoptotic ligands
interact with. SBD: substrate binding domain, KDEL: the 4 residue ER retention signal at the C-terminus
of GRP78. The amino acid boundary of the domains are labelled at the bottom of the GRP78 protein.

3.2. Isthmin 1 (ISM1)

Isthmin 1 (ISM1) is a secreted 70 kDa protein (theoretical molecular weight 50 kDa) in vertebrates.
It was first identified by our lab as an angiogenesis inhibitor, inducing apoptosis in endothelial cells via
αvβ5 integrin as a soluble protein [25]. However, in a surface-anchored form, ISM1 support endothelial
cell adhesion and survival instead [26]. Subsequently, csGRP78 was identified as a high-affinity
receptor for ISM1, and ISM1/csGRP78 interaction triggers apoptosis in both activated endothelial cells
and cancer cells that harbor high levels of csGRP78 [27]. Interestingly, ISM1 also interacts with the
N-terminal region of csGRP78, similar to Par-4 (our unpublished result, Figure 2). ISM1/csGRP78
interaction lead to the internalization of ISM1 via clathrin-mediated endocytosis and the trafficking of
ISM1 to mitochondria, resulting in mitochondria dysfunction by blocking ATP/ADP exchange on the
mitochondrial membrane [28]. The decline of cytosolic ATP concentration eventually caused apoptosis.
Systemic infusion of recombinant ISM1 via intravenous route potently suppressed xenograft tumor
growth in mice [27].
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3.3. Plasminogen Kringle 5 (K5)

Plasminogen kringle 5 (K5) is a natural proteolytic fragment of the blood protein plasminogen,
containing its fifth kringle domain. It functions as an angiogenesis inhibitor, inducing apoptosis
of endothelial cells [29]. K5 was identified as a ligand for csGRP78, binding to the N-terminal
domain of GRP78 [30,31] (Figure 2). It abrogates cell migration and trigger apoptosis via csGRP78
on endothelial cells and cancer cells. Anti-GRP78 antibody targeting the N-terminal region of GRP78
attenuated K5-induced inhibition of endothelial cell migration. Vaspin (visceral adipose tissue-derived
serine proteinase inhibitor), an adipokine, was identified as a novel high-affinity ligand of csGRP78
that competes with K5 for csGRP78 binding and antagonize K5 function. Vaspin dose-dependently
suppressed K5-induced intracellular Ca2+ influx and subsequent apoptosis in endothelial cells [32].
Recently, K5 was shown to dose-dependently downregulate GRP78 expression in gastric cancer cells.
Downregulation of GRP78 contributes to K5-induced apoptosis in gastric cancer cells [33].

3.4. Secreted GRP78

GRP78 is known to also exist as a secreted soluble protein in the extracellular environment and in
the serum [5]. Recently, extracellular GRP78 itself was identified as a proapoptotic ligand of csGRP78,
triggering caspase-mediated apoptosis in stressed pancreatic beta cells [6]. Pro-inflammatory cytokines
induce ER stress in beta cells, leading to the secretion and plasma membrane translocation of GRP78 [34].
csGRP78 was shown to serve as a death receptor for the secreted extracellular GRP78 which serves
as a self-ligand to activate a proapoptotic pathway in these cells, leading to cell death. In addition,
recombinant GRP78 induced apoptosis in cytokine-treated beta cells, but not in untreated control
cells. Anti-GRP78 antibody targeting both N- and C-terminal regions of GRP78 blocked extracellular
GRP78-induced apoptosis. These results suggest a possible pathway of active self-destruction in
cytokine-exposed pancreatic beta cells mediated through GRP78, with soluble extracellular GRP78
activating csGRP78 for this self-destruction. csGRP78 may be an important modulator of beta cell
death upon inflammatory stress responses and a therapeutic target for type I diabetes.

4. Monoclonal Antibodies as Proapoptotic Ligands of csGRP78

Different anti-GRP78 Mabs generate different biological consequences in the target cells depending
on the Mab and the particular region of GRP78 it targets. The consequences of a Mab binding to
csGRP78 include stimulation of cell proliferation, suppression of cell proliferation, triggering apoptosis,
or no effect at all. It remains unclear why different anti-GRP78 Mabs generate different biological
effects in cells. Previously, it has been postulated that an antibody targeting the C-terminal region
of GRP78 may be a pan suppressor of proliferative/survival signaling of csGRP78 in cancer cells.
However, not all antibodies against the C-terminal region of GRP78 present suppressive activity in
cancer [35,36]. The GRP78 C-terminal targeting Mabs C38 and C107 both significantly suppressed
tumor growth in prostate and melanoma models by activating caspase-mediated apoptosis [37,38]. A
mouse Mab targeting the KDEL ER retention sequence at the C-terminus of GRP78 also inhibited cell
proliferation and induced apoptosis [39]. However, a human Mab targeting the C-terminal 20 residues
affected neither cell proliferation nor apoptosis [40]. Mab159, a GRP78-specific mouse monoclonal IgG,
suppressed multiple types of cancer growth and metastasis in mice by inducing cancer cell apoptosis
and suppressing PI3K/AKT signaling [41]. The GRP78 region targeted by Mab159 is also towards the
C-terminal region [42] (Figure 2). PAT-SM6, a human monoclonal IgM isolated from a gastric cancer
patient, induced apoptosis of multiple myeloma and melanoma cells in vitro and suppressed cancer
growth in xenograft models [43,44]. PAT-SM6 recognized an O-linked carbohydrate moiety of csGRP78
with a molecular weight of 82 kDa, specifically present in cancer cells [45]. Nevertheless, to date, no
report has demonstrated that csGRP78 is of a different protein composition, comparing to the ER lumen
GRP78. csGRP78 expression is known to increase with the progression of multiple myeloma and is
highly elevated in multiple myeloma patients presenting drug-resistant and extramedullary disease
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phenotypes. About one-third of multiple myeloma patients with relapsed or refractory disease showed
stability after two weeks of PAT-SM6 treatment in a phase I clinical trial [46]. PAT-SM6 in combination
with bortezomib and lenalidomide leads to partial remission of both intra- and extramedullary lesions
in a patient with drug-resistant multiple myeloma [47].

5. Synthetic Peptides as Proapoptotic Ligands of csGRP78

Several synthetic peptides able to induce apoptosis by targeting the N-terminal region of
GRP78 have been developed (Figure 2). Peptides WIFPWIQL and WDLAWMFRLPVG were
selected by phage-binding assays for their ability to bind GRP78 specifically [48]. When these two
GRP78-binding peptides were fused with a proapoptotic peptidomimetic, the two resulting peptides,
WIFPWIQL-GG-D(KLAKLAK)2 (later called BMTP78) and WDLAWMFRLPVG-GG-D(KLAKLAK)2,
both selectively targeted tumors and suppressed tumor growth in vivo by inducing cancer cell
apoptosis. BMTP78 selectively killed breast cancer cells that expressed csGRP78 and suppressed both
primary tumor growth as well as lung and bone micrometastases, leading to prolonged disease-free
survival [49]. Despite the promising antitumor effect of BMTP-78 in vitro and in preclinical cancer
models, subsequent toxicology studies in nonhuman primates presented unexpected cardiac toxicity,
leading to morbidity and mortality [50]. This cardiac toxicity reduced the optimism for BMTP78 to
become an anticancer drug. Recently, BC71, a cyclic pentapeptide derivative of ISM1, was shown
to bind specifically to GRP78 and trigger apoptosis in cultured endothelial cells [51]. BC71 has the
unique ability to both bind to csGRP78 and trigger apoptosis by itself. In vivo, BC71 preferentially
accumulated in the tumor and suppressed xenograft tumor growth in mice. Hence, BC71 can be useful
as a prototype peptide to develop further modified peptides with higher GRP78-binding affinity and
more potent proapoptotic activity for anticancer drug development.

6. Conclusions and Future Perspectives

Due to the preferential presence of csGRP78 on cancer cells, csGRP78 has emerged as an attractive
target for anticancer drug development. Proapoptotic ligands of csGRP78, including natural proteins,
Mabs, and synthetic peptides, have the potential to become effective anticancer drugs. Although
no anticancer drugs targeting csGRP78 have reached the clinic as of now, the Mab PAT-SM6 has
shown promising results in early-stage clinical trials [46,47]. We envisage that a csGRP78-targeted
proapoptotic anticancer drug is likely to emerge in the coming years. Nevertheless, how csGRP78
initiates the intracellular death signaling pathway remains poorly understood, especially because it sits
on cancer cells preferentially as an external peripheral protein [20]. One hypothesis is that csGRP78
forms complexes with other cell surface transmembrane proteins to transmit the death signal to the
intracellular environment. Future research in this interesting area is highly warranted. A more in-depth
understanding of how csGRP78 functions as a cell surface signal receptor will greatly facilitate targeted
cancer drug development.
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