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Abstract: Objective: Early reports indicate that individuals with type 2 diabetes mellitus (T2DM) may
have a greater incidence of breast malignancy than patients without T2DM. The aim of this study
was to investigate the effectiveness of three different models for predicting risk of breast cancer in
patients with T2DM of different characteristics. Study design and methodology: From 2000 to 2012, data
on 636,111 newly diagnosed female T2DM patients were available in the Taiwan’s National Health
Insurance Research Database. By applying their data, a risk prediction model of breast cancer in
patients with T2DM was created. We also collected data on potential predictors of breast cancer so
that adjustments for their effect could be made in the analysis. Synthetic Minority Oversampling
Technology (SMOTE) was utilized to increase data for small population samples. Each datum was
randomly assigned based on a ratio of about 39:1 into the training and test sets. Logistic Regression
(LR), Artificial Neural Network (ANN) and Random Forest (RF) models were determined using
recall, accuracy, F1 score and area under the receiver operating characteristic curve (AUC). Results:
The AUC of the LR (0.834), ANN (0.865), and RF (0.959) models were found. The largest AUC among
the three models was seen in the RF model. Conclusions: Although the LR, ANN, and RF models all
showed high accuracy predicting the risk of breast cancer in Taiwanese with T2DM, the RF model
performed best.

Keywords: type II diabetes mellitus; breast cancer; artificial neural network; logistic regression;
random forest
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1. Introduction

Globally, diabetes mellitus (DM) accounts for a large proportion of the burden of chronic diseases.
The World Health Organization’s global report indicates a gradual increase of DM in the last 30 years
(increasing from 4.7% in 1980 to 8.5% in 2014) [1], which is becoming a major public health burden [2].
Among all DM types, type 2 DM (T2DM) accounts for the majority (90–95%) of cases. The standardized
DM incidence rate in Taiwan reflects the global trend, with a near constancy noted over the years
(0.805% in 2000 and 0.823% in 2008). By contrast, DM prevalence in Taiwan has steadily increased
(3.34% in 2000 and 5.22% in 2008 in women; 3.01% in 2000 and 5.24% in 2008 in men), suggesting
a possibility of relative success in DM treatment leading to lowering of death rates among affected
persons [3].

With the increasing life-expectancy of individuals with DM, the development of subsequent
DM-related complications in these patients is gaining public attention. DM might be a risk factor for
several individual cancers [4–10]; specifically, some epidemiological studies have indicated that it can
increase breast cancer risk [11–17].

Breast cancer, a leading malignancy in women globally, accounted for approximately one in four
newly diagnosed female cancer cases worldwide in 2018 [18]. Since 1996, it is the most common cancer
found in female Taiwanese. According to the National Cancer Registry, the age-adjusted incidence rate
of breast malignancy sharply rose from 51.94/100,000 person-years in 2006 to 73.57/100,000 person-years
in 2015 [19]. Furthermore, breast cancer in Taiwan is remarkable, as affected women tend to present at a
lower age (45–49 years) compared with Caucasian Americans [20]; this may affect national productivity
contributed by the active labor force from this age group. In Taiwan, through early detection and
innovative treatment of breast cancer, we may be able to monitor the fluctuations in breast cancer
incidence and decrease mortality rates in the near future [21]. Awareness regarding risk factors and
efficient screening procedures could be a first step toward achieving this goal.

Thus, in this study, we compared the performance of the logistic regression (LR), artificial neural
network (ANN), and random forest (RF) models for the prediction of cancer of breast in Taiwanese
women having T2DM with different parameters associated with T2DM.

2. Methods

2.1. Data Source

Since 1995, the government of Taiwan has had a National Health Insurance (NHI) scheme
which has achieved 99% coverage of the population. This study used data retrieved from the NHI’s
Longitudinal Cohort of Diabetes Patients, which consisted 1,700,000 individuals registered as new
cases of T2DM based on the International Classification of Diseases, 9th Revision (ICD-9-CM, code
250x0 and code 250x2) and randomly selected patients from the NHI program.

2.2. Data Availability Statement

The study utilized datasets available with the Taiwan Ministry of Health and Welfare (MOHW).
Access to the datasets to researchers is granted after due application and approval by the MOHW. The
MOHW can be contacted for access to the datasets through email (stcarolwu@mohw.gov.tw), at the
Taiwan MHOW office address (No. 488, Sec. 6, Zhongxiao E. Rd., Nangang Dist., Taipei City 115,
Taiwan (R.O.C.)) or by phone (+886-2-8590-6848).

2.3. Ethics Statement

All personal identification information was encrypted and only anonymized datasets were
available to the researchers for analysis. The Institutional Review Board (IRB) of China Medical
University (CMUH-104-REC2-115-CR3) reviewed the study protocol, approved it and affirmed that this
study fulfilled the condition for exemption. The requirement of patient consent was also specifically
waived as well.
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2.4. Sampled Participants

Female patients whose records indicated a diagnosis of T2DM two or more times within one year
during 2000–2012 were included. The date of first T2DM diagnosis was considered the index date.
Female patients whose records indicated a diagnosis of breast cancer (ICD-9-CM code 174) before
this date and were <20 years old were excluded. Background variables comprised age, urbanization
level, and occupation. Comorbid conditions considered at baseline include: hyperlipidemia, high
blood pressure, cerebrovascular accident, obesity, benign breast condition, congestive cardiac failure,
chronic obstructive pulmonary disease (COPD), asthma, coronary artery disease (CAD), smoking,
alcohol-related illness, and chronic kidney disease (CKD). Seven complication categories of the
adapted Diabetes Complication Severity Index (aDCSI) were included: nephropathy, retinopathy,
neuropathy, cardiovascular complications, cerebrovascular complications, peripheral vascular disease,
and metabolic complications. Medications, such as statins, aspirin, estrogen, insulin, sulfonylureas,
thiazolidinedione (TZD), and metformin, as well as other medications for treating patients with diabetes
were considered if there were some correlational relationship between them and the development of
breast cancer.

2.5. Training Set

The original raw data included gender, age, occupation, urbanization, and comorbidity. The
urbanization and occupation levels of each subject were one-hot encoded, creating eight additional
features in the processed data. All features were categorical except subject age, which was unity-based
normalized and standardized on the basis of the training set. The processed data included 37 features.
Mean imputation was used for subjects with missing values.

Data in the negative case outnumbered those in the positive case by a ratio of approximately 86:1.
After data cleaning and feature processing, the Synthetic Minority Oversampling Technique (SMOTE)
was applied to balance the positive and negative classes. The SMOTE created new minority data
by interpolation within the available minority data via bootstrap sampling and data generation via
the k-nearest neighbors algorithm [22]. SMOTE has been applied in machine learning applications
in healthcare. Tun et al. and Alghamdi et al. used SMOTE to generate synthetic observations from
datasets for bladder cancer prediction [23] and diabetes mellitus prediction [24], respectively. The K
parameter, which determines the number of closest neighbors considered with each SMOTE iteration,
was set to 5. To achieve an approximate balance between the positive and negative classes, 86 new
data for the negative class were created for each datum of the positive class. Subsequently, random
allocation was used to assign the data to the training and testing sets at a ratio of about 39:1.

2.6. Algorithm Training and Evaluation

The ANN model consists of an input, three hidden layers and an output layer of 37, 20, and 2
dimensions, respectively. The model used the Scaled Exponential Linear Unit activation function after
each hidden layer [25] and the Softmax activation function for the output layer. Model training was
done through cross-entropy loss and optimized with Adam [26]. Dropout regularization of 20% and
50% were applied after the input and hidden layers, respectively [27]. The LR model used L2 loss for
regularization, the liblinear solver as the optimizer [28], and the one-vs.-rest scheme as the loss function.
The model was trained for 100 iterations and had regularization strength of 1.0. The RF model was
trained with 20 decision trees with maximum tree depth of 10. The quality of split was measured using
Gini impurity. Each leaf had a minimum of one sample, and each split had a minimum of two samples.
Models building was done in Python (v. 3.7.0), along with the Tensorflow library (version 1.12.0) for
the ANN model [29] and the scikit-learn library (v. 0.20.1) for the LR and RF models [30].

The k-fold cross-validation accuracy (k = 10) was used during model selection and tuning. The test
set was not used during model tuning and was used only for model evaluation after the entire model
selection and training process. The final models were evaluated using the confusion matrix metrics of
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precision (positive predictive value), recall (sensitivity), F1 (harmonic mean between precision and
recall), and area under receiver operating characteristic (ROC) curve (AUC). The ROC curves were
constructed based on the prediction probabilities, and the AUCs were compared using the DeLong
test [31].

2.7. Statistical Analyses

The differences in sociodemographic distributions, underlying diseases, diabetes complications,
and medications between patients with and without breast cancer were compared using the Student’s
t-test (for quantitative variables such as age and aDCSI score) and Chi-square test (for proportions).

Data management was carried out with SAS (v.9.4; SAS Institute, Cary, NC, USA). All two-tailed
p values of <0.05 were considered statistically significant.

3. Results

3.1. Patient Demographic Features

Compared with patients without breast cancer, patients with breast cancer tended to be slightly
younger (56.9 ± 10.7 vs. 58.4 ± 14.2 years), live in urbanized areas (66.1% vs. 58.6%), have white-collar
jobs (49.4% vs. 44.8%), have benign breast condition, and have estrogen use (Table 1). After the
follow-up period, subjects with and without breast cancer had a mean (standard deviation) aDCSI
score of 2.27 (1.96) and 3.12 (2.33), respectively.

Table 1. Baseline characteristics of T2DM patients with and without breast cancer.

Variable

Breast Cancer

No Yes p Value
N = 628765 N = 7346

n (%) n (%)

Age group (year) <0.001
≤49 171,724 27.3 1943 26.5

50–64 251,750 40.0 3716 50.6
65+ 205,291 32.7 1687 23.0

Mean (SD) (year) * 58.4 14.2 56.9 10.7

Urbanization level # <0.001
1 (highest) 183,283 29.2 2589 35.2

2 185,090 29.4 2272 30.9
3 100,217 15.9 1049 14.3

4 (lowest) 160,175 25.5 1436 19.6

Occupation <0.001
White collar 281,372 44.8 3632 49.4
Blue collar 294,699 46.9 3127 42.6
Others ‡ 52,694 8.38 587 7.99
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Table 1. Cont.

Variable

Breast Cancer

No Yes p Value
N = 628765 N = 7346

n (%) n (%)

Underlying disease
Hypertension 470,048 74.8 5236 71.3 <0.001

Hyperlipidemia 435,254 69.2 5046 69.7 0.33
Stroke 88,246 14.0 606 8.25 <0.001

Congestive heart failure 95,160 15.1 645 8.78 <0.001
Benign breast condition 111,647 17.8 4899 66.7 <0.001

Obesity 42,712 6.79 479 6.52 0.36
COPD 164,128 26.1 1619 22.0 <0.001
CAD 250,789 39.9 2574 35.0 <0.001

Asthma 138,917 22.1 1256 17.1 <0.001
Stop-smoking clinic 6107 0.97 28 0.38 <0.001

Alcohol-related illness 26,210 4.17 216 2.94 <0.001
CKD 188,584 30.0 1632 22.2 <0.001

Diabetes complication (components of the aDCSI)
Retinopathy 127,829 20.3 1123 15.3 <0.001

Nephropathy 222,113 35.3 1925 26.2 <0.001
Neuropathy 212,414 33.8 2025 27.6 <0.001

Cerebrovascular 168,028 26.7 1257 17.1 <0.001
Cardiovascular 383,242 61.0 3906 53.2 <0.001

Peripheral vascular disease 179,865 28.6 1419 19.3 <0.001
Metabolic 25,411 4.04 149 2.03 <0.001

Mean aDCSI score (SD)
Onset 1.62 1.68 1.29 1.46 <0.001

End of follow-up 3.12 2.33 2.27 1.96 <0.001

Medications
Statin 349,906 55.7 3465 47.2 <0.001

Aspirin 30,561 4.86 176 2.40 <0.001
Estrogen 274,204 43.6 3416 46.5 <0.001
Insulin 191,580 30.5 1181 16.1 <0.001

Sulfonylureas 340,489 54.2 3698 50.3 <0.001
Metformin 389,319 61.9 3897 53.1 <0.001

TZD 101,370 16.1 815 11.1 <0.001
Other antidiabetic drugs 167,166 26.6 1414 19.3 <0.001

# Urbanization level was divided into four different categories according to the population of the residential areas;
level 1 = “most urbanized” to level 4 = “least urbanized”. ‡ Other occupations, e.g., “retired”, “unemployed”, or
“low income populations”. aDCSI, adapted Diabetes Complication Severity Index. Chi-square test, and * t-test
comparing subjects with and without breast cancer.

3.2. Evaluation of Prediction Models

Table 2 lists the evaluation metrics of the confusion matrix and the AUCs of all the prediction
models. Table 3 lists the k-fold cross-validation accuracies (k = 10) of all the prediction models. The LR
model had the highest k-fold cross validation accuracy; in all other metrics, the RF model demonstrated
the best performance.
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Table 2. Metrics of the ANN, LR, and RF models.

Dataset Model F1 Precision Recall AUROC AUROC
SE

AUROC
95% CI

All (n = 1,267,867)
ANN 0.789 0.791 0.790 0.865 <0.001 0.864–0.866

LR 0.763 0.765 0.763 0.834 <0.001 0.833–0.835
RF 0.892 0.892 0.892 0.959 <0.001 0.959–0.960

Train (n = 1,236,170)
ANN 0.789 0.791 0.790 0.865 <0.001 0.864–0.866

LR 0.763 0.765 0.763 0.834 <0.001 0.833–0.835
RF 0.892 0.892 0.892 0.960 <0.001 0.959–0.960

Test (n = 31,697)
ANN 0.789 0.790 0.789 0.864 0.002 0.860–0.868

LR 0.758 0.761 0.758 0.829 0.002 0.824–0.833
RF 0.890 0.890 0.890 0.955 0.003 0.948–0.961

Table 3. The k-fold cross-validation accuracy (k = 10) of all three prediction models.

Model ANN LR RF

k-fold accuracy 0.786 0.881 0.763

Figure 1 displays the ROC curves for the three models. The AUCs of the LR (0.834), ANN (0.865),
and RF (0.959) models were determined. Although the RF model performed better than the ANN
model in the training set and across all data, both models demonstrated similar performance in the test
set. A significant difference was noted between the AUCs of all three models (p < 0.0001). Furthermore,
the AUC of the RF model was significantly larger than that of the other two models.
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Figure 1. The receiver operating characteristic curve of the artificial neural network (ANN), logistic
regression (LR), and random forest (RF) models in predicting breast cancer.

4. Discussion

By using three models, we evaluated the possible increase in the risk of breast malignancy in
Taiwanese female having T2DM with different features based on a national population-based database.
The AUCs of all three models were all significantly larger than the 0.5. Although the LR model achieved
the highest k-fold cross-validation accuracy among the three models, the RF model displayed the
highest precision, recall, and F1, and the largest AUC. Furthermore, the AUC of the RF model was
significantly larger than that of the other two models.
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T2DM may be associated with a high risk of certain cancers [4–10]. Cancer cells obtain bioenergy
by consuming more glucose than normal cells do and thus achieve “out-of-control” growth [32]. From
an organismal perspective, Ye et al. suggested that cancer cell populations can be considered similar
to parasites which compete with the host for some essential systemic resources, such as glucose [9].
Several studies focusing on the relationship between breast cancer and T2DM have argued that
T2DM predisposes women to having a greater risk of developing breast cancer than is the general
population [11–17]. Despite T2DM and cancer sharing some risk factors (e.g., obesity, aging, high-fat
diet, and insufficient physical exercise) [7], several biologically plausible mechanisms might account
for why T2DM may be a predictor of breast cancer. First, insulin resistance-induced increase in insulin
level can stimulate cell proliferation and promote mitogenic effects in breast tissue [33]. Moreover,
breast cancer cells tend to have excessive expression of insulin receptors [34]. Second, T2DM is usually
related to chronic low-grade inflammation, and long-term inflammation may trigger breast cancer
development [35]. Third, medication used for T2DM may affect the relationship between T2DM
and breast cancer. Medication that increases insulin levels may be associated with higher cancer
risks [36,37]; by contrast, treatment with insulin sensitizers, including metformin, may reduce breast
cancer risk [38,39]. In this study, we included medications that potentially affect this relationship to
reduce the possible confounding effects.

Since the launch of the NHI program over two decades ago, universal health coverage has
reached 99.6% of the total population in Taiwan through the government health care system. The
NHI Research Database (NHIRD) is a reliable data resource for conducting national epidemiological
studies in Taiwan. Several researchers have employed the NHIRD with traditional statistical methods
to assess the association of DM and antidiabetic medications with breast cancer risk [15,16,37,39].
Liaw et al. applied a Cox proportional hazard regression model to verify the association between breast
cancer risk with T2DM and found that women with T2DM had a substantially greater risk of breast
cancer compared with those without DM [15]. Tseng used an LR method to assess the association
between DM and the risk of breast malignancy and indicated that the significant association was
considerably attenuated after adjustment for potential confounders (before adjustment: odds ratio 2.63;
95% confidence interval (95% C.I.) 2.31–2.98; after adjustment: odds ratio 1.81; 95% C.I. 1.59–2.06) [16];
however, women with DM may be less likely to receive mammography screening [40].

In addition to the LR method, we used two computational learning models (ANN and RF)
to predict the risk of breast cancer in individuals with T2DM. LR is a classification algorithm and
can be applied to determine the risk (odds) of a disease; its outcome can be binomial, ordinal, or
multinomial, and the LR analysis is used to create a statistical model for a binary response data [41]. In
medicine, LR is the most commonly used method for developing predictive models for dichotomous
outcomes [42]. By contrast, ANNs are computational models inspired by biological neural networks;
they are currently the commonest practiced models of artificial intelligence used for risk prediction
and decision-making [42,43]. Furthermore, ANNs are suitable for NHIRD-based prediction of certain
illnesses [44,45]. RF modeling is an ensemble learning method that performs a computationally
extensive and robust data-mining and can accommodate large sets of proposed variables as inputs
to identify factors associated with the outcomes of interest [46]. Several decision trees are developed
at training time, and the output is the class that is the form of the classification or regression of
the individual trees [47]. We used the k-fold cross-validation accuracy during the model selection
process and found that the LR model achieved the highest k-fold validation accuracy among the three
models. The final classification models were evaluated using the confusion matrix metrics of recall,
precision, and F1. In addition, the ROC curve summarizes the model’s performance by evaluating the
tradeoffs between false positive rate (1 − specificity) and true positive rate (sensitivity). The AUC is
the performance metric for the ROC curve: the higher is the AUC, the higher is the prediction power
of the model. The AUCs of the three models were all significantly higher than 0.5, suggesting a direct
relationship between T2DM and the occurrence of breast cancer. Our analyses indicated that the RF
model performed the best according to the precision, recall, F1, and AUC; the AUC of the RF model
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was significantly larger than that of the other models. While generalized linear models such as the LR
model are not strictly more interpretable than the ANN model [48], the RF model performs better than
both models for the dataset in this study and is an interpretable model.

This study is the first nationwide-based investigation known to the authors that used three
prediction models to evaluate breast cancer risk among women with T2DM with different clinical
and demographic characteristics associated with T2DM. As shown in Table 1, we included available
potential risk factors and antidiabetic medications that may be related to breast cancer in the current
algorithm to obtain an accurate prediction. However, some limitations need to be considered when
interpreting the findings of this study. First, a detailed profile regarding lifestyle behaviors, such as
alcohol consumption, smoking status, family history, body mass index, diet, and physical activity
(related to T2DM, breast cancer or both), is lacking in the NHIRD, which may cause some confounding
effects. To reduce these effects, we used the comorbidities as potential surrogates for some determinants,
e.g., alcohol-related illness for alcohol, COPD and attendance of a smoking-cessation clinic for smoking,
and obesity for body mass index. Second, inherent limitations of the NHIRD prevented us from
obtaining histological patterns, grading, staging information, biochemical data, and molecular markers
of breast cancer, thus impeding more comprehensive analyses. There was also a lack of image-based
data; with such data, frameworks such as the one described by Dimitriou et al. for stage II colorectal
cancer prognosis could be applied and the results could be directly compared [49]. Third, the analyses
did not differentiate the importance of potential clinical and demographic predictors, which may raise
the question regarding whether this approach can be practicable clinically. While the main purpose
of this study was to explore the feasibility of using various machine learning models for predicting
breast cancer among patients with breast cancer, an interpretation of a trained RF model for this
application can be explored further in future studies. Fourth, the performance of different machine
learning models, such as the support vector machine (SVM) used by Ferroni et al. to predict breast
cancer, can be further studied for this application [50]. Fifth, the study did not use an external dataset
for validation, and all validation was done with k-fold cross validation and a test set that was not used
during the training process. Such validation can be an avenue for a future study.

5. Conclusions

T2DM with different features may be an independent risk factor for breast cancer in Taiwanese
women. Moreover, among all models, the RF model was the most effective at predicting breast cancer.
Because the median age at breast cancer diagnosis in Taiwan is relatively young, our study indicates
that breast cancer surveillance policy may require modification to include T2DM patients in the earlier
stages of breast cancer detection.

Author Contributions: All authors made substantial contributions in the development of this manuscript and
agree to its submission to the journal. Conception/Design, M.-H.H., L.-M.S., and C.-H.K.; Provision of study
materials, C.-H.K.; Collection and/or assembly of data, all authors; Data analysis and interpretation, all authors;
Manuscript writing, all authors; and Final approval of manuscript, all authors.

Funding: This research received no external funding.

Acknowledgments: This work was supported by grants from the Ministry of Health and Welfare, Taiwan
(MOHW107-TDU-B-212-123004); China Medical University Hospital (CMU106-ASIA-12 and DMR-107-192);
Academia Sinica Stroke Biosignature Project (BM10701010021); MOST Clinical Trial Consortium for Stroke (MOST
107-2321-B-039-004-); Tseng-Lien Lin Foundation, Taichung, Taiwan; and Katsuzo and Kiyo Aoshima Memorial
Funds, Japan. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript. No additional external funding was received for this study. “This manuscript has
been released as a Pre-Print at Interactive Journal of Medical Research: https://preprints.jmir.org/preprint/14027”.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Global Report on Diabetes: World Health Organization. Available online: http://apps.who.int/iris/bitstream/

handle/10665/204871/9789241565257_eng.pdf?sequence=1 (accessed on 20 November 2018).

https://preprints.jmir.org/preprint/14027
http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1
http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1


Cancers 2019, 11, 1751 9 of 11

2. Kakkar, R. Rising burden of diabetes-public health challenges and way out. Nepal J. Epidemiol. 2016, 6,
557–559. [CrossRef]

3. Jiang, Y.D.; Chang, C.H.; Tai, T.Y.; Chen, J.F.; Chuang, L.M. Incidence and prevalence rates of diabetes mellitus
in Taiwan: Analysis of the 2000-2009 nationwide health insurance database. J. Formos. Med. Assoc. 2012, 111,
599–604. [CrossRef]

4. Ballotari, P.; Vicentini, M.; Manicardi, V.; Gallo, M.; Ranieri, S.C.; Greci, M.; Rossi, P.G. Diabetes and risk of
cancer incidence: Results from a population-based cohort study in northern Italy. BMC Cancer 2017, 17, 703.
[CrossRef] [PubMed]

5. Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P. Type 2 diabetes and cancer: Umbrella
review of meta-analyses of observational studies. BMJ 2015, 350, g7607. [CrossRef] [PubMed]

6. Wang, M.; Hu, R.Y.; Wu, H.B.; Pan, J.; Gong, W.-W.; Guo, L.-H.; Zhong, J.-M.; Fei, F.-R.; Yu, M. Cancer risk
among patients with type 2 diabetes mellitus: A population-based prospective study in China. Sci. Rep.
2015, 5, 11503. [CrossRef] [PubMed]

7. Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.;
Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. Diabetes Care 2010, 33, 1674–1685.
[CrossRef]

8. Johnson, J.A.; Carstensen, B.; Witte, D.; Bowker, S.L.; Lipscombe, L.; Renehan, A.G.; onbehalf of the Diabetes
and Cancer Research Consortium. Diabetes and cancer (1): Evaluating the temporal relationship between
type 2 diabetes and cancer incidence. Diabetologia 2012, 55, 1607–1618. [CrossRef]

9. Ye, H.; Adane, B.; Khan, N.; Alexeev, E.; Nusbacher, N.; Minhajuddin, M.; Stevens, B.M.; Winters, A.C.;
Lin, X.; John, M.; et al. Subversion of systemic glucose metabolism as a mechanism to support the growth of
leukemia cells. Cancer Cell 2018, 34, 659–673. [CrossRef]

10. Jee, S.H.; Ohrr, H.; Sull, J.W.; Yun, J.E.; Ji, M.; Samet, J.M. Fasting serum glucose level and cancer risk in
Korean men and women. JAMA 2005, 293, 194–202. [CrossRef]

11. Hardefeldt, P.J.; Edirimanne, S.; Eslick, G.D. Diabetes increases the risk of breast cancer: A meta-analysis.
Endocr. Relat. Cancer 2012, 19, 793–803. [CrossRef]

12. Schott, S.; Schneeweiss, A.; Sohn, C. Breast cancer and diabetes mellitus. Exp. Clin. Endocrinol. Diabetes.
2010, 118, 673–677. [CrossRef] [PubMed]

13. La Vecchia, C.; Giordano, S.H.; Hortobagyi, G.N.; Chabner, B. Overweight, obesity, diabetes, and risk of
breast cancer: Interlocking pieces of the puzzle. Oncologist 2011, 16, 726–729. [CrossRef] [PubMed]

14. Larsson, S.C.; Mantzoros, C.S.; Wolk, A. Diabetes mellitus and risk of breast cancer: A meta-analysis. Int. J.
Cancer 2007, 121, 856–862. [CrossRef] [PubMed]

15. Liaw, Y.P.; Ko, P.C.; Jan, S.R. Implications of type1/2 diabetes mellitus in breast cancer development: A
general female population-based cohort study. J. Cancer 2015, 6, 734–739. [CrossRef] [PubMed]

16. Tseng, C.H. Diabetes and breast cancer in Taiwanese women: A detection bias? Eur. J. Clin. Investig. 2014,
44, 910–917. [CrossRef] [PubMed]

17. Cleveland, R.J.; North, K.E.; Stevens, J.; Teitelbaum, S.L.; Neugut, A.I.; Gammon, M.D. The association of
diabetes with breast cancer incidence and mortality in the Long Island Breast Cancer Study Project. Cancer
Causes Control 2012, 23, 1193–1203. [CrossRef]

18. International Agency for Research on Cancer (IARC) and World Health Organization (WHO). GLOBOCAN
2018: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2018. Available online: https:
//www.iarc.fr/en/media-centre/pr/2018/pdfs/pr263_E.pdf (accessed on 20 November 2018).

19. Cancer Statistics: Cancer Incidence Trends. Taiwan Cancer Registry. Available online: http://tcr.cph.ntu.edu.
tw/main.php?Page=A5B2 (accessed on 20 November 2018).

20. Shen, Y.C.; Chang, C.J.; Hsu, C.; Cheng, C.C.; Chiu, C.F.; Cheng, A.L. Significant difference in the
rends of female breast cancer incidence between Taiwanese and Caucasian Americans: Implications
from age-period-cohort analysis. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1986–1990. [CrossRef]

21. Liu, F.C.; Lin, H.T.; Kuo, C.F.; See, L.C.; Chiou, M.J.; Hu, H.P. Epidemiology and survival outcome of breast
cancer in a nationwide study. Oncotarget 2017, 8, 16939–16950. [CrossRef]

22. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. JAIR 2002, 16, 321–357. [CrossRef]

http://dx.doi.org/10.3126/nje.v6i2.15160
http://dx.doi.org/10.1016/j.jfma.2012.09.014
http://dx.doi.org/10.1186/s12885-017-3696-4
http://www.ncbi.nlm.nih.gov/pubmed/29070034
http://dx.doi.org/10.1136/bmj.g7607
http://www.ncbi.nlm.nih.gov/pubmed/25555821
http://dx.doi.org/10.1038/srep11503
http://www.ncbi.nlm.nih.gov/pubmed/26082067
http://dx.doi.org/10.2337/dc10-0666
http://dx.doi.org/10.1007/s00125-012-2525-1
http://dx.doi.org/10.1016/j.ccell.2018.08.016
http://dx.doi.org/10.1001/jama.293.2.194
http://dx.doi.org/10.1530/ERC-12-0242
http://dx.doi.org/10.1055/s-0030-1254116
http://www.ncbi.nlm.nih.gov/pubmed/20533174
http://dx.doi.org/10.1634/theoncologist.2011-0050
http://www.ncbi.nlm.nih.gov/pubmed/21632448
http://dx.doi.org/10.1002/ijc.22717
http://www.ncbi.nlm.nih.gov/pubmed/17397032
http://dx.doi.org/10.7150/jca.12197
http://www.ncbi.nlm.nih.gov/pubmed/26185535
http://dx.doi.org/10.1111/eci.12323
http://www.ncbi.nlm.nih.gov/pubmed/25104332
http://dx.doi.org/10.1007/s10552-012-9989-7
https://www.iarc.fr/en/media-centre/pr/2018/pdfs/pr263_E.pdf
https://www.iarc.fr/en/media-centre/pr/2018/pdfs/pr263_E.pdf
http://tcr.cph.ntu.edu.tw/main.php?Page=A5B2
http://tcr.cph.ntu.edu.tw/main.php?Page=A5B2
http://dx.doi.org/10.1158/1055-9965.EPI-04-0932
http://dx.doi.org/10.18632/oncotarget.15207
http://dx.doi.org/10.1613/jair.953


Cancers 2019, 11, 1751 10 of 11

23. William, T.; Arandjelovic, O.; Caie, P.D. Using machine learning and urine cytology for bladder cancer
prescreening and patient stratification. In Proceedings of the Workshops at the Thirty-Second AAAI
Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

24. Alghamdi, M.; Al-Mallah, M.; Keteyian, S.; Brawner, C.; Ehrman, J.; Sakr, S. Predicting diabetes mellitus
using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.
PLoS ONE 2017, 12, e0179805. [CrossRef]

25. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.

26. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 7—9 May 2015; Volume 5.

27. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. JMLR 2014, 15, 1929–1958.

28. Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear classification.
JMLR 2009, 9, 1871–1874.

29. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.;
et al. Tensorflow: A system for large-scale machine learning. OSDI 2016, 16, 265–283.

30. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. JMLR 2011, 12, 2825–2830.

31. DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated
receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [CrossRef]

32. Hay, N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev.
Cancer 2016, 16, 635–649. [CrossRef]

33. Chappell, J.; Leitner, J.W.; Solomon, S.; Golovchenko, I.; Goalstone, M.L.; Draznin, B. Effect of insulin on cell
cycle progression in MCF-7 breast cancer cells. Direct and potentiating influence. J. Biol. Chem. 2001, 276,
38023–38028.

34. Papa, V.; Belfiore, A. Insulin receptors in breast cancer: Biological and clinical role. J. Endocrinol. Investig.
1996, 19, 324–333. [CrossRef]

35. Tobias, D.K.; Akinkuolie, A.O.; Chandler, P.D. Markers of inflammation and incident breast cancer risk in the
Women’s Health Study. Am. J. Epidemiol. 2018, 187, 705–716. [CrossRef]

36. Wilson, C. Diabetes: Long-term use of insulin glargine might increase the risk of breast cancer. Nat. Rev.
Endocrinol. 2011, 7, 499. [CrossRef]

37. Tseng, C.H. Prolonged use of human insulin increases breast cancer risk in Taiwanese women with type 2
diabetes. BMC Cancer 2015, 15, 846. [CrossRef] [PubMed]

38. Guppy, A.; Jamal-Hanjani, M.; Pickering, L. Anticancer effects of metformin and its potential use as therapeutic
agent for breast cancer. Future Oncol. 2011, 7, 727–736. [CrossRef] [PubMed]

39. Tseng, C.H. Metformin may reduce breast cancer risk in Taiwanese women with type 2 diabetes. Breast
Cancer Res. Treat. 2014, 145, 785–790. [CrossRef]

40. Lipscombe, L.L.; Hux, J.E.; Booth, G.L. Reduced screening mammography among women with diabetes.
ARCH Intern. Med. 2005, 165, 2090–2095. [CrossRef] [PubMed]

41. Steyerberg, E.W.; Eijkemans, M.J.; Harrell, F.E., Jr.; Habbema, J.D. Prognostic modeling with logistic regression
analysis: A comparison of selection and estimation methods in small data sets. Stat. Med. 2000, 19, 1059–1079.
[CrossRef]

42. Tu, J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for
predicting medical outcomes. J. Clin. Epidemiol. 1996, 49, 1225–1231. [CrossRef]

43. Ahmed, F.E. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol. Cancer
2005, 4, 29. [CrossRef]

44. Cheng, C.A.; Chiu, H.W. An artificial neural network model for the evaluation of carotid artery stenting
prognosis using a national-wide database. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2017, 2566–2569.

45. Chen, Y.F.; Lin, C.S.; Hong, C.F.; Lee, D.J.; Sun, C.; Lin, H.H. Design of a clinical decision support system for
predicting erectile dysfunction in men using NHIRD dataset. IEEE J. Biomed. Health Inf. 2019, 23, 2127–2137.
[CrossRef]

46. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0179805
http://dx.doi.org/10.2307/2531595
http://dx.doi.org/10.1038/nrc.2016.77
http://dx.doi.org/10.1007/BF03347871
http://dx.doi.org/10.1093/aje/kwx250
http://dx.doi.org/10.1038/nrendo.2011.112
http://dx.doi.org/10.1186/s12885-015-1876-7
http://www.ncbi.nlm.nih.gov/pubmed/26537234
http://dx.doi.org/10.2217/fon.11.49
http://www.ncbi.nlm.nih.gov/pubmed/21675836
http://dx.doi.org/10.1007/s10549-014-2985-8
http://dx.doi.org/10.1001/archinte.165.18.2090
http://www.ncbi.nlm.nih.gov/pubmed/16216998
http://dx.doi.org/10.1002/(SICI)1097-0258(20000430)19:8&lt;1059::AID-SIM412&gt;3.0.CO;2-0
http://dx.doi.org/10.1016/S0895-4356(96)00002-9
http://dx.doi.org/10.1186/1476-4598-4-29
http://dx.doi.org/10.1109/JBHI.2018.2877595
http://dx.doi.org/10.1023/A:1010933404324


Cancers 2019, 11, 1751 11 of 11

47. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis
and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282.

48. Lipton, Z.C. The Mythos of Model Interpretability. ACM Queue 2018, 16, 30. [CrossRef]
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