

Supplementary Materials: [¹⁸F] Clofarabine for PET Imaging of Hepatocellular Carcinoma

Purine-nucleoside: orthophosphate ribosyltransferase (EC 2.4.2.1) 1,2)

Figure S1. PNP levels in the liver. PNP has a significantly higher expression, in terms of the base main counts in either RNA-seq (human) or microarray (woodchuck) data, in the liver parenchyma than in HCC for human and woodchuck. The enzyme works reversibly in both directions.

The FASTA results

1. PNP alignment between

```
Query: NCBI Reference Sequence: NP_000261.2; purine nucleoside phosphorylase [Homo sapiens]
```

Sbjct: NCBI Reference Sequence: XP_015336353.1; PREDICTED: purine nucleoside phosphorylase [Marmota marmota marmota]

Identi 251/28			Gaps 0/288(0%)	
Query	1		HRPQVAIICGSGLGGLTDKLTQAQIFDYGEIPNFPRS	
Sbjct	1		HRPQVA+ICGSGLGGLT+KLT+AQ FDY EIPNFP+S HRPQVAVICGSGLGGLTNKLTEAQFFDYSEIPNFPQS	
Query	61	~	GRFHMYEGYPLWKVTFPVRVFHLLGVDTLVVTNAAGG GRFH YEGYPLWKVTFPVRVF LLGVDTLVVTNAAGG	
Sbjct	61	~	GRFHTYEGYPLWKVTFPVRVF LLGVDTLVVTNAAGG	
Query	121		GONPLRGPNDERFGDRFPAMSDAYDRTMRQRALSTWK GONPL+GPNDERFG RFPAMSDAYDR MR++ALSTWK	Q 180
Sbjct	121		GQNPL+GPNDERFG RFPAMSDAIDR MR++ALSIWA GQNPLKGPNDERFGVRFPAMSDAYDRNMREKALSTWKI	L 180
Query	181	~ ~	VAECRVLQKLGADAVGMSTVPEVIVARHCGLRVFGFSJ	
Sbjct	181	~	VAE R+LQ+LGADAVGMSTVPEVIVARHCGLRVFGFS VAESRLLQQLGADAVGMSTVPEVIVARHCGLRVFGFS	
Query	241		AGKQAAQKLEQFVSILMASIPLPDKA 288	
Sbjct	241	ITNKVIMDYESLEK HEEVL ITNKVIMDYESLEKTTHEEVLE	GKQAAQKLE+FVSILMASIP DA TGKQAAQKLEKFVSILMASIPPRDNA 288	

2. ENT1 alignment between

Query: UniProtKB/Swiss-Prot: Q99808.3; S29A1_HUMAN RecName: Full=Equilibrative nucleoside transporter 1; AltName: Full=Equilibrative nitrobenzylmercaptopurine riboside-sensitive nucleoside transporter; Short=Equilibrative NBMPR-sensitive nucleoside transporter; AltName: Full=Nucleoside transporter, es-type; AltName: Full=Solute carrier family 29 member 1

Sbjct: NCBI Reference Sequence: XP_015342854.1; PREDICTED: equilibrative nucleoside
transporter 1 [Marmota marmota marmota]
222

Identities 404/464(87%)		Positives Gaps) 421/464(90%) 9/464(1%)	
Query	2	${\tt TTSHQPQDRYKAVWLIFFMLGLGTLLPWNFFMTATQYFTNRLDMSQNVSLVTAELSKDAQ$	61
Sbjct	77	TTSHQPQDRYKAVWLIFFMLGLGTLLPWNFFMTAT+YFTNRLDMSQNVSL A LSKD Q TTSHQPQDRYKAVWLIFFMLGLGTLLPWNFFMTATKYFTNRLDMSQNVSLNAAVLSKDIQ	136
Query	62	ASAAPAAPLPERNSLSAIFNNVMTLCAMLPLLLFTYLNSFLHQRIPQSVRILGSLVAILL A P APLPE+ SLSAIFNNVMTLCAMLPLLLF+ LNSFLHORIPOSVRILGSLVAILL	121
Sbjct	137	DPAVPTAPLPEQRSLSAIFNNVMTLCAMLPLLLFSCLNSFLHQRIPQSVRILGSLVAILL	196
Query	122	VFLITAILVKVQLDALPFFVITMIKIVLINSFGAILQGSLFGLAGLLPASYTAPIMSGQG VFL+TAILVKVOLDALPFFV TMIKI+LINSFGAILOGSLFGLAGLLPA+YTAPIMSGOG	181
Sbjct	197	VFL+TAILVKVQLDALPFFV TMIKITLINSFGAILQGSLFGLAGLLPA+TIAPIMSGQG VFLVTAILVKVQLDALPFFVFTMIKIILINSFGAILQGSLFGLAGLLPANYTAPIMSGQG	256
Query	182	LAGFFASVAMICAIASGSELSESAFGYFITACAVIILTIICYLGLPRLEFYRYYQQLKLE	241
Sbjct	257	LAG FASVAMICAIASGSELSESAFGYFITAC V+IL IICYLGLPRLEFYRYYQQLKLE LAGLFASVAMICAIASGSELSESAFGYFITACVVVILAIICYLGLPRLEFYRYYQQLKLE	316
Query	242	GPGEQETKLDLISKGEEPRAGKEESGVSVSNSQPTNESHSIKAILKNISVL	292
Sbjct	317	GPGEQETKLDLISKGEEPRA KEESGVSNSQT+SI+AILKNISVLGPGEQETKLDLISKDSSTTCHLPGEEPRASKEESGVSTPNSQATSRNPSIRAILKNISVL	376
Query	293	AFSVCFIFTITIGMFPAVTVEVKSSIAGSSTWERYFIPVSCFLTFNIFDWLGRSLTAVFM	352
Sbjct	377	A SVC FT+TIG+FPAVT EVKSSIAG+S W YFIPVSCFLTFNIFDWLGRSLTAVFM ALSVCCNFTVTIGLFPAVTAEVKSSIAGTSAWGDYFIPVSCFLTFNIFDWLGRSLTAVFM	436
Query	353	WPGKDSRWLPSLVLARLVFVPLLLLCNIKPRRYLTVVFEHDAWFIFFMAAFAFSNGYLAS	412
Sbjct	437	WPGKDS WLPSLV+ARLVFVPLLLLCN+ PRRYL VVF+HDAW+IFFMAAFAFSNGYLAS WPGKDSCWLPSLVVARLVFVPLLLLCNVHPRRYLAVVFKHDAWYIFFMAAFAFSNGYLAS	496
Query	413	LCMCFGPKKVKPAEAETAGAIMAFFLCLGLALGAVFSFLFRAIV 456	
Sbjct	497	LCMCFGPKKVKPAEAETAGAIM FFL LGLALGAV SFL RAIV LCMCFGPKKVKPAEAETAGAIMTFFLSLGLALGAVLSFLLRAIV 540	

3. ENT2 alignment between

Query: NCBI Reference Sequence: NP_001523.2 equilibrative nucleoside transporter 2 isoform a; SLC29A2 [Homo sapiens]

Sbjct: NCBI Reference Sequence: XP_015358637.1 PREDICTED: equilibrative nucleoside transporter 2 isoform X1 [Marmota marmota marmota]

Identitie 308/339(9		Gaps 3/339(0%)	
300/339(9	16) 510/559(956)	5/ 559 (0%)	
Query 12		AVLQGSLFGQLGTMPSTYSTLFLSGQGLAGIFAALAMLL AVLQGSLFGQLGTMPSTYSTLFLSGQGLAGIFAALAML+	180
Sbjct 1		AVLÕGSLFGÕLGTMPSTYSTLFLSGÕGLAGIFAALAMLM	60
Query 18		GILMSIVCYLSLPHLKFARYYLANKSSQAQAQELETKAE GILMSIVCYLSLPHL+FARYYLA K S++ ELETKAE	240
Sbjct 61	SMASGVDAQTSALGYFITPCV	GILMSIVCYLSLPHLEFARYYLAKKPSRSPTHELETKAE	120
Query 24		DLDLEKEPESEPDEPQKPGKPSVFTVFQKIWLTALCL DLD EKEPE EP+ OK KPSVF VFOKIWLTALCL	297
Sbjct 12	~ ~ ~ ~	DLDPEKEPELEPELDEPQKLEKPSVFIVFQKIWLTALCL	180
Query 29		TSPGKWSQFFNPICCFLLFNIMDWLGRSLTSYFLWPDED TSPGKWSOFFNPICCFLLFN+MDWLGRSLTSYFLWPDED	357
Sbjct 18		TSPGKWSQFFNPICCFLLFNVMDWLGRSLTSYFLWPDED	240
Query 35		HVPQRSRLPILFPQDAYFITFMLLFAVSNGYLVSLTMCL HVP+R+RLPILFPODAYFITFMLLFAVSNGYLVSLTMCL	
Sbjct 24		HVPERARLPILFPQDAYFITFMLLFAVSNGYLVSLTMCL	300
Query 41	3 APRQVLPHEREVAGALMTFFL APROVLPHEREVAGALMTFFL		
Sbjct 30	~		

4. UGT1A1 alignment between

Query: NCBI Reference Sequence: NP_000454.1; UDP-glucuronosyltransferase 1-1 precursor [Homo sapiens]

Sbjct: NCBI Reference Sequence: XP_015337083.1; PREDICTED: UDPglucuronosyltransferase 1-1 isoform X2 [Marmota marmota marmota]

Identi 433/53		Positives Gaps () 472/533(88%) 0/533(0%)	
Query	1	MAVESQGGRPLVLGLLLCVLGPVVSHAGKILLIPVDGSHWLSMLGAIQQLQQRGHEIVVL MAV SOG L+LGLLLCVL P +SHA K+L+IPVDGSHWLSM+G IOOLO+RGHE+VV+	60
Sbjct	1	MAVVSQGPCTLLLGLLLCVLNPSISHAEKLLIIPVDGSHWLSMVGVIQQLQKRGHEMVVI	60
Query	61	APDASLYIRDGAFYTLKTYPVPFQREDVKESFVSLGHNVFENDSFLQRVIKTYKKIKKDS P+AS++I++ +FY+LK YPVPFO+EDV+ SF LG FEN FLO V K Y+K +KDS	120
Sbjct	61	TPEASIHIKEASFYSLKKYPVPFQKEDVETSFAELGFYAFENVPFLQGVAKMYEKAQKDS	120
Query	121	AMLLSGCSHLLHNKELMASLAESSFDVMLTDPFLPCSPIVAQYLSLPTVFFLHALPCSLE A+LLSGCSHLLHNKE MASL ES FD +LTDPFLPC IVAQYL LP V FL+ALPC L+	180
Sbjct	121	AVLLSGCSHLLHNKEFMASLVESDFDAVLTDPFLPCGSIVAQYLDLPAVNFLNALPCGLD	180
Query	181	FEATQCPNPFSYVPRPLSSHSDHMTFLQRVKNMLIAFSQNFLCDVVYSPYATLASEFLQR +ATQCP+P SYVPR LSS+SDHMTFLQRVKNMLIA +NFLC +VYSPYA LAS+ LQR	240
Sbjct	181	LKATQCPSPLSYVPRALSSNSDHMTFLQRVKNMLIALLENFLCSMVYSPYAALASQVLQR	240
Query	241	EVTVQDLLSSASVWLFRSDFVKDYPRPIMPNMVFVGGINCLHQNPLSQEFEAYINASGEH ++T+QDLLSSASVWL R DFVKDYP PIMPNMVFVGGINCLH P+SQEFEAY+NASGEH	300
Sbjct	241	DLTLQDLLSSASVWLMRKDFVKDYPMPIMPNMVFVGGINCLHTKPISQEFEAYVNASGEH	300
Query	301	GIVVFSLGSMVSEIPEKKAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDL GIVVFSLGSMVSEIPEKKAM IADALG+IPOTVLWRYTGT PSNLA NT LVKWLPONDL	360
Sbjct	301	GIVVFSLGSMVSEIPEKKAMEIADALGRIPQTVLWRYTGTPPSNLAKNTKLVKWLPQNDL	360
Query	361	LGHPMTRAFITHAGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGVTLNVLEMTS LGHP TRAFITHAGSHGVYE ICNGVPMVMMPLFGDOMDNAKRMET+GAGVTLNVLEMTS	420
Sbjct	361	LGHPKTRAFITHAGSHGVYEGICNGVPMVMMPLFGDQMDNAKRMETRGAGVTLNVLEMTS	420
Query	421	EDLENALKAVINDKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHD +DL NALKAVINDKSYKENIMRLS LHKDRP+EPLDLAVFWVEFVMRHKGAPHLRPAAHD	480
Sbjct	421	DDLANALKAVINDKSIKENIMRLSSLHKDRPIEPLDLAVFWVEFVMRHKGAPHLRPAAHD	480
Query	481	LTWYQYHSLDVIGFLLAVVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH 533 LTWYQYHSLDVIGFLLA+VL VAFI FKCCAYG RKC GKKG VKK HKSK H	
Sbjct	481	LTWYQYHSLDVIGFLLAIVL VAFI FRCCAIG RRC GRRG VRR HRSR H	

5. UGT1A9 alignment between

Query: NCBI Reference Sequence: NP_066307.1; UDP-glucuronosyltransferase 1-9 precursor [Homo sapiens]

Sbjct: NCBI Reference Sequence: XP_015337084.1; PREDICTED: UDPglucuronosyltransferase 1-9 isoform X3 [Marmota marmota marmota]

Identi 429/52		Positives Gaps () 463/521(88%) 0/521(0%)	
Query	10	LPLCVCLLLTCGFAEAGKLLVVPMDGSHWFTMRSVVEKLILRGHEVVVVMPEVSWQLGRS LPLCVCLLL A+AGKLLVVPMDGSHWFTMRSVVEKL+ RG+EVV VMPEVSWOLG+S	69
Sbjct	10	LPLCVCLLLASSSAQAGKLLVVPMDGSHWFTMRSVVEKLVHRGNEVVAVMPEVSWQLGQS	69
Query	70	LNCTVKTYSTSYTLEDLDREFKAFAHAQWKAQVRSIYSLLMGSYNDIFDLFFSNCRSLFK LN TVKTYSTSYTLEDLDR F F OWK +S+YS MGS FD+ FS CRSLF	129
Sbjct	70	LNFTVKTYSTSYTLEDLDRGFNFFVDTQWKTPEQSMYSAAMGSSKAFFDITFSRCRSLFN	129
Query	130	DKKLVEYLKESSFDAVFLDPFDNCGLIVAKYFSLPSVVFARGILCHYLEEGAQCPAPLSY DKKLVEYLKE+SFDAVFLDPFD CGL+VAKYFSLPSVVFAR + C++LE+GAOCP+PLSY	189
Sbjct	130	DKKLVEYLKETSFDAVFLDPFDVCGLVVAKYFSLPSVVFARVVFCNFLEDGAQCPSPLSY	189
Query	190	VPRILLGFSDAMTFKERVRNHIMHLEEHLLCHRFFKNALEIASEILQTPVTEYDLYSHTS VPR+ L SDA++F ER+RNH+ +LEE+L C FF+ ALE+ASEIL+TPVT DL+S S	249
Sbjct	190	VPRVFLMSSDALSFMERIRNHLNYLEEYLFCPYFFQTALEVASEILRTPVTIGDLFSQIS	249
Query	250	IWLLRTDFVLDYPKPVMPNMIFIGGINCHQGKPLPMEFEAYINASGEHGIVVFSLGSMVS IWLLRTDFVL+YP+PVMPNMIF+GGINCHO KPLP EFEAY+NASGEHGIVVFSLGSMVS	309
Sbjct	250	IWLLRTDFVLEYPRPVMPNMIFVGGINCHQRKPLPKEFEAYVNASGEHGIVVFSLGSMVS	309
Query	310	EIPEKKAMAIADALGKIPQTVLWRYTGTRPSNLANNTILVKWLPQNDLLGHPMTRAFITH EIPEKKAM IADALG+IPQTVLWRYTGT PSNLA NT LVKWLPQNDLLGHP TRAFITH	369
Sbjct	310	EIPEKKAMEIADALGRIPQTVLWRYTGTPPSNLAKNTKLVKWLPQNDLLGHPKTRAFITH	369
Query	370	AGSHGVYESICNGVPMVMMPLFGDQMDNAKRMETKGAGVTLNVLEMTSEDLENALKAVIN AGSHGVYE ICNGVPMVMMPLFGDQMDNAKRMET+GAGVTLNVLEMTS+DL NALKAVIN	429
Sbjct	370	AGSHGVYEGICNGVPMVMMPLFGDQMDNAKRMETRGAGVTLNVLEMTSDDLANALKAVIN	429
Query	430	DKSYKENIMRLSSLHKDRPVEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVI DKSYKENIMRLS LHKDRP+EPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYOYHSLDVI	489
Sbjct	430	DKSYKENIMRLSRLHKDRPIEPLDLAVFWVEFVMRHKGAPHLRPAAHDLTWYQYHSLDVI	489
Query	490	GFLLAVVLTVAFITFKCCAYGYRKCLGKKGRVKKAHKSKTH 530 GFLLA+VL VAFI FKCCAYG RKC GKKG VKK HKSK H	
Sbjct	490	GFLLAIVLGVAFIAFKCCAYGCRKCFGKKGSVKKGHKSKAH 530	
6. UGT2B4 alignment between			
Query: NCBI Reference Sequence: NP_066962.2; UDP-glucuronosyltransferase 2B4 isoform 1 precursor [Homo sapiens]			

Sbjct: NCBI Reference Sequence: XP_015337650.1 PREDICTED: UDP-glucuronosyltransferase 2B4-like [Marmota marmota marmota]

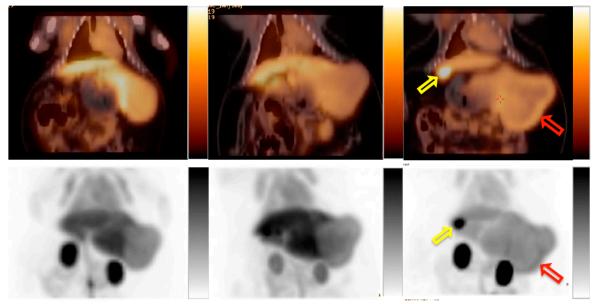
Identities		Positives Gaps	
54/115(47%)		60/115(52%) 44/115(38%)	
Query	250	MAKADIWLIRNYWDFQFPHPLLPNVEFVGGLHCKPAKPLPKEMEEFVQSSGENGVVVFSL	309
		MAKADIWLI YWD +F H LPNV+ VGGLHC+PAK LP	
Sbjct	1	MAKADIWLICTYWDLEFSHSTLPNVDIVGGLHCRPAKSLP	40
Query	310	GSMVSNTSEERANVIASALAKIPQKVLWRFDGNKPDTLGLNTRLYKWIPQNDLLG 364	
		K+LWRFDG KPDTLGLN +LYKWIP+ DLLG	
Sbjct	41	KILWRFDGKKPDTLGLNIQLYKWIPKGDLLG 71	

Cancers 2019, 11, x FOR PEER REVIEW

7. UGT2B4 alignment (alternative)

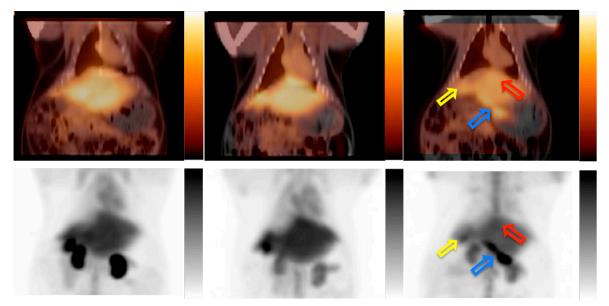
Query: NCBI Reference Sequence: NP_066962.2; UDP-glucuronosyltransferase 2B4 isoform 1 precursor [Homo sapiens]

Sbjct: NCBI Reference Sequence: XP_015360783.1; PREDICTED: UDPglucuronosyltransferase 2B15-like [Marmota marmota]

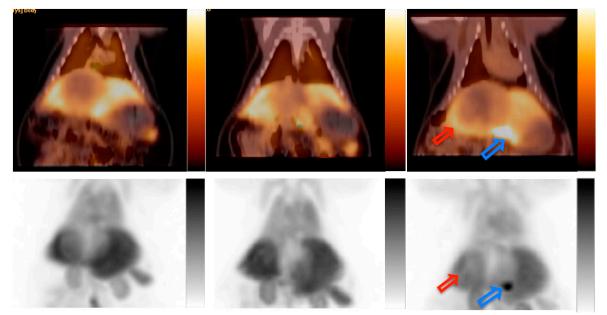

Identities Positives Gaps 388/530(73%) 455/530(85%) 2/530(0%) Query 1 MSMKWTSALLLIQLSCYFSSGSCGKVLVWPTEFSHWMNIKTILDELVQRGHEVTVLASSA 60 MS+K S LLLIOL CYFSSGSCGKVLVWPTE+SHW+NIK ILDEL+ORGHEVTVL S+A Sbjct 1 MSVKRNSVLLLIQLMCYFSSGSCGKVLVWPTEYSHWINIKAILDELLQRGHEVTVLTSTA 60 SISFDPNSPSTLKFEVYPVSLTKTEFEDIIKQLVKRWA-ELPKDTFWSYFSQVQEIMWTF Query 61 119 SI +PN+ S + FEVYP +K E+ + + W + PKD FW ++S VQ++ SILINPNTTSAINFEVYPAPSSKQHLEERFSKWIHEWIYDTPKDDFWEFYSLVQKVFKDY Sbjct 61 120 Query 120 NDILRKFCKDIVSNKKLMKKLQESRFDVVLADAVFPFGELLAELLKIPFVYSLRFSPGYA 179 +D + + C+++V NKKLM KL ES+FDVVLADAV P GELLAELLKIPFVY+LRF+ GY Sbjct 121 SDTIEQLCRNVVLNKKLMMKLHESKFDVVLADAVGPCGELLAELLKIPFVYTLRFTFGYT 180 Query 180 IEKHSGGLLFPPSYVPVVMSELSDQMTFIERVKNMIYVLYFEFWFQIFDMKKWDQFYSEV 239 EK+SGGL PPSYVP+VMSELSDQMTF+ERVKN +Y+LYF+FWFQIFD+K+W+QFYSEV 181 YEKYSGGLTVPPSYVPIVMSELSDQMTFMERVKNTVYMLYFDFWFQIFDVKRWNQFYSEV Sbjct 240 LGRPTTLSETMAKADIWLIRNYWDFQFPHPLLPNVEFVGGLHCKPAKPLPKEMEEFVQSS 240 299 Ouerv LGRPTT+ ETM KAD WLIR YWD +FP PLLPN +FVGGLHCKPAKPLPKEMEEFVQSS LGRPTTIYETMGKADFWLIRTYWDLEFPRPLLPNFDFVGGLHCKPAKPLPKEMEEFVQSS Sbjct 241 300 300 GENGVVVFSLGSMVSNTSEERANVIASALAKIPQKVLWRFDGNKPDTLGLNTRLYKWIPQ Query 359 GENG+VVFSLG+MVSN EE+AN+IA ALA+IPOKV+WRF+G KPD LG NT++Y+WIPO Sbjct 301 GENGIVVFSLGTMVSNMPEEKANMIAFALAQIPQKVIWRFNGKKPDKLGPNTQIYEWIPQ 360 360 NDLLGHPKTRAFITHGGANGIYEAIYHGIPMVGVPLFADQPDNIAHMKAKGAAVSLDFHT Query 419 NDLLGHPKT+AFITHGG NG+YEAIYHG+PMVG+PLFADQPDNIAH+KAKGAA+ LD+ 361 NDLLGHPKTKAFITHGGTNGVYEAIYHGVPMVGIPLFADOPDNIAHVKAKGAAIRLDYRI Sbjct 420 420 MSSTDLLNALKTVINDPLYKENAMKLSRIHHDQPVKPLDRAVFWIEFVMRHKGAKHLRVA 479 Query ++S DLL AL+ VINDP YKENAM+LSRI HDQPVKPLDRAVFWIEFVMRHKGAKHL+VA 480 Sbjct 421 LTSADLLKALRMVINDPSYKENAMELSRIQHDQPVKPLDRAVFWIEFVMRHKGAKHLQVA 480 AHDLTWFQYHSLDVTGFLLACVATVIFIITK-CLFCVWKFVRTGKKGKRD 528 Ouery AHDL+WFOY+SLDV GFLLACVATV+FII+K CLFC F +TGKK KR+ Sbjct 481 AHDLSWFQYYSLDVIGFLLACVATVMFIISKCCLFCFQMFFKTGKKEKRE 530

8. UGT2B15 alignment

Query: NCBI Reference Sequence: NP_001067.2; UDP-glucuronosyltransferase 2B15 precursor [Homo sapiens]


Sbjct: NCBI Reference Sequence: XP_015360783.1; PREDICTED: UDPglucuronosyltransferase 2B15-like [Marmota marmota marmota]

Identities 392/530(74%)		Positives Gaps) 459/530(86%) 0/530(0%)	
Query	1	MSLKWTSVFLLIQLSCYFSSGSCGKVLVWPTEYSHWINMKTILEELVQRGHEVTVLTSSA MS+K SV LLIQL CYFSSGSCGKVLVWPTEYSHWIN+K IL+EL+QRGHEVTVLTS+A	60
Sbjct	1	MSVKRNSVLLLIQLMCYFSSGSCGKVLVWPTEYSHWINIKAILDELLQRGHEVTVLTSTA	60
Query	61	STLVNASKSSAIKLEVYPTSLTKNYLEDSLLKILDRWIYGVSKNTFWSYFSQLQELCWEY S L+N + +SAI EVYP +K +LE+ K + WIY K+ FW ++S +O++ +Y	120
Sbjct	61	SILINPNTTSAINFEVYPAPSSKQHLEERFSKWIHEWIYDTPKDDFWEFYSLVQKVFKDY	120
Query	121	YDYSNKLCKDAVLNKKLMMKLQESKFDVILADALNPCGELLAELFNIPFLYSLRFSVGYT D +LC++ VLNKKLMMKL ESKFDV+LADA+ PCGELLAEL IPF+Y+LRF+ GYT	180
Sbjct	121	SDTIEQLCRNVVLNKKLMMKLHESKFDVVLADAVGPCGELLAELLKIPFVYTLRFTFGYT	180
Query	181	FEKNGGGFLFPPSYVPVVMSELSDQMIFMERIKNMIHMLYFDFWFQIYDLKKWDQFYSEV +EK GG PPSYVP+VMSELSDQM FMER+KN ++MLYFDFWFQI+D+K+W+QFYSEV	240
Sbjct	181	YEKYSGGLTVPPSYVPIVMSELSDQMTFMERVKNTVYMLYFDFWFQIFDVKRWNQFYSEV	240
Query	241	LGRPTTLFETMGKAEMWLIRTYWDFEFPRPFLPNVDFVGGLHCKPAKPLPKEMEEFVQSS LGRPTT++ETMGKA+ WLIRTYWD EFPRP LPN DFVGGLHCKPAKPLPKEMEEFVOSS	300
Sbjct	241	${\tt LGRPTTIYETMGKADFWLIRTYWDLEFPRPLLPNFDFVGGLHCKPAKPLPKEMEEFVQSS}$	300
Query	301	GENGIVVFSLGSMISNMSEESANMIASALAQIPQKVLWRFDGKKPNTLGSNTRLYKWLPQ GENGIVVFSLG+M+SNM EE ANMIA ALAQIPQKV+WRF+GKKP+ LG NT++Y+W+PQ	360
Sbjct	301	GENGIVVFSLGTMVSNMPEEKANMIAFALAQIPQKVIWRFNGKKPDKLGPNTQIYEWIPQ	360
Query	361	NDLLGHPKTKAFITHGGTNGIYEAIYHGIPMVGIPLFADQHDNIAHMKAKGAALSVDIRT NDLLGHPKTKAFITHGGTNG+YEAIYHG+PMVGIPLFADQ DNIAH+KAKGAA+ +D R	420
Sbjct	361	NDLLGHPKTKAFITHGGTNGVYEAIYHGVPMVGIPLFADQPDNIAHVKAKGAAIRLDYRI	420
Query	421	MSSRDLLNALKSVINDPVYKENVMKLSRIHHDQPMKPLDRAVFWIEFVMRHKGAKHLRVA ++S DLL AL+ VINDP YKEN M+LSRI HDQP+KPLDRAVFWIEFVMRHKGAKHL+VA	480
Sbjct	421	LTSADLLKALRMVINDPSYKENAMELSRIQHDQPVKPLDRAVFWIEFVMRHKGAKHLQVA	480
Query	481	AHNLTWIQYHSLDVIAFLLACVATVIFIITKFCLFCFRKLAKKGKKKKRD 530 AH+L+W QY+SLDVI FLLACVATV+FII+K CLFCF+ K GKK+KR+	
Sbjct	481	AHDLSWFQYYSLDVIGFLLACVATVMFIISKCCLFCFQMFFKTGKKEKRE 530	



Animal C: In this animal, liver background uptake is much higher than tumor uptake. Only after cold CFA application, the uptake around the tumor rim (red arrow) can be perceived. Gallbladder (GB, yellow arrow) is clearly displayed from the PET/CT overlay and MIP (yellow arrow) with cold CFA application, which can be weakly identified from the middle panel with probenecid application.

Figure S2. Three-way comparison of [18F]CFA uptake in tumor (red arrow) and liver. From the left: baseline, post UGT inhibitor probenecid application, and after cold CFA application. In each column, the upper panel is PET/CT overlay while the lower panel is the maximal intensity projection (MIP).

Animal D: Right column: Gallbladder (GB, yellow arrow) can be discerned from the image after cold CFA application. Cold CFA application also caused strong intestinal accumulation (blue arrow).

Animal E: The tumor's uptake in the proliferative rim (red arrow) with no GB but intestinal accumulation.

Figure S3. Three-way comparison of [18F]CFA uptake in tumor (red arrow) and liver. From the left: baseline, post PNP inhibitor forodesine application, and after cold CFA application. In each column, the upper panel is PET/CT overlay while the lower panel is the maximal intensity projection (MIP).