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Abstract: The development of cancer is driven by genomic instability and mutations. In general,
cancer develops via multiple steps. Each step involves the clonal evolution of cells with abrogated
defense systems, such as cells with mutations in cancer-suppressor genes. However, it remains
unclear how cellular defense systems are abrogated and the associated clonal evolution is triggered
and propagated. In this manuscript, we review current knowledge regarding mutagenesis associated
with genomic destabilization and its relationship with the clonal evolution of cells over the course of
cancer development, focusing especially on mechanistic aspects.
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1. Introduction

Cancers generally develop as a consequence of mutations, which can be divided into two types:
passenger or driver mutations. Unlike the former, the latter is much less frequent and is critical
for the clonal evolution of cells progressing through the different stages of cancer development.
Driver mutations include mutations that cause dysfunction of cancer-suppressor genes and those
that enhance cancer gene function. It is still unclear how those mutations are induced and whether
they and their associated cancers can be prevented. Indeed, these issues are a longstanding subject of
controversy. A standard view is that cancer mutations can be categorized into three types: hereditary,
replicative, and environmental; the environmental mutations are avoidable, whereas the others are
mostly unavoidable [1]. The majority of mutations are replicative, arising randomly during DNA
replication, implying that most cancer-driver mutations and associated cancers are unavoidable [1–3].
Accordingly, secondary prevention is a major priority in efforts to prevent death from cancer.

Mutations accumulate widely, even in normal cells, over the course of aging (e.g., in the human
esophagus [4,5] and skin [6]). Surprisingly, these mutations include mis-sense and non-sense mutations
in cancer-driver genes at positions identical to those in cancer cells. These observations suggest that
cancer development is not directly initiated by these mutations, raising the question of how cancer
is initiated.

Using an in vitro model, a more recent study reported that mutations occur frequently in
association with genomic destabilization when cells experience replication stress [7]. These
genomic-destabilization-associated mutations are further associated with the clonal expansion of
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cells mutated in cancer-driver genes [7]. In breast cancer cells, it is well established that genomic
destabilization occurs in association with the accumulation of replication-stress-associated double
strand breaks (DSBs) that are often caused by oncogene acceleration [8]. Given that most cancers
ultimately develop genomic instability [9,10], the mutations associated with genome instability must
occur widely in many types of cancer cells.

In this review, we focus mainly on genomic instability induced in the nucleus, its association with
mutations, and the resultant clonal evolution of cells with abrogated defense systems, which has been
recently clarified [7]. Mutations are induced when replication-stress-associated DSBs accumulate and
are clearly different from replicative mutations that occur randomly as the result of errors introduced
during canonical replication. Importantly, the mutations associated with genomic destabilization may
be tightly associated with the clonal expansion of cells mutated in cancer-driver genes.

2. Mutations Induced along with Genomic Destabilization

2.1. Mutation Rate and Its Association with Cancer Risk

In normal human cells, DNA is usually replicated by high-fidelity polymerases δ and ε [11–13].
Errors caused by those polymerases are primarily repaired by their proofreading system (Table 1), and
the remaining errors are targeted by the mismatch repair (MMR) system [14–16].

Table 1. Risks of mutation induction and genomic destabilization during normal replication and under
replication stress.

During Normal Replication Under Replication Stress

MMR-proficient cells

Operating DNA polymerases Polα, Polδ, and Polε TLS pols (*1)
Mutation rate Low High
Genomic destabilization risk and
genomic instability type caused No CIN

Genomic-instability-associated
alterations risking cancer-driver
mutations

No Gene amplification, LOH, and
deletion (*2)

MMR-deficient cells

Operating DNA polymerases Polδ and Polε TLS pols (*1)
Mutation rate High Very high
Genomic destabilization risk and
genomic instability type caused No MSI

Genomic-instability-associated
alterations risking cancer-driver
mutations

No LOH and deletion (*3)

*1: During the repair of replication stress-associated double strand breaks (DSBs), normal replicative polymerases δ
and ε are usually inoperative; instead, low-fidelity translesion synthesis (TLS) polymerases are widely expressed,
resulting in a mutagenic background, especially in MMR-deficient cells [7,17–21]. *2: In addition to point mutations,
cancer-driver mutations are often associated with chromosomal instability (CIN), including amplification of
oncogenes such as c-Myc and loss of heterozygosity (LOH), and deletions of tumor-suppressor genes [7,22–24]. *3:
Although CIN is generally suppressed during microsatellite instability (MSI) induction, LOH and deletions causing
loss of function of tumor-suppressor genes are often observed even in MSI-positive cancer cells, which drives their
development [7,23,25].

Consequently, mutation is largely suppressed during normal replication. Deficiencies in
MMR and proofreading performed by polymerase ε are associated with hypermutation and cancer
predisposition [16,26,27]; thus, the mutation rate is strongly associated with cancer risk. However, this
association between mutation rate and cancer risk may be unrelated to cell division frequency and
resultant changes in cell number, as aptly pointed out by Peto’s paradox: cancer incidence does not
appear to correlate with the number of cells in an organism at the species level [28].
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Mutations in cancer cells are not induced randomly. Based on whole-genome and exome analyses,
chromatin loci with higher mutation levels can be characterized as (I) gene loci that are not highly
expressed [29], (II) chromosome regions replicating in late S phase [29], (III) heterochromatic loci [30],
and (IV) loci with closed chromatin that is not sensitive to DNase I [29–31]. Mutation rates differ by
severalfold between high- and low-mutation loci. Although the source of these differences remains
unclear, the phenomenon might be associated with genomic instability, as heterochromatic loci are
often subjected to replication stress and chromosomal rearrangements [29,32,33]. Consistent with this,
a recent study reported that hypermutation is associated with genomic destabilization [7].

2.2. Mutation Induction when Replication-Stress-Associated DSBs Accumulate

Among the many mutations induced in cancer cells, somatically-induced replicative mutations are
the most prominent [1]. Based on a recent study, such replicative mutations can be separated into two
types: those induced as random errors during canonical replication, and those induced in association
with replication-stress-associated DSBs that accumulate in association with genomic destabilization [7].
Unexpectedly, the former type is relatively rare even in MMR-deficient cells that cannot correct errors
during replication [7]. By contrast, in the latter, hypermutation occurs in association with DSBs and
genomic destabilization in barely replicating cells (Figure 1).

Figure 1. Model of replication-stress-triggered induction of clonal evolution through genomic
destabilization. Cells that accumulate replication-stress-associated double strand breaks (DSBs)
are at higher risk of genomic destabilization of either chromosomal instability (CIN) or microsatellite
instability (MSI). Genomic destabilization is associated with mutation in cancer-driver genes, leading
to the clonal evolution of cells with defects in cellular defense systems.

Importantly, cancer-driver mutations arise during the latter; the induced mutations include
base substitutions, small insertions and deletions, and large deletions of entire genes [7] (Figure 1).
The mechanisms responsible for mutations in this context are not clear, probably because of the presence
of repair systems and other related polymerases (Table 1). Indeed, these DSBs are generally a target
of homologous recombination (HR), which does not involve high-fidelity polymerases (pols) δ and
ε. Instead, low-fidelity translesion synthesis (TLS) polymerases δ, κ, and θ, which synthesize DNA
over lesioned templates [20,21,34], are highly expressed [7,17–19]. Thus, the higher mutation rates are
probably due to DNA synthesis performed by these polymerases, which lack proofreading activity, and
the errors probably occur during translesion synthesis. Thus, while mutations are strongly suppressed
during normal cell division, they increase after replication-stress-associated DSB accumulation and
genomic destabilization. Given that most cancers ultimately develop genomic instability [9,10], these
mutations are most likely the ones that contribute to cancer progression [7].

2.3. Senescence-Associated Increase in the Risk of Genomic Destabilization

Most cancer cells develop one of two forms of genomic instability: chromosomal instability (CIN)
or microsatellite instability (MSI) [9]. CIN is the most frequent, but MSI usually arises in MMR-deficient
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cancers (Table 1). The induction of both CIN and MSI is triggered by replication-stress-associated
DSBs [7,22,35,36] (Figure 2).

Figure 2. Model of distinct chromosomal instability (CIN) and microsatellite instability (MSI) induction
processes triggered by replication stress. Induction of both CIN and MSI is triggered by replication
stress. Although CIN arises when replication-stress-associated double strand breaks (DSBs) are not
effectively repaired by homologous recombination (HR), MSI arises when those DSBs are erroneously
repaired by microhomology-mediated end joining (MMEJ) in an mismatch repair (MMR)-deficient
background. MSI induction is associated with the induction of hypermutation—a context in which
CIN induction is generally suppressed. NHEJ: non-homologous end joining.

CIN often occurs when such DSBs are not effectively repaired by HR, that is, when DSBs arising
during replication are carried over into the following G1 phase at a time when HR is not functional.
Consequently, the DSBs are often erroneously ligated by non-homologous end joining (NHEJ) with
topologically incorrect broken ends, resulting in a background that causes CIN-associated chromosomal
alterations such as chromosomal translocations, deletions, and rearrangements [37]. By contrast,
MSI arises when those DSBs are effectively but erroneously repaired by microhomology-mediated
end joining (MMEJ; also known as alternative end joining) [7] (Figure 3), during which CIN is
suppressed because of the resultant DSB repair (Figure 2). Thus, both CIN and MSI are triggered by
replication-stress-associated DSBs and arise due to abnormalities in the repair of these lesions.

Most cancers develop genomic instability due to abnormalities in DSB repair; paradoxically,
however, most lack background mutations in DNA repair systems [38,39]. This raises the question
of how genomic destabilization occurs even in normal cells, that is, genetically normal cells with
functional DNA repair systems. This phenomenon is probably associated with age, which is associated
with an elevated cancer risk [40,41]. Indeed, irreparable DSBs accumulate widely in association
with age in vivo and passage in vitro [42]. Consistent with this, cells often undergo senescence as a
consequence of DSB accumulation [42–47]. Although the reasons for DSB accumulation are not clear,
they are likely to include a reduction in histone H2AX, which mediates repair-factor recruitment and is
required for genome stability [48].
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Figure 3. Model of microsatellite instability (MSI) induction. (A,B) Under an mismatch repair
(MMR)-deficient background, double strand breaks (DSBs) caused by replication stress are effectively
repaired by microhomology-mediated end joining (MMEJ), which is mediated by PolQ and Poly
(ADP-ribose) polymerase 1 (PARP1) (A). Such microsatellite loci could be repeats of a single base (B),
two bases (A), or more. This induces insertions and deletions of a few bases, specifically at repetitive
sequence loci (i.e., microsatellite loci), leading to MSI induction. Because microhomologies can anneal
in multiple ways (a–c), this process could lead to multiple types of insertions and deletions (B).
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Indeed, the growth arrest of normal cells is associated with reduced levels of H2AX after
serial proliferation [49–51]. Cells in the H2AX-diminished state are vulnerable to exogenous
growth acceleration, causing them to accumulate DSBs in association with replication stress and
subsequently develop genomic instability [49]. Repair deficiency and the associated risk of genomic
destabilization may be specific to the DSBs caused by replication stress, as cells in this state barely
repair replication-stress-associated DSBs; however, they can still effectively repair DSBs caused by
irradiation through transient stabilization of H2AX under the control of ATM and SIRT6 [52,53].

2.4. Genomic-Destabilization-Associated Mutagenesis in Cancer Development

Based on the aforementioned Mouse Embryonic Fibroblasts (MEF) model, it is clear that genomic
destabilization is associated with mutagenesis and the resultant clonal evolution of cells with mutations
in cancer-driver genes (e.g., the ARF/p53 module) [7]. An important question is whether such
genomic-destabilization-associated mutagenesis is truly relevant to the mutations induced in cancer
cells. Currently, the best support for this is the higher mutation rates at heterochromatin loci [29],
which are also hotspots of genomic destabilization [32,33]. Thus, loci with higher mutation rates are
tightly associated with loci identified as hotspots of genomic destabilization.

Kataegis, localized hypermutations at genomically destabilized loci, is another cause of
genomic-destabilization-associated mutagenesis [54–56]. This type of mutation includes C > T
transitions, mediated by the deaminase APOBEC3A/B, at CpG loci and others [55–58]. Mutations
caused by reactions other than deamination are probably due to errors during DNA synthesis, likely
in association with background expression of low-fidelity TLS polymerases when cells accumulate
replication-stress-associated DSBs [7]. These observations suggest that DNA loci subjected to repair of
replication-stress-associated DSBs are widely synthesized by low-fidelity TLS polymerases, which lack
a proofreading function.

2.5. Epigenetic Alterations as a Cause of Genomic Destabilization

The risk of genomic destabilization [8] might be increased by epigenetic alterations, including
epigenetic silencing of DNA repair and damage response factors such as MLH1, ATM, CHK2, MGMT,
Ogg1, MBD4, and NEIL1. The most prominent pathway is the epigenetic silencing of the Mlh1 gene,
resulting in MMR deficiency [59]. In fact, besides its involvement in cancers associated with Lynch
syndrome, MSI is observed in many sporadic cancers, which represent about 15%–20% of colorectal
and ovarian cancers [60,61]. Most of these cancers show MMR deficiency as a result of epigenetic
silencing of the Mlh1 gene [59–61]. In these cancers, the primary risk factor for the development of
cancer is epigenetic alterations.

2.6. Avoidable or Unavoidable?

An important question is whether mutations that promote cancer development are avoidable.
Based on current knowledge, the critical question now is whether mutations caused by replication
stress in association with genomic destabilization are avoidable, as they are tightly associated with the
clonal evolution of cells with mutations in cancer-driver genes [5,6]. Unlike errors that are randomly
induced during canonical replication, mutations caused under replication stress are theoretically
avoidable by mechanisms devoted to maintaining genome stability. In fact, as shown in the MEF
model, immortalization dependent on mutations in the ARF/p53 module is blocked when genome
stability is maintained by cultivating cells with reduced levels of replication stress [50]. Thus, cancers
that develop due to genomic instability might be avoidable through maintenance of genome stability.
However, it remains unclear how genome stability could be maintained. Therefore, to truly prevent
cancers using this strategy, we first need to address the mechanisms responsible for maintaining
genome stability. Importantly, given that most cancers ultimately develop genomic instability [9,10],
such a prevention strategy might be applicable to many cancers.
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2.7. Mutations in Cancer-Suppressor Genes

Colorectal cancers can develop as a result of three mutations, namely, mutations in adenomatous
polyposis coli (APC), the ARF/p53 module, and KRAS [62]. Although it was previously thought that
all of these mutations could be induced by errors during canonical replication, more recent evidence
suggests that the situation might be more complicated. First, unlike mutations in TP53, loss of ARF
function is usually caused by a large deletion in the CDKN2A locus [25,63–65], which is usually
induced by genomic destabilization rather than simple replication error. Second, unlike mutations
in the oncogene KRAS, loss of function of the tumor-suppressor genes APC, CDKN2A, and TP53
usually results from mutation of both allelic loci of the corresponding genes [66–68]. Finally, cells
in the precancerous and benign stages that still show normal ARF/p53 function often develop with
tetraploidy [69], and for their transformation to malignant cancers, TP53 (or CDKN2A) must be mutated
in conjunction with mutations in four TP53 gene loci (or CDKN2A). Based on cancer frequencies, the
mutation of four loci by random error is theoretically impossible. Indeed, if the probability of mutation
in TP53 due to random polymerase error is 1 in 106 cells, then the probability of mutation in four copies
in a tetraploid cell is 1 in 1024 cells (i.e., vanishingly unlikely). Therefore, based on the probabilities, it
is theoretically impossible to induce all of the necessary tumor-suppressor mutations exclusively via
random errors during normal replication.

How, then, are mutations that cause loss of function of tumor-suppressor genes induced? They
are probably associated with genomic destabilization, including the induction of loss of heterozygosity
(LOH) that often arises in association with genomic destabilization [23,25]. In this case, after one
mutation is induced, mutations in other allelic gene loci can be induced by LOH in a “copy and paste”
manner, mediated by erroneous HR between those loci [70,71]. During this process, the probabilities of
mutation propagation or elimination are as high as 50%. In fact, LOH is often induced in cancer cells
and is widely associated with the loss of function of tumor-suppressor genes [23]. Importantly, genomic
destabilization is associated with the loss of function of tumor-suppressor genes and the expansion of
cells with abrogated defense systems. In support of this conjecture, many cancers inevitably develop
genomic instability.

3. Clonal Evolution of Cells with Abrogated Defense Systems

Each stage of cancer development involves the clonal evolution of cells with abrogated defense
systems. Based on recent knowledge, multiple effects contribute to this evolution.

3.1. Genomic-Destabilization-Triggered Clonal Evolution

The aforementioned genomic destabilization is probably a major cause of the clonal evolution of
cells with abrogated defense systems and the associated mutations in cancer-driver genes [7]. This
issue is clearly illustrated by a recent study using a MEF model. Like many other normal cells in vivo
and in vitro, MEFs usually undergo growth arrest with reduced levels of H2AX, which mediates
active growth as well as DSB repair [50]. Therefore, such MEFs can remain quiescent when genome
stability is maintained, but develop genomic instability under continuous growth stimulation due to the
accumulation of replication-stress-associated DSBs [72,73]. Such genomic destabilization is associated
with mutation induction, in which immortalized MEFs with mutations in the ARF/p53 module form a
colony and H2AX expression is restored. Those immortalized MEFs eventually become predominant
because they have resumed growth. These phenomena illustrate the clonal evolution process of cells
mutated in the ARF/p53 module, which is triggered by genomic-destabilization-associated mutagenesis.

Clonal evolution associated with genomic destabilization is also observed when cancer cells acquire
resistance to the anti-cancer drug camptothecin (CPT), which causes replication-stress-associated
DSBs [7]. After treatment with CPT, most cancer cells undergo apoptosis due to the accumulation of
DSBs. However, genomic destabilization is induced in cells that survive, eventually leading to the
clonal evolution of cells with elevated resistance to CPT [7]. These results support the idea that the
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clonal evolution of cells resistant to drugs that cause replication-stress-associated DSBs is induced
through genomic destabilization.

Together, these observations imply that replication-stress-associated genomic destabilization
underlies the stepwise progression of cancer development, at least in regard to the clonal evolution of
cells that have lost ARF/p53-dependent defense systems and have acquired resistance to the anti-cancer
drug CPT [7]. This situation is conceptually similar to stress-induced mutagenesis [74–77]. Importantly,
unlike errors randomly induced during canonical replication, replication-stress-triggered mutagenesis
is tightly associated with the induction of mutations in cancer-driver genes, and therefore leads to the
clonal evolution of cells with abrogated defense systems.

3.2. Transcription Variety and Epigenetic Alteration for Clonal Evolution

Unlike resistance to anti-cancer drugs that cause replication-stress-associated DSBs, resistance
to drugs that inhibit growth-stimulation modules is often acquired without mutations that mediate
resistance, as in the case of cancer cells resistant to vemurafenib [78]. Recently, the underlying
mechanism of such resistance has been clarified by studies revealing the contribution of alterations
in epigenetic regulation [78–80]. Cancers often develop by activating specific growth-acceleration
modules [22,81,82]. Therefore, cancer cell growth could be specifically blocked by inhibitors that induce
cancer cell death. However, because such states are achieved by specific growth-module activation via
epigenetic regulation, they could be altered by changes in epigenetic status. In fact, under vemurafenib
treatment, cells that show different growth-module dependence are clonally expanded through possible
epigenetic fluctuation [78]. Thus, transcriptional variety and/or epigenetic alterations in cancer cells
are also pathways that lead to the clonal evolution of cells resistant to certain types of anti-cancer
drugs, and these pathways are probably distinct from the one mediated by genomic destabilization.

Unlike aging-associated cancers, infantile tumors often develop with very specific chromosomal
translocations but without typical genomic instabilities, unlike many aging-associated cancers [83–85].
These tumors usually exhibit broad alteration in epigenetic regulation status [86,87]. Although it
remains unclear what leads to infantile tumor evolution, epigenetic regulation alteration leading to the
clonal expansion of cells is probably involved [88], as described previously for the development of
resistance to vemurafenib [78]. This type of clonal evolution might constitute an alternative pathway
for tumor growth, distinct from that of genomic-destabilization-triggered clonal evolution, which is
usually caused by replication stress.

3.3. Association of Immune Response with Clonal Evolution

During tumor development in vivo, clonal evolution must be induced in association with adaptive
responses to immune checkpoints, which regulate the immune system to prevent indiscriminate
attack [89]. Although it remains unclear how the immune checkpoint is regulated, a recent study of
the awakening of dormant cancer cells revealed the involvement of neutrophil extracellular traps
(NETs), which are produced during inflammation [90]. In addition, clonal evolution during metastatic
growth could occur in multiple contexts, in which inflammation is tightly associated [91–94]. Based
on these findings, such clonal evolution in vivo probably includes inflammation-associated adaptive
responses to the immune system, in addition to the development of transformed cells via genomic
instability and/or epigenetic alteration. Importantly, genomic destabilization—especially in the case of
CIN—is often associated with inflammation through the induction of cytosolic DNA and the associated
activation of the cGAS/STING pathway [95–98]. Therefore, the genomic destabilization that induces
the clonal evolution of cells undergoing cancer progression might be simultaneously associated with
immune-checkpoint adaptation in vivo.

4. Perspectives

Based on accumulated evidence, it is now very likely that replication-stress-induced genomic
destabilization is a major cause of mutations in cancer-driver genes, and that this leads to the clonal
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evolution of cells with abrogated defense systems. Mutation rates under replication stress are much
higher than during canonical replication [7]. An attractive hypothesis raised by these findings is that it
might be possible to reduce the rate of genomic-destabilization-associated mutations by maintaining
genomic stability and thereby prevent cancer. Given that genomic destabilization is triggered by the
accumulation of DSBs following replication stress, genomic stability could be increased by activating
the DSB repair mechanisms that become defective in the repair of the replication-stress-associated
DSBs during cancerogenesis.
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