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Abstract: Tumor functional heterogeneity has been recognized for decades, and technological
advancements are fueling renewed interest in uncovering the cell-intrinsic and extrinsic factors that
influence tumor development and therapeutic response. Intratumoral heterogeneity is now arguably
one of the most-studied topics in tumor biology, leading to the discovery of new paradigms and
reinterpretation of old ones, as we aim to understand the profound implications that genomic,
epigenomic, and functional heterogeneity hold with regard to clinical outcomes. In spite of
our improved understanding of the biological complexity of cancer, characterization of tumor
metabolic heterogeneity has lagged behind, lost in a century-old controversy debating whether
glycolysis or mitochondrial respiration is more influential. But is tumor metabolism really so simple?
Here, we review historical and current views of intratumoral heterogeneity, with an emphasis on
summarizing the emerging data that begin to illuminate just how vast the spectrum of metabolic
strategies a tumor can employ may be, and what this means for how we might interpret other
tumor characteristics, such as mutational landscape, contribution of microenvironmental influences,
and treatment resistance.
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epigenomics; reprogramming; metabolism; response to therapy; treatment resistance

1. The Discovery of Tumor Heterogeneity

Although optical microscopy dates back to the 17th century, it was not until 1833 that a young
professor at Humboldt University of Berlin, Johannes Muller, would use this technology to differentiate
tumors based on their architecture. Although better known for his contributions to anatomy and
physiology, Muller was the first to describe, depict, and catalog epithelial and mesenchymal human
tumors based on histological appearance [1–3]. Almost two centuries after publication, we can now
appreciate that the tables and sketches Muller included in “Cancer, and of Those Morbid Growths Which
May Be Confounded with It” already captured the heterogeneous essence of human tumors entirely
(Figure 1). Muller’s pioneering work was further developed by his assistant, Rudolph Virchow,
who published his landmark book, Cellular Pathology, 25 years later [4]. Virchow went on to be the first
to document and describe an astonishing number of diseases and biological structures and processes,
earning him the moniker, “the Father of Modern Pathology” or, to his peers, the “Pope of Medicine” [5].
Regarding tumors, Virchow’s detailed descriptions of pleomorphism among cancer cells and the
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tumor microenvironment confirm, like his mentor, that intra-tumor heterogeneity is a long-established
clinical observation.
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Figure 1. Reproduction of original drawings representing the microscopic appearance of cancer cells
isolated from different human neoplasia, as reported in Muller’s 1838 work on cancer [1]. Panel 2 and
panel 17 depict mono- and poly-nucleated tumor cells in a “reticular” carcinoma, and heterogeneous
spindle-shaped cells isolated from a lower jaw osteocarcinoma respectively (Table II, page 69); panel 4
represents different polynucleated cells isolated from a tumor of the parotid gland (Table III, page 71);
panel 18 shows different morphological cells comprehending pigmented cells (e) isolated from
an osteocarcinoma (Table I, page 67).

It soon became clear that cancer cells were heterogenous at the functional level as well. Although it
had been known that only viable cells could propagate tumors from mouse to mouse in transplantation,
it was not until the 1930s that it was demonstrated that not all viable tumor cells were endowed with
the same tumorigenic capacity [6]. This was evaluated in humans in an ethically questionable study
(which admits “most patients were interviewed before the procedure and informed of the experimental
nature and general purpose of the study”) in which Southman and Brunschwig directly tested the
autotransplantability of human cancer cells by subcutaneously injecting cell suspensions or tissue
fragments derived from the patients’ own laparotomy or biopsy tissue to study the frequency of tumor
development. Transplanted cells grew in less than 20% of patients studied, confirming the authors’
belief that not all cancer cells are equally capable of sustaining tumor growth [7]. These studies
eventually led to the development of quantitative assays to investigate tumorigenic potential and,
consequently, to the identification of cancer stem cells [8].

The realization that tumor cells are not all the same became even more compelling upon the
demonstration in the late 1950–60s that tumors are monoclonal in origin. First, cytogenetic studies,
then the assessment of allelic metabolic isoenzymes, immunoglobulin rearrangements, and genomic
DNA polymorphisms, all consistently led to the same conclusion that human tumors derive from one
single transformed cell [9]. To explain intrinsic variability among a clonal population of cells, it was
hypothesized that tumors evolve and become progressively heterogenous over time. In 1976, only a few
years after the identification of the Philadelphia chromosome, which was the first chromosomal
rearrangement linked to the pathogenesis of a human neoplasia, Peter Nowell published his seminal
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work, “The Clonal Evolution of Tumor Cell Populations” [10]. Known as the “Father of Tumor Evolution”,
Nowell conceptualized the first model of evolution, which is still considered valid. Based on published
reports, he conceived tumorigenesis as a stepwise evolutionary process in which tumor cells acquire
genomic alterations from time to time, that eventually generate new variants of altered cells. He writes,
"Nearly all of these variants are eliminated, because of metabolic disadvantage or immunologic destruction,
but occasionally one has an additional selective advantage with respect to the original cells becoming the
precursor of a new predominant subpopulation. Over time, there is sequential selection of sublines which are
increasingly abnormal, both genetically and biologically." Of note, Nowell considered genomic instability to
be the driving force of tumor evolution and was the first to recognize the environment and external
perturbations, such as therapeutics, as important factors in shaping tumor heterogeneity [10].

A couple of years later, another fundamental manuscript was published by a group of scientists
led by Gloria Heppner in which, through the characterization of distinct clonal lineages isolated
from the same neoplasm, the authors formally demonstrated that cells with different genomic traits
coexist within the same tumor and, more importantly, behave differently from each other [11].
This study represented an inflection point in cancer biology research and prompted the field to explore
experimental methods to model intratumor heterogeneity and its influence on treatment response
and drug resistance, invasion and metastasis, cross-talk among cells and between tumor cells, and
the microenvironment [12–18]. Heppner was the first to introduce and experimentally test numerous
concepts that are now tenets in cancer biology, including describing tumor spatial heterogeneity
and postulating the existence of multiple mechanisms driving tumor evolution, including epigenetic
alterations and changing microenvironmental stressors. However, Heppner’s name is likely best
known for her population biology approach to the study of human tumors. She envisioned neoplasia
as “societies highly adapted for survival”, where interactions between cells are critically important, and
the equilibrium among different subpopulations of cells continuously change over time. In her words,
“the properties of the tumor cannot be deduced by the simple addition of its component parts . . . tumor societies
survive natural and artificial (therapeutic) selection through heterogeneity by producing new variants to ‘outflank’
it” [19]. Thus, Heppner was the first to recognize that interactions among clonal lineages influence the
biological behaviors of tumors, including treatment response. Her vision and exceptional contributions
to the field have been summarized in an essay published in 1984 [19], deservedly recognized as one of
the most influential manuscripts ever published in Cancer Research [20].

2. Current Models of Tumor Evolution

Heppner’s definition of tumors as a “Complex Ecosystem” has increased in popularity due to new
sophisticated technologies that have made it possible to validate many of her hypotheses. Over the
last two decades, the advent and plummeting cost of next-generation sequencing (NGS), as well as the
launch of cancer genomics programs led by non-profit and public consortia, have generated large-scale
genomic datasets for tens of thousands of human tumors.

The first direct consequence of the genomic revolution is the revelation that long-standing models
used to explain tumor progression and evolution were too simplistic. The step-wise “linear model” of
tumor progression, first conceptualized by Foulds and Nowell [10,21] as a legacy of the old studies
on chemical carcinogenesis and then expanded at the molecular level by Fearon and Vogelstein [22],
indeed has a very limited application [23]. More current models address the accumulation and varied
fitness of clonal lineages but differ in their description of how clonal variation emerges. In the branching
model, tumor cells evolve and drift from a founder clone characterized by “trunk mutations” into
branches with accumulating genetic diversity (“subclonal mutations”) [24]. This model, supported by
multiple studies in numerous cancers, accounts for a continuous increase in tumor complexity wherein
tumor lineages expand based on the fitness conferred by the constellation of newly acquired genomic
abnormalities. An alternative model is the “punctuate”, or “big bang model”, which describes the
acquisition of genomic aberrations as sudden, discrete mutational bursts or cataclysmic chromosomal
events [23,25,26], such as chromothripsis [27]. These massive genomic events would occur early during
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tumorigenesis to create, at the onset of disease, the entire pool of clonal diversity that usually is found
in late-stage tumors (Figure 2) [28,29].
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Figure 2. Current models of tumor evolution. According to the branching model (left), tumor complexity
increases over time due to continuous accumulation of genomic events; in a punctuate evolution
model (right), the full tumor complexity is acquired early during progression due to cataclysmic
genomic events.

Thus, as postulated by Heppner, it is now recognized that, despite a monoclonal origin,
tumors at diagnosis are the variegated result of a complex process that yields many genomically,
epigenetically, metabolically, and spatially different subclones that comprise a complex ecosystem
(Figure 3). In fact, the progression of a tumor is shaped by its own heterogeneity, and different
stages of tumor development maintain a structured cellular hierarchy that is phenotypically and
spatially well-defined, and wherein less-aggressive clones spatially suppress their more aggressive
counterparts [30]. Somewhat paradoxically, in the clinic, we must contend with the fact that anti-cancer
drugs disrupt this equilibrium [31] and can even select for more aggressive clones in advanced,
and more anaplastic stages of tumor evolution [32,33].
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Figure 3. Tumors are complex ecosystems that constantly evolve over time in response to intrinsic and
extrinsic perturbation. The principal components of tumor heterogeneity are deeply interconnected
with each other and can influence and be influenced by tumor metabolism.
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3. From Genomics to Metabolomics: The Role of Genes in Reprogramming Tumor Metabolism

It is well established that the genomic events responsible for transformation and tumor progression,
such as activation of oncogenic signaling and loss of function of tumor suppressors, are also driving
forces for the metabolic rewiring of tumors. Deregulation of glucose metabolism, first described by
Otto Warburg in the 1920s and termed the Warburg effect in his honor, dominated the field of cancer
metabolism for decades [34,35]. The “aerobic fermentation” described by Warburg (also known as
aerobic glycolysis) [36], was based on the observation that tumors, unlike normal resting tissues,
are able to produce lactate even in the presence of oxygen. Warburg attributed this event to the
dysfunction of mitochondria in tumor cells that forced reliance on glycolysis for their energetics.
However, although rapidly proliferating tumor cells are highly glycolytic and can use lactate production
to regenerate NAD+, it is now understood that the upregulation of glucose and glutamine consumption
by dividing cells is to accommodate the molecular building blocks needed for biosynthetic purposes as
opposed to increased energy requirements [37]. Moreover, the idea that mitochondrial defects are the
primary driver of glycolytic flux has been discarded due to the demonstration that aberrant activation
of prototypical oncogenes, such as MYC, KRAS, EGFR, PI3K, AKT, profoundly affects cell metabolism
and increases the uptake and utilization of glucose and glutamine (Figure 4) [38–43].
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Figure 4. Effects of prototypical oncogenes and tumor suppressor genes on major metabolic
processes. (PPP, pentose phosphate pathway; TCA, tricarboxylic acid cycle; OAA, oxaloacetate;
α-KG, alpha-ketoglutarate).

Another key mediator of glycolytic metabolism in tumors is HIF1α, which belongs to the
family of hypoxia-inducible transcription factors. HIF1α is a central player in oxygen sensing and
homeostasis [44]. The transcriptional activity of HIF complexes is suppressed during normoxia;
however, when molecular oxygen is insufficient to support normal dioxygenase activity (e.g., hypoxia),
HIF1α is not hydroxylated at prolyl and asparaginyl residues. As a consequence, in the absence
of hydroxylation, HIF1α is not recognized as a substrate for proteasomal degradation by the
ubiquitin ligase pVHL–elonginB–elonginC complex, and the increased level of HIF induces complex
transcriptional programs that sustain angiogenesis, cell migration, and proliferation, as well as
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glycolytic activation [44]. Because of the hypoxic microenvironment caused by fast-expanding masses,
HIF activation is a common feature of many human cancers. In addition to hypoxia, HIF stabilization
and activation of downstream transcriptional programs can result from loss of function mutations of
VHL, as well as mutant alleles of metabolic enzymes, such as FH- or SDH- mutant tumors, in which high
levels of the TCA intermediates fumarate or succinate, respectively, interfere with dioxygenase activity
and increase HIF1α stability [43,44]. These facts suggest that multiple oncogenes and transformational
events all lead to the same phenotypic outcome: activation of a common set of metabolic programs
that increase glycolytic flux. But, should we expect this to be the case?

To address this important issue, we must first consider that what has been described as tumor
metabolic reprogramming or rewiring is, in reality, not a feature specific to tumor cells. In fact,
tumor metabolism, including the Warburg effect, recapitulates the metabolism of actively dividing
normal cells [45]. To undergo a division and generate two daughter cells, both normal and cancer cells
rely on activation of the same biosynthetic programs to expand biomass, and because the major carbon
sources that fuel the increased anabolic processes are glucose and glutamine, all dividing cells rely
on glycolysis and glutaminolysis [38–43]. Glycolysis, the breakdown of one six-carbon molecule of
glucose into two three-carbon pyruvate molecules, is probably the most important metabolic pathway
for dividing cells. The intermediate molecules of glycolysis fuel multiple collateral anabolic pathways,
making glycolysis the hallmark of active proliferation. Glycolic metabolites fuel the generation
of nucleotides (ribose), triglycerides, phospholipids (glycerol), and important amino acids such as
alanine, serine, and glycine, and they provide reducing equivalents for anabolic reactions (NADPH).
Pyruvate, the final product of glycolysis, if not converted into lactic acid by lactate dehydrogenase
(LDH), enters the citric acid cycle (TCA) as acetyl-CoA or oxaloacetate, where pyruvate-derived
carbo-skeletons can be used as intermediates for other biosynthetic processes, such as synthesis of fatty
acids or cholesterol. Like glucose, glutamine is an important source of carbon and nitrogen for dividing
cells [40,46]. Upon uptake, glutamine is converted to glutamate by glutaminase (GLS), and subsequently
to α-ketoglutarate after modification by transaminases (GOT) or glutamate dehydrogenase (GLDH).
α-ketoglutarate enters the TCA cycle and, through further modifications to oxaloacetate, sustains the
generation of aspartate, an essential substrate for nucleotide synthesis. Glutamine and glutamate also
serve as key nitrogen donors for many transamination reactions important for the production of other
non-essential amino acids [46]. In light of this heavy reliance on glucose and glutamine to supply
molecular intermediates toward the synthesis of all four major types of biomolecules, it becomes clear
why cells increase glucose and glutamine uptake to divide.

The coordination of the cell cycle with changes in anabolic metabolism during cell division is
largely through the MYC family of transcription factors (hereafter MYC refers to cMYC). Thought to
be a general transcriptional amplifier that targets all active promoters and enhancers in the
genome [47], it has recently been demonstrated that MYC regulates a discrete set of genes [48].
A critical node downstream of distinct signaling pathways that lead to cell growth and division,
MYC executes its proliferation program also through the activation of metabolic functions that
fulfill the anabolic requirements of a dividing cell, including genes that control nucleotide and RNA
metabolism, ribosome biogenesis, protein synthesis, and energetic (glucose) metabolism [39,48].
Beyond MYC, a direct link between the Warburg effect and the cell cycle machinery has also been
documented, which lends additional support to an intrinsic coupling between the cell cycle and
anabolic metabolism [49]. It has been demonstrated that, in normal dividing cells, such as embryonic
cells or T-lymphocytes, the anaphase-promoting complex/cyclosome-Cdh1 (APC/C-Cdh1), a key
regulator of the G1-S transition, inhibits glycolysis and glutaminolysis. Through its E3 ligase
activity, the APC/C-Cdh1 complex targets 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 and
glutaminase-1 for degradation. Because the APC/C-Cdh1 complex is tightly regulated during the cell
cycle, its inactivation at the initiation of S-phase would enhance glycolytic flux and glutaminolysis.
Reactivation of the complex in late mitosis, when the biosynthetic needs of cells decrease, would reverse
this effect [50,51]. As motifs recognized by Cdh1 have been identified in many other metabolic enzymes,
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including pyruvate carboxylase, malate dehydrogenase-1, and acetyl-CoA carboxylase-1, one can
speculate that the coupling between cell cycle machinery and metabolism may exert a broader role in
the regulation of anabolic processes during specific phases of cell division [51].

Not surprisingly, tumor suppressors exert exactly opposite effects of MYC on cell
metabolism, suggesting a “gatekeeper” role for metabolism programs to restrain proliferation
and perhaps transformation. TP53, through transcriptional regulation of target genes such as
TP53-induced glycolysis and apoptosis regulator (TIGAR) and Parkin, down-regulates the glycolytic
pathway [52,53]. TIGAR, a fructose bisphosphatase, drastically reduces glycolytic flux by degrading
fructose-2,6-bisphosphate, a potent positive allosteric effector of 6-phosphofructo-1-kinase (PFK1) [52].
p53 also suppresses glycolysis through the direct transcriptional repression of glucose transporters,
hexokinases, and phosphoglycerate mutase enzymes [54–57]. The regulation of mitochondrial
activity by p53 has also been described. Through the downregulation of the lactate/proton
symporter, monocarboxylate transporter 1 (MCT1), as well as downregulating enzymes that inhibit
pyruvate dehydrogenase (PDH) activity, p53 activity directly limits lactate production and favors the
conversion of pyruvate into acetyl-CoA to fuel the TCA cycle [58,59]. p53 also regulates mitochondria
biogenesis [60,61] and the expression of proteins involved in the assembly and maintenance of
respiratory complexes in the electron transport chain [62,63]. All of these metabolic regulations are lost
upon mutation or deletion of TP53 [64,65].

If all proliferative programs lead to anabolic metabolism, it might be expected that, in comparison
with other cellular phenotypes, metabolism programs should be relatively homogeneous among
tumors. However, we are now keenly aware that this is not the case. Although all oncogenes drive
proliferation, distinct oncogenes activating different signaling networks can variably engage metabolic
pathways, resulting in differential utilization of metabolites [46,66,67]. Also, tumors arising from
different tissues, even if they share the same driver mutations, may present with distinct metabolism
due to the differences in the cell of origin [43,67]. Further, external perturbations to the tissue of origin
or the tumor may influence cell metabolism. Thus, despite their common disposition to proliferate
and spread, tumors can dysregulate and hijack metabolic programs in numerous, highly specific ways
to survive.

4. Metabolic Intratumor Heterogeneity

Because genomic events profoundly affect tumor metabolism, based on the remarkable genomic
and functional heterogeneity described within a single cancer, should we expect a corresponding
degree of intratumor metabolic heterogeneity? Driver mutations usually represent ‘trunk’ genomic
events—aberrations acquired early during progression and shared by the vast majority of cells within
the tumor—which may suggest that little or no functional variability would be expected between tumor
cells. However, considering cell proliferation as an excellent example of a tumor cell phenotype, we
recognize striking variability among cells that share a similar mutational burden, wherein dividing cells
are typically represented by a very small subpopulation. This was first demonstrated in the late 1960s
when Bayard Clarkson conducted pulse-chase experiments with 3H-thymidine directly in patients
with acute myeloid leukemia (AML) to evaluate tumor proliferation in vivo [68,69]. His unbiased
approach demonstrated that, even in this extremely aggressive form of cancer, leukemic blasts were
almost entirely post-mitotic, with only a minority (5%) of cells actively dividing. His work went on to
show that the proliferating cell subpopulation was not homogeneous, but was comprised largely of
fast-cycling cells (doubling time of one day), as well as a smaller proportion of slow-growing cells
(termed “dormant”) that were characterized by infrequent divisions (doubling time lasting from weeks
to months). Similarly, using molecular barcoding to track the evolution of primary human tumors
in vitro and in vivo, our group recently found that, in pancreatic cancer, ~70% to 80% of cells are
post-mitotic and functionally exhausted [31].

The clear evidence that tumor cells can behave so differently, even being mutationally similar
and possessing a potent oncogene such as mutated KRAS, reminds us again of Heppner’s description
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of tumors as complex ecosystems. We know now that tumors, like normal tissues, are organized in
hierarchies consisting of slow-growing stem cells, transiently amplifying progenitors, and a large
number of cells that have exited the cell cycle [70]. Our explosion in understanding epigenetic regulation
at the molecular level in developmental and oncogenic programs has synergized to shed new light on the
intersection between tumor hierarchy and genetic context. In brief, different epigenetic states or degrees
of differentiation characterize the functional compartments of a tumor and, apparently, can override
oncogenic signaling. Indeed, the very same oncogene can lead to distinct outputs (cycling vs.
non-cycling) when cells transition from one chromatin state to another. Several elegant studies
have demonstrated this directly, showing that both tumor cells and nuclei can be successfully
reprogrammed to induced-pluripotent or embryonic stem cells irrespectively of their mutational
burden. These undifferentiated cells are able to differentiate back to apparently ‘normal’ cells, and even
contribute to the development of adult mice when injected into blastocysts [71–73]. Although extreme
examples, these data strongly suggest that epigenetic context and chromatin organization can modulate
the oncogenic activity of genomic events.

Similarly, there is direct evidence that epigenetic states can dictate metabolic programs to
generate functionally heterogeneous subpopulations of cells that share a nearly identical mutational
signature. In pancreatic cancer, our group uncovered the spontaneous emergence of mesenchymal
lineages upon the dysregulation of the chromatin remodeling complex SWI/SNF [74]. Although these
mesenchymal cells harbored the same oncogenic KRAS mutation as their more epithelial counterparts,
these cells were highly aggressive and characterized by low engagement of MAPK signaling and robust
activation of MYC that induces protein anabolism, biomass accumulation, and adaptive response to
stress [74]. Since the publication of this manuscript, continued work to characterize the metabolism
of clonal lineages has uncovered chromatin modifications that are likely regulating the differential
metabolic programs in tumor cells bearing the same genomic aberrations. Another group has recently
described a link between SWI/SNF and tumor cell metabolism, reporting a shift toward oxidative
metabolism in lung tumor cells with SMARCA4 loss or mutation [75]. In melanoma, cells with
high expression of KDM5B (JARID1A), a histone demethylase, have deregulated bioenergetics and
are characterized by a sustained up-regulation of proteins involved in the electron transport chain,
the multiprotein enzymatic complexes responsible for mitochondrial respiration, as well as a significant
down-regulation of glycolytic enzymes [76,77]. Differential expression of KDM5B can thus be used
to identify a small subpopulation of melanoma cells characterized by distinct bioenergetics that are
resistant to various drugs.

Today it is well accepted that tumors rely on mitochondrial respiration, and there is a growing list
of studies that identify specific cell subpopulations characterized by a more oxidative metabolism with
respect to other tumor cells. In particular, slow-growing cells, dormant cells, and cancer stem cells
are generally highly reliant on oxidative phosphorylation [34,78]. In pancreatic cancer, we identified
a subpopulation of cells that were not addicted to the oncogenic signaling and that were dependent
on oxidative metabolism for their survival [79]. Although we first hypothesized that the shift to
oxidative metabolism might reflect the low energetic and anabolic rates of these quiescent cells,
our recent studies support a much more complicated scenario. Using an innovative platform to
generate large cohorts of patient-derived xenotransplants, in which all animals bear tumors with
identical clonal composition or Clonal Replica Tumors (CRTs), we studied heterogeneous populations of
cells and their clonal dynamics in vivo in response to multiple pharmacological perturbations [31].
Through a systematic and quantitative evaluation of the effects of single- and combined-therapies on
tumor clonal composition, we uncovered that relapsed pancreatic tumors previously treated with drugs
with unrelated mechanisms of action (gemcitabine, MEK, and PI3K inhibitors) have completely different
clonal architecture. This strongly suggests that, inside the same human tumor, different populations of
cells characterized by differential sensitivity to drugs preexisted and acquired increased fitness upon
therapeutic challenge. Surprisingly, when we isolated and deeply characterized twelve treatment-naïve
clonal lineages based on their in vivo differential sensitivities to drug treatment, we uncovered
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astonishing heterogeneity with regard to deregulated metabolic pathways. Altered regulation in
nearly every metabolic pathway, including oxidative phosphorylation as well as folate, fatty acid,
essential amino acids, and sugar anabolism and catabolism, were all observed across the different
lineages [31].

Although we do not yet know the full extent or significance of this unexpected variability
among subclonal lineages that populate the same tumor, these data strongly suggest that metabolic
heterogeneity exists and is a pervasive feature of human tumors, at least in pancreatic cancer. Our ability
to characterize, capture, and describe the spectrum of metabolic programs present within a tumor has
been limited due to the low sensitivity of the technical approaches used to investigate metabolism.
Traditional metabolomics and isotope tracing are excellent tools to investigate the average contribution
of metabolites to all of the cells under study, but these techniques cannot assess the heterogeneous
spectrum of metabolic programs that is being reflected in those averages. Major technological
advancements, such as the further development of single-cell metabolomics mimicking the evolution
of genomics and transcriptomics, will be required to precisely define the metabolic landscape of
tumors. Currently, mass spectrometry imaging (MSI) is the most advanced way to explore metabolic
heterogeneity, and both matrix-assisted laser desorption ionization (MALDI) and secondary ion mass
spectrometry (SIMS), which already boast sub-micron resolution, will play an important role in the
further development of this technology [80].

Regional differences in the vasculature, stromal architecture, cell density, and viability contribute
to intratumor spatial variegation that can be identified by positron emission tomography (PET),
CT, and MRI, especially when used in combination with contrast dyes in order to reveal dynamic
changes in blood perfusion. Although these imaging technologies in common use in clinical oncology
enable the detection of structural and, to some extent, functional tumor heterogeneity, the data
collected is not effectively used in clinical practice [81]. Because radiologic images represent more
than simple pictures [82], in recent years, the rapid expansion of computational modeling and
analysis capabilities has led to the development of ‘radiomics’, which are new approaches to extract,
quantitatively analyze, and mine all data from digital images deposited in large shared databases,
with the goal to improve clinical outcomes for patients with cancer [82,83]. This includes also efforts
made by multiple investigational groups to develop new, highly sensitive technologies to investigate
metabolism in vivo, such as hyperpolarized MRI [84,85], or to integrate imaging technologies with
genomics and molecular profiling, which have led to substantial advances in our ability to interpret
complex radiological images in specific disease contexts [81,86–88]. One notable example of the
application of this multipronged approach is the recent work of the research group led by Ralph
DeBerardinis. Building on previous studies assessing the feasibility of isotope tracing in vivo [89–91],
the authors demonstrated the existence of regional metabolic heterogeneity in patients affected
by non-small-cell lung cancer [92]. After the evaluation of glucose uptake, cellularity, and tumor
perfusion of pulmonary lesions through 18fluoro-2-deoxyglucose positron emission tomography
(FDG-PET) and multi-parametric MRI, patients received an intraoperative, continuous infusion of
unilabelled-13C-glucose at the time of surgery. After explant, tumors were subjected to histological
and molecular analysis as well as metabolomics and NMR to trace the contribution of glucose-derived
carbons to tumor metabolism. This comprehensive approach enabled the authors to determine
that glucose utilization, while increased in tumors compared to normal tissue, varies within the
same lesion and is affected by regional perfusion. Specifically, low-perfused tumor regions were
characterized by a more sustained contribution of glucose to central metabolism versus high-perfused
regions, suggesting that tumor cells in less vascularized areas rely more on oxidative metabolism.
These observations were consistent with transcriptomic analyses indicating that low-perfused tumors
were enriched for gene pathways such as glycolysis, mitochondrial respiration, and the TCA cycle,
whereas high-perfused tumors were enriched in the lysosome and amino acid metabolism [92].
These findings suggest that lung tumors sustain mitochondrial metabolism through a variety of
substrates besides glucose, including lactate [93]. In addition to providing an elegant demonstration
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of the metabolic heterogeneity of human tumors, these observations demonstrate that the enhanced
uptake of 18FDG-PET in vivo is not an index of tumor glycolytic addiction; rather, it is the consequence
of increased glucose oxidative metabolism. These pioneering studies represent a direct challenge to
assumptions regarding the Warburg effect in tumor cells that have shaped decades of research into
tumor metabolic programming and encourage continued debate regarding current and historical
approaches to investigate cellular metabolism in the lab [94].

5. Metabolic Heterogeneity in the Tumor Microenvironment

Tumors are complex tissues comprised of a variety of different cells. As a consequence, besides their
intrinsic metabolic requirements, the modulation of cancer cell metabolism can be extrinsically
influenced through interactions with the tumor microenvironment. The complex and intricate
network formed by cancer cells, matrix-depositing proliferating cancer associated-fibroblasts (CAFs),
dysfunctional blood vessels, and immune cells dramatically influence tumor architecture. Inside the
tumor, cells must contend with hypoxia, increased interstitial pressure, augmented stiffness, and nutrient
deprivation, all of which profoundly shape the metabolic requirements of both stromal and cancer
cells [95]. Amongst cells in the tumor, heterogeneity emerges as cells tune their metabolism programs
to compensate for the adverse microenvironment, where nutrient competition leads to the repurposing
of nutrients and metabolites, and cells adopt intrinsic metabolic strategies as well as extrinsic nutrient
sharing mechanisms to support growth and survival. Below, we review the most recent findings
regarding the contribution of two major microenvironmental constituents, CAFs and endothelial cells,
to shaping tumor metabolism.

5.1. Cancer Associated-Fibroblasts (CAFs)

CAFs participate in the host response to tissue injury caused by cancer cells. They have been
shown to critically impact tumorigenesis, and they constitute a synthetic machine that produces many
different tumor components [96]. In addition to paracrine signaling, which is the focus of the following
paragraphs, direct cellular contacts between CAFs and cancer cells influence metabolic programs [97].
Additionally, symbiotic metabolic reprograming between CAFs and cancer cells can also be mediated
by the release of small extracellular particles, such as exosomes [98–100]. Prostate and pancreas
CAF-derived exosomes supply cancer cells with a plethora of metabolites, including amino acids,
lipids, and TCA-cycle intermediates [98,99]. Conversely, breast cancer-derived exosomes can activate
MYC signaling in CAFs through exosome-encapsulated miR105, to induce metabolic reprograming of
stromal cells [100].

Multiple lines of evidence support that the pro-tumorigenic role of CAFs is exerted by
influencing the metabolic microenvironment of tumors. Cancer cells can highjack CAFs to produce
energy-rich metabolites to burn via oxidative phosphorylation, in a process termed the reverse Warburg
effect [101]. Cancer cells induce oxidative stress in CAFs by producing reactive oxygen species (ROS),
which upregulates HIF1α expression in neighboring CAFs due to the inhibition of PHD proteins.
In CAFs, increased HIF1α promotes autophagy and degradation of caveolin-1, which negatively
regulates nitric oxide (NO) production. The consequent excessive production of NO leads to
mitochondria dysfunction, further increases in ROS, mitophagy, and upregulation of glycolysis [102].
As a consequence, CAFs become highly dependent on aerobic glycolysis and, therefore, produce large
quantities of lactate that is then shuttled to cancer cells by the monocarboxylate transporters, MCT4 and
MCT1, on CAFs and cancer cells, respectively [97,103]. TGFβ and PDGF signaling pathways can also
induce a HIF1α-mediated metabolic switch towards glycolysis in CAFs. The stabilization of HIF1α
under normoxic conditions is reached by a downregulation of the isocitrate dehydrogenase 3 complex
(IDH3α). This decreases the intracellular levels of α-ketoglutarate, which, in turn, stabilizes HIF1α by
preventing its PHD2-mediated degradation [104]. Similarly, ketone bodies, such as 3-hydroxy-butyrate,
are also generated as end-products of aerobic glycolysis in CAFs and then utilized by cancer cells to
fuel oxidative phosphorylation and anabolic metabolism [105–107]. This metabolic symbiosis between
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CAFs and cancer cells, however, does not seem to apply to all CAF-cancer cell interactions. Studies have
essentially documented the opposite phenomenon in ovarian and pancreatic cancer, wherein lactate is
released in the microenvironment by glycolytic cancer cells and used by CAFs with low glycolytic
activity to fuel oxidative phosphorylation [108,109].

Numerous studies also point to an important relationship between CAFs and cancer cells with
regard to amino acids. Alanine secreted by autophagic pancreatic stellate cells fuels the TCA cycle of
cancer cells and supports biosynthesis of lipids and non-essential amino acids, therefore serving as
an alternative carbon source that allows cancer cells to bypass the drastic nutrient depletion in the
pancreatic tumor microenvironment [108]. In ovarian tumors, where glutamine is rare, CAFs upregulate
glutamine anabolic pathways to enable glutamine synthesis from atypical sources, such as glutamate
and lactate secreted by ovarian cancer cells. Consistent with these observations, co-targeting glutamine
synthase and glutaminase impairs ovarian tumor growth and metastasis, representing a promising
synthetic lethal approach to target tumor-stroma interdependent metabolism [109]. Stromal glutamine
has also been detected in glioblastoma, where astrocytes can provide glutamine to brain cancer
cells [110], and in pancreas cancer, where adipocytes secrete glutamine that sustains pancreas cancer
cell growth [111]. Stromal release of cysteine has been associated with resistance to chemotherapy in
both chronic lymphoid leukemia and ovarian cancer [112,113]. Also in ovarian cancer, cytotoxic CD8+

T cell activity impairs cysteine and glutathione release by CAFs, thereby synthetizing ovarian cancer
cells to chemotherapy [113]. Conversely, the deprivation of amino acids due to competition among cells
in the tumor microenvironment can generate an immune-suppressive microenvironment that strongly
inhibits the capacity of immune cells to kill cancer cells. Tryptophan catabolism by elevated IDO1 in
CAFs generates immunosuppressive kynurenine metabolites, resulting in T cell anergy and apoptosis
and negative regulation of dendritic cell immunogenicity [114–116]. Similarly, the secretion of Arginase
2 by CAFs can deplete arginine in the tumor microenvironment and impair T cell proliferation and
function [117–119]. Nutrient competition, however, does not only involve the subtraction of these two
amino acids from the microenvironment but can also involve glucose deprivation by high-consuming
cancer cells, with consequent glucose deprivation of antitumor effector T cells [120,121].

5.2. Endothelial Cells

Within a tumor, the increasing demand for oxygen, combined with the establishment of regional
hypoxia, strongly drives the formation of new blood vessels from pre-existing ones through the tightly
regulated process of angiogenesis [122]. Energy-rich metabolites present in the tumor microenvironment
are among the stimuli that can trigger angiogenesis. For example, lactate produced by cancer cells can be
uptaken directly by endothelial cells through the MCT1 transporter and stimulate tumor angiogenesis by
fueling the TCA cycle and inducing an autocrine NF-κB/IL-8 pathway [123,124]. In addition, lactate acts
as a proangiogenic factor by binding and stabilizing NDRG3 (N-MYC downstream-regulated gene 3),
which in turn triggers angiogenic signals during hypoxia [125].

The metabolic profile of tumor-associated endothelial cells has not yet been fully elucidated;
however, endothelial cell metabolism has recently become a subject of intense investigation.
Multiple studies have led to the discovery that the transition of endothelial cells from a quiescent to
an angiogenic profile is accompanied by a defined metabolic switch that plays a fundamental role in
regulating endothelial cell function during angiogenesis. Endothelial cells are highly dependent on
glycolysis rather than oxidative phosphorylation for their ATP production, and further upregulation of
glycolysis occurs during angiogenesis [126]. The preference by endothelial cells for aerobic glycolysis
seems counter-intuitive given their direct exposure to blood and oxygen, but this phenomenon has
been explained by various mechanisms: (1) by consuming less oxygen, endothelial cells leave more
oxygen available to transfer into the tissue; (2) angiogenesis intrinsically requires the formation of new
blood vessels in non-vascularized tissues, which is best supported by cells that can rely on anaerobic
glycolysis; (3) energy production by glycolysis is faster than oxidative phosphorylation; and (4) by
limiting oxidative phosphorylation, endothelial cells are also limiting the formation of ROS [126].
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The glycolytic activator PFKFB3 was shown to regulate not only endothelial cell proliferation but
also cytoskeletal rearrangements required for vessel sprouting, and the inhibition of PFKFB3 was shown
to reduce pathological ocular angiogenesis and normalize tumor vessels, improving chemotherapy
and inhibiting metastasis [126–128]. Oxidation of fatty acids (FAO) has also recently been reported
to sustain the proliferation of endothelial cells involved in vessel sprouting by providing a source of
carbon for de novo synthesis of nucleotides for DNA replication [129]. Genetic and pharmacological
inhibition of CPT1A, an FAO rate-limiting acyl-CoA mitochondrial transporter, has been shown to
improve pathological ocular angiogenesis by the proliferation of endothelial cells [129], but further
studies will be needed to elucidate whether it is conceivable to apply this therapeutic strategy to target
tumor angiogenesis. Interestingly, quiescent endothelial cells present 3-fold higher FAO compared to
proliferating cells, and FAO has a protective role in sustaining the TCA cycle for redox homeostasis
through NADPH regeneration [130]. Inhibition of FAO induces a dysfunctional endothelial cell
phenotype [130] and a pathological mesenchymal profile [131,132], suggesting that FAO is required for
the maintenance of endothelial cell identity.

Recent investigations have uncovered important contributions of amino acids,
particularly glutamine, in the regulation of endothelial cell metabolism and function.
Glutamine metabolism is required for endothelial cell proliferation [133,134], and although
the specific role of glutamine in regulating tumor angiogenesis has not yet been characterized,
depletion of glutamine levels in the tumor microenvironment through inhibition of glutamine
synthase in tumor-associated macrophages resulted in tumor vessel normalization and decreased
metastasis [135]. Glutamine synthase has also been recently described to exert a role in endothelial
cell migration by regulating Rho GTPases during pathological angiogenesis [136]. Although our
comprehension of the metabolic changes associated with endothelial cells and angiogenesis during
tumor development is still in its infancy, all the emerging work clearly indicates that targeting
the metabolism of endothelial cells may represent a promising therapeutic strategy to inhibit
tumor angiogenesis.

6. Metabolic Heterogeneity of Cancer Treatment Responses

Differences in the metabolic flux between normal and tumor cells represent dependencies that can
be exploited to specifically target cancer cells [38]. Metabolic rewiring and redox balance maintenance
constitute the result of finely tuned and interconnected molecular and metabolic pathways that have
been selected to bestow human cells with the ability to react and adapt to external changes quickly.
Tumors exploit this metabolic flexibility to escape environmental pressures, including drug treatment,
which has recently been demonstrated by the inefficiency of cancer metabolism therapies [137,138].
Indeed, cancer cells have proven to be extremely plastic with regard to metabolism, and during
tumor progression or in response to stressors, they are able to switch between alternative metabolic
phenotypes, like glycolysis and oxidative phosphorylation [40].

These distinct metabolic states of glycolytic versus oxidative are governed and coordinated by
master regulators, such as AMP-activated protein kinase (AMPK) and HIF-1, which act as molecular
rheostats guiding intracellular adaptations to external perturbations [139]. However, thanks to
experimentally validated model predictions, it has recently been demonstrated that cancer cells have
the ability to adopt additional metabolic states not typical of normal cells, challenging the conventional
dichotomous classification of tumor metabolism [140]. To manage this complexity, several frameworks
have been constructed that aim to reduce the size of an extensive regulatory circuit to basic components,
and yet capture its fundamental principles and overall network behavior [138,141,142]. Leveraging such
metabolic network-deconvolution strategies has identified multiple genes/proteins that can predict
cancer drug response or resistance [143–146]. For instance, as a central carbon source for the cell,
glucose metabolism is highly articulated. Many enzymes contribute to the series of reactions necessary
to catabolize glucose, and some key components of the glycolytic pathway, such as glucose transporters
(GLUTs), hexokinase (HK), pyruvate kinase M2 (PKM2), and LDHA, have been selectively exploited to
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enable glycolytic inhibition as an anticancer strategy [147–151]. Similarly, dichloroacetate is a pyruvate
dehydrogenase kinase (PDK) inhibitor that is being explored clinically with promising results [152,153].
By inhibiting PDK and, subsequently, pyruvate dehydrogenase (PDH), the rate-limiting step between
glycolysis and the TCA cycle can be targeted to flip a metabolic switch from glycolysis to mitochondrial
respiration and induce apoptosis.

Two additional key metabolic pathways that have been extensively dissected to identify optimal
points of intervention are the fatty acid biosynthesis pathway, which synthesizes lipid synthesis
from basic metabolites like acetyl-CoA and malonyl-CoA, and glutaminolysis, which regulates cell
growth and energy metabolism by converting glutamine to α-ketoglutarate (α-KG). To target fatty acid
biosynthesis, fatty acid synthase (FASN) has emerged as a promising anticancer target. FASN inhibitors
may sensitize cells to chemotherapy or enhance the efficacy of other targeted therapies [154,155],
and several FASN inhibitors have shown single-agent antitumor activity [156,157]. Small molecule
inhibitors of glutaminase (GLS) effectively shut down glutaminolysis, which plays a critical role in
tumor cell metabolism, and several GLS inhibitors are in various stages of pre-clinical or clinical
development [46,158–160].

To maximize the clinical impact of the growing list of metabolic inhibitors in oncology
practice, it is essential that we continue to expand our understanding of tumor metabolic profiles,
heterogeneity, and adaptive response [143,161]. In some cases, the presence of dominant drivers or
tumor suppressor mutations that dysregulate metabolic pathways provides useful context to select
treatment. For example, the antitumor activity of caloric restriction appears to be entirely abrogated by
the activation of PI3K or inactivation of PTEN [162]. Similarly, while dietary restriction of glucose can
inhibit the growth of many cancers, in some contexts, such as in the absence of an isoform of protein
kinase C or in the presence of certain mutant p53 alleles, glucose restriction can paradoxically lead
to more aggressive tumors [163,164]. However, as discussed above, there exists a vast spectrum of
specific metabolic programs both among tumors and within a single tumor. How, then, can specific
metabolic programs be identified to uncover therapeutically relevant dependencies? PET imaging
can measure glucose uptake by tumor cells, but it does not output functional information regarding
the utilization of metabolic pathways inside the cells [165]. Other noninvasive approaches, such as
magnetic resonance spectroscopy (MRS), which can measure metabolite concentrations in tumors,
combined with metabolomic profiling of serum or urine, may produce a data package that can guide
the selection of appropriate targeted therapy(ies) in a tumor- or patient-specific fashion [166,167].
Additionally, tools such as nanoproteomic assays could be developed to monitor target gene expression
and quantify signaling in rare tumor cell populations, and such has already been accomplished for
AKT1/2/3 and 4EBP1 in acute myeloid leukemia cells [168].

Both pre-clinical and clinical studies are clear that even effective targeted metabolic therapies
cannot produce durable disease remissions or cures, and understanding how cancer cells rewire
their metabolism under pressure—how “compensatory” metabolism negatively impacts treatment
responses—is an area of intense investigation [145]. As a very direct example of this, the use of
mitochondrial inhibitors such as oligomycin induces a glycolytic phenotype, whereas glycolytic
inhibitors enhance the activity of AMPK and induce an oxidative phenotype [169]. This metabolic
plasticity can be thwarted with dual inhibition of both glycolytic and mitochondrial respiration,
as clearly exemplified by a recent study in which the authors elegantly demonstrated that metformin plus
fasting-induced hypoglycemia synergistically impacts tumor growth [170]. Other recent studies have
shown that a subset of BRAF-mutated melanoma cells that are resistant to BRAF inhibitors can activate
the MITF-driven expression of PGC1a to upregulate mitochondrial respiration to evade therapy [171].
This phenomenon has been observed upon MEK or PI3K inhibitor treatment in oncogenic KRAS-driven
tumors, such as pancreatic cancer, as well [79]. Moreover, there are data to support that the effects of
BRAF inhibition are maximized when melanoma cells are heavily reliant on glycolysis and/or when
depletion of mitochondria forces cells to solely utilize glycolysis [172]. Together, these studies suggest
identifying and targeting the major compensatory metabolic pathways induced upon drug treatment
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can enhance therapeutic benefits by illuminating rational drug combinations. Such approaches are
also certain to contribute to our ability to profile patient tumors in real-time to deliver personalized
therapeutic regimens.

The effectiveness of metabolic or cytotoxic therapies is strongly influenced by spatial heterogeneity
with regard to both the tumor structure/microenvironment and drug diffusion [173]. For example,
selective intratumoral lethality, or intra-tumor metabolic zonation, is a recently described phenomenon
in which a drug selectively kills less aggressive clones while sparing more malignant populations
based on their relative distance from blood vessels, and it has been confirmed to affect antitumor
drug effects in a majority of solid tumors [174,175]. Similarly, acidification of intratumoral regions by
cytotoxic agents or due to proximity to areas where extensive cell death has occurred can mediate
invasion by metabolically distinct neighbor clones and impose selective pressure to define tumor
evolution [176,177].

7. Concluding Remarks

Our knowledge of the mechanisms by which phenotypic, temporal, spatial, and molecular
heterogeneity influence tumor growth and drug response, represent decades of attempts to deliver
pharmacological cures to patients with cancer. It is clear that one of the greatest challenges in
current oncology practice is to develop methods to characterize and exploit the metabolic and other
cancer-specific programs that endow tumors with the ability to adapt to and evade therapeutic assault.
By understanding the highly heterogeneous and plastic microenvironment of tumors, and through
continued characterization of oncogenic reprogramming of cancer cells across tumor types, we can
aim toward the development of biomarkers and techniques that can support the real-time analysis
of clinical samples to design personalized therapeutic drug regimens. Undoubtedly, targeting the
multitude of potential metabolic strategies that tumors can activate will play an essential role in these
efforts as the field continues to push forward.
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