13 pages, 2525 KiB  
Article
Expression of Proteolytic Enzymes by Small Cell Lung Cancer Circulating Tumor Cell Lines
by Barbara Rath, Lukas Klameth, Adelina Plangger, Maximilian Hochmair, Ernst Ulsperger, Ihor Huk, Robert Zeillinger and Gerhard Hamilton
Cancers 2019, 11(1), 114; https://doi.org/10.3390/cancers11010114 - 19 Jan 2019
Cited by 21 | Viewed by 6273
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and [...] Read more.
Small cell lung cancer (SCLC) is an aggressive type of lung cancer which disseminates vigorously and has a dismal prognosis. Metastasis of SCLC is linked to an extremely high number of circulating tumor cells (CTCs), which form chemoresistant spheroids, termed tumorospheres. Intravasation and extravasation during tumor spread requires the activity of a number of proteases to disintegrate the stroma and vascular tissue. Generation of several permanent SCLC CTC lines allowed us to screen for the expression of 35 proteases using Western blot arrays. Cell culture supernatants of two CTC lines, namely BHGc7 and 10, were analyzed for secreted proteases, including matrix metalloproteinases (MMPs), ADAM/TS, cathepsins, kallikreins, and others, and compared to proteases expressed by SCLC cell lines (GLC14, GLC16, NCI-H526 and SCLC26A). In contrast to NCI-H526 and SCLC26A, MMP-9 was highly expressed in the two CTC lines and in GLC16 derived of a relapse. Furthermore, cathepsins (S, V, X/Z/P, A and D) were highly expressed in the CTC lines, whereas ADAM/TS and kallikreins were not detectable. In conclusion, SCLC CTCs express MMP-9 and a range of cathepsins for proteolysis and, aside from tissue degradation, these enzymes are involved in cell signaling, survival, and the chemoresistance of tumor cells. Full article
(This article belongs to the Special Issue Circulating Tumor Cells (CTCs))
Show Figures

Figure 1

16 pages, 20403 KiB  
Article
High Frequency of ERBB2 Activating Mutations in Invasive Lobular Breast Carcinoma with Pleomorphic Features
by Juan Manuel Rosa-Rosa, Tamara Caniego-Casas, Susanna Leskela, Eva Cristobal, Silvia González-Martínez, Esther Moreno-Moreno, Elena López-Miranda, Esther Holgado, Belén Pérez-Mies, Pilar Garrido and José Palacios
Cancers 2019, 11(1), 74; https://doi.org/10.3390/cancers11010074 - 11 Jan 2019
Cited by 39 | Viewed by 6270
Abstract
Background: Characterisation of molecular alterations of pleomorphic lobular carcinoma (PLC), an aggressive subtype of invasive lobular carcinoma (ILC), have not been yet completely accomplished. Methods: To investigate the molecular alterations of invasive lobular carcinoma with pleomorphic features, a total of 39 tumour samples [...] Read more.
Background: Characterisation of molecular alterations of pleomorphic lobular carcinoma (PLC), an aggressive subtype of invasive lobular carcinoma (ILC), have not been yet completely accomplished. Methods: To investigate the molecular alterations of invasive lobular carcinoma with pleomorphic features, a total of 39 tumour samples (in situ and invasive lesions and lymph node metastases) from 27 patients with nuclear grade 3 invasive lobular carcinomas were subjected to morphological, immunohistochemical and massive parallel sequencing analyses. Results: Our observations indicated that invasive lobular carcinomas with pleomorphic features were morphologically and molecularly heterogeneous. All cases showed absence or aberrant expression of E-cadherin and abnormal expression of β-catenin and p120. CDH1 (89%), PIK3CA (33%) and ERRB2 (26%) were the most common mutated genes. ERBB2 mutations preferentially affected the tyrosine-kinase activity domain, being the most frequent the targetable mutation p.L755S (57%). We also observed higher frequency of mutations in ARID1B, KMT2C, MAP3K1, TP53 and ARID1A in PLC than previously reported in classic ILC. Alterations related to progression from in situ to invasive carcinoma and/or to lymph node metastases included TP53 mutation, amplification of PIK3CA and CCND1 and loss of ARID1A expression. Conclusions: The high frequency of ERBB2 mutations observed suggests that ERBB2 mutation testing should be considered in all invasive lobular carcinomas with nuclear grade 3. Full article
(This article belongs to the Special Issue New Insights into Breast and Endometrial Cancer)
Show Figures

Figure 1

19 pages, 4600 KiB  
Article
Non-Invasive Fluorescent Monitoring of Ovarian Cancer in an Immunocompetent Mouse Model
by Amy L. Wilson, Kirsty L. Wilson, Maree Bilandzic, Laura R. Moffitt, Ming Makanji, Mark D. Gorrell, Martin K. Oehler, Adam Rainczuk, Andrew N. Stephens and Magdalena Plebanski
Cancers 2019, 11(1), 32; https://doi.org/10.3390/cancers11010032 - 31 Dec 2018
Cited by 18 | Viewed by 6188
Abstract
Ovarian cancers (OCs) are the most lethal gynaecological malignancy, with high levels of relapse and acquired chemo-resistance. Whilst the tumour–immune nexus controls both cancer progression and regression, the lack of an appropriate system to accurately model tumour stage and immune status has hampered [...] Read more.
Ovarian cancers (OCs) are the most lethal gynaecological malignancy, with high levels of relapse and acquired chemo-resistance. Whilst the tumour–immune nexus controls both cancer progression and regression, the lack of an appropriate system to accurately model tumour stage and immune status has hampered the validation of clinically relevant immunotherapies and therapeutic vaccines to date. To address this need, we stably integrated the near-infrared phytochrome iRFP720 at the ROSA26 genomic locus of ID8 mouse OC cells. Intrabursal ovarian implantation into C57BL/6 mice, followed by regular, non-invasive fluorescence imaging, permitted the direct visualization of tumour mass and distribution over the course of progression. Four distinct phases of tumour growth and dissemination were detectable over time that closely mimicked clinical OC progression. Progression-related changes in immune cells also paralleled typical immune profiles observed in human OCs. Specifically, we observed changes in both the CD8+ T cell effector (Teff):regulatory (Treg) ratio, as well as the dendritic cell (DC)-to-myeloid derived suppressor cell (MDSC) ratio over time across multiple immune cell compartments and in peritoneal ascites. Importantly, iRFP720 expression had no detectible influence over immune profiles. This new model permits non-invasive, longitudinal tumour monitoring whilst preserving host–tumour immune interactions, and allows for the pre-clinical assessment of immune profiles throughout disease progression as well as the direct visualization of therapeutic responses. This simple fluorescence-based approach provides a useful new tool for the validation of novel immuno-therapeutics against OC. Full article
(This article belongs to the Special Issue Cancer Vaccines: Research and Applications)
Show Figures

Figure 1

21 pages, 11989 KiB  
Article
FOSB–PCDHB13 Axis Disrupts the Microtubule Network in Non-Small Cell Lung Cancer
by Chen-Hung Ting, Kang-Yun Lee, Sheng-Ming Wu, Po-Hao Feng, Yao-Fei Chan, Yi-Chun Chen and Jyh-Yih Chen
Cancers 2019, 11(1), 107; https://doi.org/10.3390/cancers11010107 - 17 Jan 2019
Cited by 22 | Viewed by 6107
Abstract
Non-small cell lung cancer (NSCLC) is among the leading causes of human mortality. One reason for high rates of NSCLC mortality is that drug resistance is a major problem for both conventional chemotherapies and less-toxic targeted therapies. Thus, novel mechanistic insights into disease [...] Read more.
Non-small cell lung cancer (NSCLC) is among the leading causes of human mortality. One reason for high rates of NSCLC mortality is that drug resistance is a major problem for both conventional chemotherapies and less-toxic targeted therapies. Thus, novel mechanistic insights into disease pathogenesis may benefit the development of urgently needed therapies. Here we show that FBJ murine osteosarcoma viral oncogene homolog B (FOSB) was induced by an antimicrobial peptide, tilapia piscidin-4 (TP4), through the dysregulation of mitochondrial Ca2+ homeostasis in NSCLC cells. Transcriptomic, chromatin immunoprecipitation quantitative PCR, and immunocytochemical studies reveal that protocadherin-β13 (PCDHB13) as a target of FOSB that was functionally associated with microtubule. Overexpression of either PCDHB13 or FOSB attenuated NSCLC growth and survival in vitro and in vivo. Importantly, downregulation of both FOSB and PCDHB13 was observed in NSCLC patients and was negatively correlated with pathological grade. These findings introduce the FOSB–PCDHB13 axis as a novel tumor suppressive pathway in NSCLC. Full article
Show Figures

Figure 1

11 pages, 388 KiB  
Article
Increased Mortality in SDHB but Not in SDHD Pathogenic Variant Carriers
by Johannes A. Rijken, Leonie T. van Hulsteijn, Olaf M. Dekkers, Nicolasine D. Niemeijer, C. René Leemans, Karin Eijkelenkamp, Anouk N.A. van der Horst-Schrivers, Michiel N. Kerstens, Anouk van Berkel, Henri J.L.M. Timmers, Henricus P.M. Kunst, Peter H.L.T. Bisschop, Koen M.A. Dreijerink, Marieke F. van Dooren, Frederik J. Hes, Jeroen C. Jansen, Eleonora P.M. Corssmit and Erik F. Hensen
Cancers 2019, 11(1), 103; https://doi.org/10.3390/cancers11010103 - 17 Jan 2019
Cited by 19 | Viewed by 6048
Abstract
Germline mutations in succinate dehydrogenase subunit B and D (SDHB and SDHD) are predisposed to hereditary paraganglioma (PGL) and pheochromocytoma (PHEO). The phenotype of pathogenic variants varies according to the causative gene. In this retrospective study, we estimate the mortality of [...] Read more.
Germline mutations in succinate dehydrogenase subunit B and D (SDHB and SDHD) are predisposed to hereditary paraganglioma (PGL) and pheochromocytoma (PHEO). The phenotype of pathogenic variants varies according to the causative gene. In this retrospective study, we estimate the mortality of a nationwide cohort of SDHB variant carriers and that of a large cohort of SDHD variant carriers and compare it to the mortality of a matched cohort of the general Dutch population. A total of 192 SDHB variant carriers and 232 SDHD variant carriers were included in this study. The Standard Mortality Ratio (SMR) for SDHB mutation carriers was 1.89, increasing to 2.88 in carriers affected by PGL. For SDHD variant carriers the SMR was 0.93 and 1.06 in affected carriers. Compared to the general population, mortality seems to be increased in SDHB variant carriers, especially in those affected by PGL. In SDHD variant carriers, the mortality is comparable to that of the general Dutch population, even if they are affected by PGL. This insight emphasizes the significance of DNA-testing in all PGL and PHEO patients, since different clinical risks may warrant gene-specific management strategies. Full article
(This article belongs to the Special Issue Pheochromocytoma (PHEO) and Paraganglioma (PGL))
Show Figures

Figure 1

19 pages, 3315 KiB  
Article
The Potential Mechanism of Bufadienolide-Like Chemicals on Breast Cancer via Bioinformatics Analysis
by Yingbo Zhang, Xiaomin Tang, Yuxin Pang, Luqi Huang, Dan Wang, Chao Yuan, Xuan Hu and Liping Qu
Cancers 2019, 11(1), 91; https://doi.org/10.3390/cancers11010091 - 14 Jan 2019
Cited by 22 | Viewed by 6026
Abstract
Bufadienolide-like chemicals are mostly composed of the active ingredient of Chansu and they have anti-inflammatory, tumor-suppressing, and anti-pain activities; however, their mechanism is unclear. This work used bioinformatics analysis to study this mechanism via gene expression profiles of bufadienolide-like chemicals: (1) Differentially expressed [...] Read more.
Bufadienolide-like chemicals are mostly composed of the active ingredient of Chansu and they have anti-inflammatory, tumor-suppressing, and anti-pain activities; however, their mechanism is unclear. This work used bioinformatics analysis to study this mechanism via gene expression profiles of bufadienolide-like chemicals: (1) Differentially expressed gene identification combined with gene set variation analysis, (2) similar small -molecule detection, (3) tissue-specific co-expression network construction, (4) differentially regulated sub-networks related to breast cancer phenome, (5) differentially regulated sub-networks with potential cardiotoxicity, and (6) hub gene selection and their relation to survival probability. The results indicated that bufadienolide-like chemicals usually had the same target as valproic acid and estradiol, etc. They could disturb the pathways in RNA splicing, the apoptotic process, cell migration, extracellular matrix organization, adherens junction organization, synaptic transmission, Wnt signaling, AK-STAT signaling, BMP signaling pathway, and protein folding. We also investigated the potential cardiotoxicity and found a dysregulated subnetwork related to membrane depolarization during action potential, retinoic acid receptor binding, GABA receptor binding, positive regulation of nuclear division, negative regulation of viral genome replication, and negative regulation of the viral life cycle. These may play important roles in the cardiotoxicity of bufadienolide-like chemicals. The results may highlight the potential anticancer mechanism and cardiotoxicity of Chansu, and could also explain the ability of bufadienolide-like chemicals to be used as hormones and anticancer and vasoprotectives agents. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Cancers)
Show Figures

Figure 1

17 pages, 3255 KiB  
Article
Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials
by Natalie Galanina, Rafael Bejar, Michael Choi, Aaron Goodman, Matthew Wieduwilt, Carolyn Mulroney, Lisa Kim, Huwate Yeerna, Pablo Tamayo, Jo-Anne Vergilio, Tariq I. Mughal, Vincent Miller, Catriona Jamieson and Razelle Kurzrock
Cancers 2019, 11(1), 11; https://doi.org/10.3390/cancers11010011 - 21 Dec 2018
Cited by 25 | Viewed by 5981
Abstract
Background: The translation of genomic discoveries to the clinic is the cornerstone of precision medicine. However, incorporating next generation sequencing (NGS) of hematologic malignancies into clinical management remains limited. Methods: We describe 235 patients who underwent integrated NGS profiling (406 genes) [...] Read more.
Background: The translation of genomic discoveries to the clinic is the cornerstone of precision medicine. However, incorporating next generation sequencing (NGS) of hematologic malignancies into clinical management remains limited. Methods: We describe 235 patients who underwent integrated NGS profiling (406 genes) and analyze the alterations and their potential actionability. Results: Overall, 227 patients (96.5%) had adequate tissue. Most common diagnoses included myelodysplastic syndrome (22.9%), chronic lymphocytic leukemia (17.2%), non-Hodgkin lymphoma (13.2%), acute myeloid leukemia (11%), myeloproliferative neoplasm (9.2%), acute lymphoblastic leukemia (8.8%), and multiple myeloma (7.5%). Most patients (N = 197/227 (87%)) harbored ≥1 genomic alteration(s); 170/227 (75%), ≥1 potentially actionable alteration(s) targetable by an FDA-approved (mostly off-label) or an investigational agent. Altogether, 546 distinct alterations were seen, most commonly involving TP53 (10.8%), TET2 (4.6%), and DNMT3A (4.2%). The median tumor mutational burden (TMB) was low (1.7 alterations/megabase); 12% of patients had intermediate or high TMB (higher TMB correlates with favorable response to anti-PD1/PDL1 inhibition in solid tumors). In conclusion, 96.5% of patients with hematologic malignancies have adequate tissue for comprehensive genomic profiling. Most patients had unique molecular signatures, and 75% had alterations that may be pharmacologically tractable with gene- or immune-targeted agents. Full article
(This article belongs to the Special Issue Application of Next-Generation Sequencing in Cancers)
Show Figures

Figure 1

8 pages, 687 KiB  
Article
Vonoprazan-Based Third-Line Therapy Has a Higher Eradication Rate against Sitafloxacin-Resistant Helicobacter pylori
by Yoshimasa Saito, Kaho Konno, Moeka Sato, Masaru Nakano, Yukako Kato, Hidetsugu Saito and Hiroshi Serizawa
Cancers 2019, 11(1), 116; https://doi.org/10.3390/cancers11010116 - 19 Jan 2019
Cited by 31 | Viewed by 5966
Abstract
Eradication of Helicobacter pylori (H. pylori) is an effective strategy for preventing various gastrointestinal diseases such as gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. However, the eradication success rate is decreasing because of a recent increase in drug-resistant strains of [...] Read more.
Eradication of Helicobacter pylori (H. pylori) is an effective strategy for preventing various gastrointestinal diseases such as gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma. However, the eradication success rate is decreasing because of a recent increase in drug-resistant strains of H. pylori. Here, we evaluated the success rate of eradication therapy with vonoprazan (VPZ), a new potassium-competitive acid blocker, against drug-resistant H. pylori. In total, 793 patients who received H. pylori eradication therapy were investigated retrospectively. All underwent esomeprazole (EPZ)-based triple therapy (n = 386) or VPZ-based triple therapy (n = 407) for first-, second- and third-line H. pylori eradication for 7 days. The overall success rates of first- and third-line H. pylori eradication were significantly higher for VPZ-based triple therapy (88.4% and 93.0%, respectively, per protocol (PP)) than for EPZ-based triple therapy (69.5% and 56.5%, respectively, PP). Moreover, the success rates of first- and third-line eradication of clarithromycin (CLR)- and sitafloxacin (STFX)-resistant H. pylori were significantly higher for VPZ-based triple therapy (72.0% and 91.7%, PP) than for EPZ-based triple therapy (38.5% and 20.0%, PP). In addition, patient age did not affect the eradication rate of VPZ-based first-line therapy, whereas the success rate of EPZ-based therapy was lower in patients under 65 years of age. Our results clearly demonstrated that VPZ-based therapy achieved a higher eradication rate even against CLR- and STFX-resistant H. pylori, and that patient age did not affect the eradication rate of VPZ-based therapy. These findings suggest that dual therapy using VPZ and amoxicillin may be sufficient for standard H. pylori eradication, and may thus also be beneficial for avoiding antibiotic misuse. Full article
(This article belongs to the Special Issue Helicobacter pylori Associated Cancer)
Show Figures

Figure 1

12 pages, 1548 KiB  
Article
Influence of Vitamin D in Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab
by Jessica Cusato, Carlo Genova, Cristina Tomasello, Paolo Carrega, Selene Ottonello, Gabriella Pietra, Maria Cristina Mingari, Irene Cossu, Erika Rijavec, Anna Leggieri, Giovanni Di Perri, Maria Giovanna Dal Bello, Simona Coco, Simona Boccardo, Guido Ferlazzo, Francesco Grossi and Antonio D’Avolio
Cancers 2019, 11(1), 125; https://doi.org/10.3390/cancers11010125 - 21 Jan 2019
Cited by 15 | Viewed by 5906
Abstract
Nivolumab is one of the most commonly used monoclonal antibodies for advanced non-small cell lung cancer treatment, to the extent that the presence of its anti-antibody is considered a negative prognostic factor. Vitamin D (VD) modulates expression of the genes involved in drug [...] Read more.
Nivolumab is one of the most commonly used monoclonal antibodies for advanced non-small cell lung cancer treatment, to the extent that the presence of its anti-antibody is considered a negative prognostic factor. Vitamin D (VD) modulates expression of the genes involved in drug metabolism and elimination. Immune system regulation and immunodeficiency is frequent in non-small cell lung cancer patients. To date, no data have been reported about the relationship between nivolumab and VD. The aim of this study was to quantify plasma 25-hydroxyVD (25-VD) and 1,25-VD, nivolumab, and its anti-antibody before starting treatment (baseline) and at 15, 45 and 60 days of therapy. VD-pathway-associated gene single nucleotide polymorphisms (SNPs) were also evaluated. Molecules were quantified through enzyme-linked immunosorbent assay, and SNPs through real-time PCR. Forty-five patients were enrolled. Median nivolumab concentrations were 12.5 μg/mL, 22.3 μg/mL and 27.1 μg/mL at 15, 45 and 60 days respectively. No anti-nivolumab antibodies were found. Correlations were observed between nivolumab concentrations and 25-VD levels. Nivolumab concentrations were affected by VD-pathway-related gene SNPs. VDBP AC/CC genotype and baseline 25-VD < 10 ng/mL predicted a nivolumab concentration cut-off value of <18.7 μg/mL at 15 days, which was associated with tumor progression. This is the first study showing VD marker predictors of nivolumab concentrations in a real-life context of non-small cell lung cancer treatment. Full article
Show Figures

Figure 1

18 pages, 16820 KiB  
Article
Antrocin Sensitizes Prostate Cancer Cells to Radiotherapy through Inhibiting PI3K/AKT and MAPK Signaling Pathways
by Yu-An Chen, David T. W. Tzeng, Yi-Ping Huang, Chun-Jung Lin, U-Ging Lo, Chia-Lin Wu, Ho Lin, Jer-Tsong Hsieh, Chih-Hsin Tang and Chih-Ho Lai
Cancers 2019, 11(1), 34; https://doi.org/10.3390/cancers11010034 - 31 Dec 2018
Cited by 43 | Viewed by 5902
Abstract
Radiotherapy is one of the most common treatment options for local or regional advanced prostate cancer (PCa). Importantly, PCa is prone to radioresistance and often develops into malignancies after long-term radiotherapy. Antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, possesses pharmacological efficacy [...] Read more.
Radiotherapy is one of the most common treatment options for local or regional advanced prostate cancer (PCa). Importantly, PCa is prone to radioresistance and often develops into malignancies after long-term radiotherapy. Antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, possesses pharmacological efficacy against various cancer types; however, its therapeutic potential requires comprehensive exploration, particularly in radioresistant PCa cells. In this study, we emphasized the effects of antrocin on radioresistant PCa cells and addressed the molecular mechanism underlying the radiosensitization induced by antrocin. Our results showed that a combination treatment with antrocin and ionizing radiation (IR) synergistically inhibited cell proliferation and induced apoptosis in radioresistant PCa cells. We further demonstrated that antrocin downregulated PI3K/AKT and MAPK signaling pathways as well as suppressed type 1 insulin-like growth factor 1 receptor (IGF-1R)-mediated induction of β-catenin to regulate cell cycle and apoptosis. Using xenograft mouse models, we showed that antrocin effectively enhanced radiotherapy in PCa. Our study demonstrates that antrocin sensitizes PCa to radiation through constitutive suppression of IGF-1R downstream signaling, revealing that it can be developed as a potent therapeutic agent to overcome radioresistant PCa. Full article
(This article belongs to the Special Issue New Developments in Radiotherapy)
Show Figures

Figure 1

18 pages, 3126 KiB  
Article
Transfection with GLS2 Glutaminase (GAB) Sensitizes Human Glioblastoma Cell Lines to Oxidative Stress by a Common Mechanism Involving Suppression of the PI3K/AKT Pathway
by Ewelina Majewska, Javier Márquez, Jan Albrecht and Monika Szeliga
Cancers 2019, 11(1), 115; https://doi.org/10.3390/cancers11010115 - 19 Jan 2019
Cited by 21 | Viewed by 5852
Abstract
GLS-encoded glutaminase promotes tumorigenesis, while GLS2-encoded glutaminase displays tumor-suppressive properties. In glioblastoma (GBM), the most aggressive brain tumor, GLS is highly expressed and in most cases GLS2 is silenced. Previously, it was shown that transfection with a sequence encoding GAB, the [...] Read more.
GLS-encoded glutaminase promotes tumorigenesis, while GLS2-encoded glutaminase displays tumor-suppressive properties. In glioblastoma (GBM), the most aggressive brain tumor, GLS is highly expressed and in most cases GLS2 is silenced. Previously, it was shown that transfection with a sequence encoding GAB, the main GLS2 isoform, decreased the survival, growth, and ability to migrate of human GBM cells T98G and increased their sensitivity towards an alkylating agent temozolomide (TMZ) and oxidative stress compared to the controls, by a not well-defined mechanism. In this study we report that GAB transfection inhibits growth and increases susceptibility towards TMZ and H2O2-mediated oxidative stress of two other GBM cell lines, U87MG and LN229. We also show that in GAB-transfected cells treated with H2O2, the PI3K/AKT pathway is less induced compared to the pcDNA-transfected counterparts and that pretreatment with PDGF-BB, an activator of AKT, protects GAB-transfected cells from death caused by the H2O2 treatment. In conclusion, our results show that (i) GAB suppresses the malignant phenotype of the GBM cells of different tumorigenic potentials and genetic backgrounds and (ii) the GAB-mediated increase of sensitivity to oxidative stress is causally related to the inhibition of the PI3K/AKT pathway. The upregulation of the GLS2 expression and the inhibition of the PI3K/AKT pathway may become a novel combined therapeutic strategy for anti-glioma preclinical investigations. Full article
Show Figures

Figure 1

15 pages, 3436 KiB  
Article
Mifepristone Overcomes Tumor Resistance to Temozolomide Associated with DNA Damage Repair and Apoptosis in an Orthotopic Model of Glioblastoma
by Monserrat Llaguno-Munive, Mario Romero-Piña, Janeth Serrano-Bello, Luis A. Medina, Norma Uribe-Uribe, Ana Maria Salazar, Mauricio Rodríguez-Dorantes and Patricia Garcia-Lopez
Cancers 2019, 11(1), 16; https://doi.org/10.3390/cancers11010016 - 22 Dec 2018
Cited by 16 | Viewed by 5769
Abstract
The standard treatment for glioblastoma multiforme (GBM) is surgery followed by chemo/radiotherapy. A major limitation on patient improvement is the high resistance of tumors to drug treatment, likely responsible for their subsequent recurrence and rapid progression. Therefore, alternatives to the standard therapy are [...] Read more.
The standard treatment for glioblastoma multiforme (GBM) is surgery followed by chemo/radiotherapy. A major limitation on patient improvement is the high resistance of tumors to drug treatment, likely responsible for their subsequent recurrence and rapid progression. Therefore, alternatives to the standard therapy are necessary. The aim of the present study was to evaluate whether mifepristone, an antihormonal agent, has a synergistic effect with temozolomide (used in standard therapy for gliomas). Whereas the mechanism of temozolomide involves damage to tumor DNA leading to apoptosis, tumor resistance is associated with DNA damage repair through the O6-methylguanine-DNA-methyltransferase (MGMT) enzyme. Temozolomide/mifepristone treatment, herein examined in Wistar rats after orthotopically implanting C6 glioma cells, markedly reduced proliferation. This was evidenced by a decreased level of the following parameters: a proliferation marker (Ki-67), a tumor growth marker (18F-fluorothymidine uptake, determined by PET/CT images), and the MGMT enzyme. Increased apoptosis was detected by the relative expression of related proteins, (e.g. Bcl-2 (B-cell lymphoma 2), Bax (bcl-2-like protein 4) and caspase-3). Thus, greater apoptosis of tumor cells caused by their diminished capacity to repair DNA probably contributed significantly to the enhanced activity of temozolomide. The results suggest that mifepristone could possibly act as a chemo-sensitizing agent for temozolomide during chemotherapy for GBM. Full article
(This article belongs to the Special Issue Glioblastoma: State of the Art and Future Perspectives)
Show Figures

Figure 1

12 pages, 1524 KiB  
Article
A DNA Vaccine Encoding SA-4-1BBL Fused to HPV-16 E7 Antigen Has Prophylactic and Therapeutic Efficacy in a Cervical Cancer Mouse Model
by Rodolfo Garza-Morales, Jose J. Perez-Trujillo, Elvis Martinez-Jaramillo, Odila Saucedo-Cardenas, Maria J. Loera-Arias, Aracely Garcia-Garcia, Humberto Rodriguez-Rocha, Esma Yolcu, Haval Shirwan, Jorge G. Gomez-Gutierrez and Roberto Montes-de-Oca-Luna
Cancers 2019, 11(1), 96; https://doi.org/10.3390/cancers11010096 - 15 Jan 2019
Cited by 18 | Viewed by 5698
Abstract
The SA-4-1BBL, an oligomeric novel form of the natural ligand for the 4-1BB co-stimulatory receptor of the tumor necrosis factor (TNF) superfamily, as a recombinant protein has potent pleiotropic effects on cells of innate, adaptive, and regulatory immunity with demonstrated therapeutic efficacy in [...] Read more.
The SA-4-1BBL, an oligomeric novel form of the natural ligand for the 4-1BB co-stimulatory receptor of the tumor necrosis factor (TNF) superfamily, as a recombinant protein has potent pleiotropic effects on cells of innate, adaptive, and regulatory immunity with demonstrated therapeutic efficacy in several tumor models. However, the production of soluble form of SA-4-1BBL protein and quality control is time and resource intensive and face various issues pertinent to clinical development of biologics. The present study sought to take advantage of the simplicity and translatability of DNA-based vaccines for the production and delivery of SA-4-1BBL for cancer immune prevention and therapy. A chimeric HPV-16 E7 DNA vaccine (SP-SA-E7-4-1BBL) was constructed that contains the signal peptide (SP) of calreticulin (CRT), streptavidin (SA) domain of SA-4-1BBL, HPV-16 E7 double mutant gene, and the extracellular domain of mouse 4-1BBL. Immunization by gene gun with SP-SA-E7-4-1BBL induced greater prophylactic as well as therapeutic effects in C57BL/6 mice against TC-1 tumor model compared with immunization with E7wt, SP-SA-4-1BBL or reference-positive control CRT-E7wt. The therapeutic efficacy of the DNA vaccine was associated with increased frequency of E7-specific T cells producing interferon (IFN)-γ. Overall, our data suggest that this DNA-based vaccine strategy might represent a translational approach because it provides a simpler and versatile alternative to a subunit vaccine based on SA-4-1BBL and E7 proteins. Full article
(This article belongs to the Special Issue Cancer Vaccines: Research and Applications)
Show Figures

Figure 1

20 pages, 5080 KiB  
Article
Stemness, Pluripotentiality, and Wnt Antagonism: sFRP4, a Wnt antagonist Mediates Pluripotency and Stemness in Glioblastoma
by Gurubharathi Bhuvanalakshmi, Naisarg Gamit, Manasi Patil, Frank Arfuso, Gautam Sethi, Arun Dharmarajan, Alan Prem Kumar and Sudha Warrier
Cancers 2019, 11(1), 25; https://doi.org/10.3390/cancers11010025 - 27 Dec 2018
Cited by 61 | Viewed by 5665
Abstract
Background: Chemotherapeutic resistance of glioblastoma has been attributed to a self-renewing subpopulation, the glioma stem cells (GSCs), which is known to be maintained by the Wnt β−catenin pathway. Our previous findings demonstrated that exogeneous addition of the Wnt antagonist, secreted fizzled-related protein 4 [...] Read more.
Background: Chemotherapeutic resistance of glioblastoma has been attributed to a self-renewing subpopulation, the glioma stem cells (GSCs), which is known to be maintained by the Wnt β−catenin pathway. Our previous findings demonstrated that exogeneous addition of the Wnt antagonist, secreted fizzled-related protein 4 (sFRP4) hampered stem cell properties in GSCs. Methods: To understand the molecular mechanism of sFRP4, we overexpressed sFRP4 (sFRP4 OE) in three human glioblastoma cell lines U87MG, U138MG, and U373MG. We also performed chromatin immunoprecipitation (ChIP) sequencing of sFRP4 OE and RNA sequencing of sFRP4 OE and sFRP4 knocked down U87 cells. Results: We observed nuclear localization of sFRP4, suggesting an unknown nuclear role. ChIP-sequencing of sFRP4 pulldown DNA revealed a homeobox Cphx1, related to the senescence regulator ETS proto-oncogene 2 (ETS2). Furthermore, miRNA885, a p53-mediated apoptosis inducer, was upregulated in sFRP4 OE cells. RNA sequencing analysis suggested that sFRP4-mediated apoptosis is via the Fas-p53 pathway by activating the Wnt calcium and reactive oxygen species pathways. Interestingly, sFRP4 OE cells had decreased stemness, but when knocked down in multipotent mesenchymal stem cells, pluripotentiality was induced and the Wnt β-catenin pathway was upregulated. Conclusions: This study unveils a novel nuclear role for sFRP4 to promote apoptosis by a possible activation of DNA damage machinery in glioblastoma. Full article
Show Figures

Figure 1

26 pages, 2327 KiB  
Article
On the Mechanism of Hyperthermia-Induced BRCA2 Protein Degradation
by Nathalie van den Tempel, Alex N. Zelensky, Hanny Odijk, Charlie Laffeber, Christine K. Schmidt, Inger Brandsma, Jeroen Demmers, Przemek M. Krawczyk and Roland Kanaar
Cancers 2019, 11(1), 97; https://doi.org/10.3390/cancers11010097 - 15 Jan 2019
Cited by 17 | Viewed by 5631
Abstract
The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. [...] Read more.
The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment—it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 —one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers. Full article
(This article belongs to the Special Issue Hyperthermia-based Anticancer Treatments)
Show Figures

Figure 1