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Abstract: Pancreatic ductal adenocarcinoma (PDAC) has an extraordinarily dense fibrotic stroma 

that impedes tumor perfusion and delivery of anticancer drugs. Since the extracellular matrix (ECM) 

comprises the bulk of the stroma, it is primarily responsible for the increased interstitial tissue 

pressure and stiff mechanical properties of the stroma. Besides its mechanical influence, the ECM 

provides important biochemical and physical cues that promote survival, proliferation, and 

metastasis. By serving as a nutritional source, the ECM also enables PDAC cells to survive under 

the nutrient-poor conditions. While therapeutic strategies using stroma-depleting drugs have 

yielded disappointing results, an increasing body of research indicates the ECM may offer a variety 

of potential therapeutic targets. As preclinical studies of ECM-targeted drugs have shown 

promising effects, a number of clinical trials are currently investigating agents with the potential to 

advance the future treatment of PDAC. Thus, the present review seeks to give an overview of the 

complex relationship between the ECM and PDAC. 
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1. Introduction 

By 2030, pancreatic ductal adenocarcinoma (PDAC) will be the second leading cause of cancer-

associated deaths in the United States, yet patients continue to face a dismal prognosis owing to early 

local and distant spread of tumor [1–3]. PDAC is characterized by a pronounced resistance to 

radiation, cytotoxic, and molecularly targeted therapies, such that only small subsets of patients 

benefit from present-day systemic treatments [4,5]. Here, recent clinical trials using FOLFIRINOX in 

patients with good performance status have demonstrated unprecedented increases of survival in 

both metastatic and potentially curable PDAC [4,6]. Patients with favorable comorbidity profiles also 

benefit from the addition of nab-paclitaxel to gemcitabine [7]. However, only roughly one quarter to 

one-third of patients with metastatic disease responds to these therapies [4,7], and none of the 

currently available treatment options provides long-term survival for the average patient [7].  

The chemo- and radiotherapeutic resistance of PDAC is thought to be mediated, in large part, 

by its prominent stroma, composed of a variety of non-neoplastic cell types and extracellular matrix 

(ECM). The deposition of abundant amounts of ECM is termed desmoplastic reaction and exerts 

mechanical as well as biochemical effects on PDAC cells [8]. In addition to directly affecting the 

biology of PDAC cells, both the mere amount of ECM and water retention by ECM glycoproteins 

result in high interstitial fluid pressure, thereby impairing tumor perfusion and thus delivery of 

antitumor drugs [9,10]. This effect is further aggravated by reduced tumor vessel density, making 

cytotoxic therapy of PDAC extraordinarily challenging [9]. 

With respect to its cellular components, the PDAC stroma is dominated by cancer-associated 

fibroblasts (CAFs.) While a heterogeneous population, CAFs are largely composed of activated 
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pancreatic stellate cells (PSC) [11]. In normal pancreatic tissue, quiescent PSCs reside at the 

basolateral aspect of pancreatic acinar cells and synthesize ECM proteins and ECM-degrading 

enzymes [12,13]. Therefore, PSCs are thought to regulate ECM turnover by maintaining a balance 

between ECM synthesis and degradation [13]. Once PSCs become activated, however, the 

equilibrium shifts, causing the accumulation of large amounts of ECM proteins [11,13]. 

This transition from quiescent to activated PSC is accompanied by significant morphological 

changes in the cytosol and cell shape. While in their quiescent state PSCs exhibit abundant lipid 

droplets containing vitamin A, these droplets disappear upon activation and the cells form contractile 

stress fibers, resulting in a spindle-shaped, myofibroblast-like phenotype [13,14]. Strikingly, 

activation of the vitamin A receptor reduces PSC contractility and counteracts PSC activation [15]. 

Similarly, vitamin D agonists revert PSC activation, but it is unclear whether vitamin D is present in 

PSC lipid droplets [16]. 

PDAC cells are an important driver of ECM production by PSC. PDAC cells secrete sonic 

hedgehog (SHH), which functions as a signaling molecule to attract and activate PSCs [17,18]. More 

precisely, PSCs show enhanced migration towards SHH overexpressing PDAC cells and treatment 

with SHH-inhibiting antibodies significantly reduces tumor desmoplasia in mice orthotopically 

implanted with PDAC cells [18]. Independent of SHH, PDAC cells secrete fibroblast growth factor 2, 

platelet-derived growth factor, and transforming growth factor beta 1 (TGFβ1), which promote PSC 

activation and collagen synthesis [19,20]. Interestingly, PSCs not only express receptors for TGFβ1 

and respond to PDAC derived TGFβ1 signaling, they also express TGFβ1 themselves [21]. Thus, once 

activated, PSCs become part of a self-sustaining pathological cycle that perpetuates PDAC fibrosis.  

Data demonstrating a key role for CAFs in mediating ECM production have triggered a 

multitude of studies attempting to deplete CAFs in PDAC tumors. However, as highlighted by a 

number of preclinical studies [22–24] and the halted trial on saridegib [13], therapies that target and 

deplete stromal cells result in a more aggressive disease. Hence, efforts to completely deplete the 

stroma remain controversial. In this respect, approaches that target and modify the ECM are being 

intensively studied in both preclinical and clinical research. The complex network of ECM proteins 

is fundamental to tissue homeostasis in health [25] and crucially influences tumorigenic cell features 

including growth, differentiation, and metastasis in cancer [26]. By serving as a reservoir for signaling 

molecules [27] and influencing cell signaling by transducing mechanical forces [25] and direct 

binding to cell surface receptors [28], the ECM plays a key role in PDAC. This review aims to 

summarize current evidence for the role of the ECM in PDAC and to highlight potentially targetable 

pathways. Furthermore, by analyzing ongoing clinical trials of ECM-targeted therapy, future clinical 

therapeutic options are discussed.  

2. Composition and Role of the ECM 

The ECM is a three-dimensional non-cellular network that is present in every organ and vital 

for life. Historically, efforts to define the composition of the ECM reach back as far as the 1950s [29], 

and recent genetic and bioinformatic studies [30], as well as mass spectrometry analysis [31], have 

led to an improved understanding of this meshwork of large cross-linked proteins [31,32]. The ECM 

may be organized either as an interstitial matrix or as specialized forms, such as the basement 

membrane or vascular endothelium [33]. In addition to ensuring tissue integrity, the ECM is crucially 

involved in cell signaling by supplying components that bind directly to cell surface receptors and 

ECM-derived peptides (matrikines) that have been liberated after proteolytic cleavage of bioactive 

fragments of ECM proteins [34]. In doing so, the ECM may dictate the fate of cells and organs. Besides 

biochemical signaling, the mechanical properties of the ECM provide important physical cues to cells 

that, in turn, influence intracellular signaling cascades [8]. The importance of the ECM is highlighted 

by both cancerous and connective tissue disorders. Mutations in ECM genes are associated with 

conditions like Marfan and Ehlers–Danlos syndromes [35,36]. Ehlers–Danlos syndrome comprises a 

broad range of mutations in genes encoding fibrillar collagens or enzymes that regulate their 

synthesis. In the classical presentation of this disease, mutations in procollagen V (COL5A1/COL5A2) 

prevent the assembly of collagen I and V heterotrimers, resulting in joint hypermobility, skin 
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hyperextensibility, and widened atrophic scars [35]. Marfan syndrome is caused by mutations in the 

glycoprotein fibrillin-1 (FBN1) [36]. These mutations result in insufficient fibrillin-1 synthesis and loss 

of ECM architecture, leading to clinical defects dominated by thoracic aortic aneurysms and 

dissections [36]. Furthermore, ECM remodeling has also been identified as a consequence of or 

increased risk for malignant transformation of hepatic [37], pulmonary [38], and pancreatic cells [11]. 

More precisely, hepatocellular carcinoma is the most common cause of death in patients with liver 

cirrhosis [37], the incidence of lung cancer is increased fourfold in patients with idiopathic pulmonary 

fibrosis in comparison to patients with pulmonary emphysema [38], and as emphasized before, the 

abundant amount of ECM is a hallmark of PDAC [11]. 

Collagens are by far the most abundant and well-characterized component of the ECM in PDAC 

tumors. Currently, 28 different types of collagen have been described [39], representing the main 

thrust of research on ECM proteins. Therefore, this review focuses largely on collagens and their 

interactions with PDAC cells, highlighting the various mechanisms by which ECM can influence 

tumor biology. Amongst others, the basement membrane collagens include collagen IV, XV, and 

laminin [40], while collagen I, III, and V are located in the interstitial space [41]. In PDAC, collagen I 

is responsible for the majority of the desmoplastic reaction [42–45]. Importantly, the desmoplastic 

reaction leads not only to quantitative changes in the total amount of ECM but also to qualitative 

changes. By disrupting the normal architecture of the basement membrane, PDAC cells are exposed 

to increasing amounts of interstitial collagens, which may have protumorigenic effects [42,44]. In this 

respect, the deposition of high levels of collagen I has been associated with reduced survival [46]. 

While multiple lines of evidence show that interstitial collagens, such as collagen I, foster 

protumorigenic features, including invasion and EMT, the basement membrane type collagen XV 

hinders these cell features [47]. As a component of the ECM that has antitumor effects, expression of 

collagen XV is reduced in basement membranes of aggressive colon carcinomas [48] and is lost during 

the progression from carcinoma in-situ to invasive carcinoma in breast cancer [49]. Thus, unlike 

collagen I, expression of collagen XV is decreased during tumor progression. Additionally, 

overexpression of collagen XV reduces the migratory capabilities of PDAC cells in matrices rich in 

collagen I [47]. Furthermore, two major components of the basement membrane have been 

demonstrated to have a substantial, yet different impact on survival. Here, laminin content <25% in 

basement membranes is associated with decreased long-term survival [50]. In contrast to the 

beneficial impact of laminin, patients with high postoperative levels of circulating collagen IV exhibit 

dramatically reduced survival after curative resection of PDAC [51]. Collagen IV shows high 

expression levels in PDAC stroma and promotes proliferation and migration of PDAC cells [52]. 

Further, PDAC cells produce collagen IV, which protects PDAC cells themselves from serum 

deprivation-induced apoptosis [52]. Thus, collagens have important effects on PDAC cells; however, 

even within the same group of collagens, these effects may differ.  

3. Cell Signaling via Collagens 

One of the mechanisms by which collagens contribute to PDAC biology is by functioning as 

signaling molecules, or ligands, for integrin receptors on the surface of PDAC cells [52]. Integrins are 

transmembrane glycoproteins that are composed of heterodimers of α- and β-subunits, and the 

combination of these subunits dictates specificity to various collagens. In this regard, integrin α2β1 

has a high affinity for both collagen I and V and also binds weakly to collagen IV [53]. Conversely, 

integrin α1β1 binds weakly to collagen I but has a high affinity for collagen IV [53,54]. Binding of 

collagen I to integrin has been shown to promote the proliferation and migration of PDAC cells and 

to prevent apoptosis [52,55]. Similar effects are exerted by collagen V, which has been shown to foster 

adhesion, proliferation, migration, and viability in several PDAC cell lines after binding to α2β1 

integrin receptors [56,57]. Notably, knockdown of integrin-β1 not only inhibits adhesion of PDAC 

cells to collagen but also reduces tumor proliferation and abrogates metastasis in an orthotopic mouse 

model of human PDAC cells [58].  

When collagen is bound to the integrin receptor, important downstream signaling events are 

activated. For example, the migration of PANC-1 and UlaPaCa cells along collagen I gradients is 
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mediated by the activation of the focal adhesion kinase (FAK) pathway by collagen I-integrin 

signaling [59]. In PDAC, collagen I-mediated activation of the FAK pathway also increases colony 

formation, clonogenic growth, and self-renewal [60,61]. Additionally, activation of FAK by collagen 

I may regulate epithelial to mesenchymal transition (EMT). Collagen I-mediated activation of FAK 

induces β-catenin phosphorylation, thereby leading to disruption of the E-cadherin complex and 

activation of the canonical WNT signaling pathway [62,63]. Loss of the E-cadherin complex and 

subsequent loss of cell-cell adhesions is an important step in metastasis and EMT [64]. Activation of 

the FAK-pathway not only results in loss of E-cadherin but also in increased expression of N-

cadherin, ultimately leading to increased neural invasion and migration of PDAC cells [59,65,66]. 

Thus, EMT may be driven by the composition of the ECM, whereby microenvironments rich in 

collagen I promote a more aggressive phenotype. 

In addition to integrin-mediated signaling, collagens bind to discoidin receptor 1 (DDR1), a 

dimeric transmembrane tyrosine kinase [67] which is overexpressed in PDAC [68,69], as well as 

breast cancers [70]. Binding of collagen I to DDR1 activates FAK-related protein tyrosine kinase 

(PYK2), resulting in the expression of N-cadherin [66]. While DDR1 is thought to be an important 

receptor for collagens, PDAC cells also utilize this receptor by expressing transmembrane-4-L-six-

family member 1 (TM4SF1), which after binding to DDR1, results in the formation of invadopodia 

and induces cell migration [71]. Furthermore, binding of TM4SF1 to DDR1 induces the expression of 

matrix metalloproteinase (MMP) 2 and 9, enzymes involved in the degradation of the ECM [71,72]. 

Consistent with this, TM4SF1 has been demonstrated to promote migration and invasion in liver [73], 

breast [74], colorectal [75], and pancreatic cancer cell lines [72]. Moreover, knockdown of TM4SF1 

results in reduced liver and pulmonary metastases in an MIA PaCa-2-derived orthotopic xenograft 

mouse model of PDAC [72]. Interestingly, the effects of collagen I and TM4SF1 may not be entirely 

independent. Besides binding to DDR1 itself, TM4SF1 has been shown to support clustering of 

collagen I-bound DDR1 receptors in breast cancer [76].  

Extracellular signaling ultimately results in altered gene expression. Not surprisingly, collagens 

exert profound epigenetic effects on PDAC cells. When grown in collagen gels, PDAC cells show 

increased expression of the histone acetyltransferases p300, P300/CBP-associated factor, and GCN5 

[77]. Accordingly, increased acetylation of the histones H3K9 and H3K27 is observed, all of which is 

associated with increased levels of gene expression. Additionally, high mobility group A2, an 

epigenetic regulator of proliferation, apoptosis, and DNA repair, shows increased levels of 

expression when PDAC cells are grown in collagen gels [78]. The signaling mechanisms that mediate 

these epigenetic alterations remain unclear and additional work is needed to determine the relative 

impact of collagen and 3D growth on these epigenetic changes. Table 1 summarizes the different 

effects of collagens on PDAC cells. 

Table 1. Effects of collagens on Pancreatic ductal adenocarcinoma (PDAC) cells. 

Type of Collagen Effect on PDAC Cells Promotion (+)/Inhibition (−) 

Collagen I 

Apoptosis − 

EMT + 

FAK pathway + 

Histone acetyltransferases + 

Migration + 

MMP + 

Proliferation + 

Collagen IV 
Migration + 

Proliferation + 

Collagen V 

Adhesion + 

Migration + 

Proliferation + 

Viability + 

Collagen XV Migration − 
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4. Structural Regulation of the ECM 

By providing mechanical cues, such as tissue stiffness, the ECM can alter the properties of PDAC 

cells. In this regard, a stiff tumor stroma reduces tissue polarity, disrupts adherens junctions, and 

results in enhanced tumor cell proliferation [79]. Furthermore, the stiffness of the ECM has an 

important influence on EMT; stiff collagen matrices alter the expression of vimentin and E-cadherin 

and increase nuclear translocation of β-catenin in PDAC cells [80]. Cross-linked and thus stiffer 

collagen fibers have also been shown to be associated with enhanced MMP activity, which may be 

interpreted as a surrogate for increased invasive tumor properties [81]. Conversely, chemical 

inhibition of PDAC cell contractility results in decreased MMP activity, indicating that PDAC cells 

themselves can also influence the mechanical properties of ECM [81]. Consistent with these biological 

and biochemical changes, increased collagen fiber thickness and, thus, stiff tumor stroma are 

associated with poor patient survival [8]. 

Stiffening of the PDAC tumor stroma is achieved by the cross-linking of collagen fibers by lysyl 

oxidase (LOX), an extracellular amine oxidase that predominantly cross-links collagen I [82,83]. 

Expression of LOX is increased under hypoxic conditions and is a critical factor for metastasis [84]. 

Studies employing a genetically engineered mouse model of PDAC (Pdx1-Cre;KrasG12D;Trp53R172H) 

have demonstrated that systemic administration of a neutralizing antibody specific to LOX results in 

reduced proliferation of metastases and improved survival [82]. It is possible that some of these 

effects are due to activities of LOX beyond collagen, as inhibition of LOX not only results in reduced 

collagen cross-linking but also stromal collapse and improved vessel density [82].  

Another enzyme that cross-links collagen I fibers in PDAC is tissue transglutaminase 2 (TG2) 

[85]. TG2 is induced by TGFβ and works by transferring acyl groups between glutamine and lysine 

residues [86]. While TG2 is expressed weakly in normal pancreatic tissue, TG2 expression levels are 

dramatically increased in PDAC [85]. PDAC cells express TG2 and secrete it into the ECM, where it 

not only cross-links collagen fibers but also stimulates cancer-associated fibroblasts to produce 

collagen I [85]. Additionally, TG2 secretion by PDAC cells and the resulting increases in ECM 

stiffness have boomerang effects on PDAC cells [85]. More precisely, cross-linked collagen activates 

Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ), 

(transcription factors found in PDAC cells), ultimately resulting in enhancement of proliferation [85] 

and EMT [80]. YAP/TAZ signaling is a key element in the response of cells to mechanical cues of their 

surrounding environment, which is highlighted by the increased nuclear localization of YAP/TAZ in 

response to increased ECM stiffness [87]. Notably, a recent bioinformatic analysis of mammary 

epithelial cells revealed that only gene expression signatures connected to YAP/TAZ were found to 

be associated with ECM stiffness [88]. Thus, YAP/TAZ may be a central hub in the transduction of 

mechanical ECM properties.  

While, in theory, deposition of enormous amounts of collagen around PDAC cells might hinder 

invasive growth and metastasis, 80% of patients present with locally advanced or metastatic disease. 

Not surprisingly, PDAC cells have mechanisms that help them overcome this fibrotic barrier. As 

such, MMPs are the main enzymes responsible for ECM degradation and remodeling and may pave 

the way for metastases [89]. There are 23 MMPs, each with specific targets within the ECM, but 

collectively MMPs degrade all structural components of the ECM [89]. Interestingly, collagen I has 

been shown to induce membrane type 1-MMP (MT1–MMP) expression, which suggests collagens 

can regulate the expression of enzymes involved in their remodeling [90]. MMPs can be inhibited by 

tissue inhibitors of matrix metalloproteinases (TIMPs), and the direction of ECM remodeling is 

dictated by the balance between MMPs and TIMPs [12,91]. TIMPs also have effects independent of 

MMP regulation. Irrespective of stromal density, increased expression of TIMPs promotes resistance 

to chemo- and radiotherapy and fosters proliferation of human and murine PDAC cell lines [92].  

It is noteworthy that proliferation of Panc-1 cells is reduced significantly when MMP inhibitors 

are applied in collagen I-rich gels [93]. This finding is strengthened by the fact that these cells do not 

show changes of the cytoskeleton or cell shape in the absence of MMP activity [93]. ECM remodeling 

is also regulated by Rho-associated protein kinase (ROCK) signaling. ROCK proteins are kinases that 

regulate tissue contractility by controlling ECM remodeling and the contractility of actomyosin fibers 
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[94]. In this regard, ROCK1 and ROCK2 promote the expression of MMP10 and 13, resulting in 

enhanced collagen degradation and local invasion [95]. Inhibition of ROCK not only resulted in 

reduced ECM degradation but also improved survival in a Pdx1-Cre;KrasG12D;Trp53R172H mouse 

model of PDAC [95], suggesting that the ECM provides at least a partial protective effect in PDAC.  

5. ECM as a Nutritional Source 

The proliferation of tumor cells requires a constant supply of nutrients. However, as the dense 

desmoplastic reaction restrains tissue perfusion, the influx of oxygen and nutrients is restricted [96]. 

As a mechanism to thrive under these precarious conditions, PDAC cells utilize macropinocytosis to 

acquire nutrients. KRAS-mutant PDAC cells (>90%) are characterized by membrane ruffling, which 

enables the PDAC cells to form macropinosomes, large vacuoles that may non-specifically take up 

extracellular molecules and transfer them to lysosomes for degradation [97,98]. The ability of PDAC 

to use this mechanism as a source of nutrients is highlighted by the continued growth of PDAC cell 

lines in the absence of essential amino acids when media is supplemented with albumin [96]. 

Consequently, inhibition of macropinocytosis inhibits the proliferation of PDAC cells [98]. 

Importantly, macropinocytosis may also allow PDAC cells to use the collagen-rich tumor 

microenvironment as a source of energy. A recent study revealed that PDAC cells metabolize 

collagen fragments under glucose-limited conditions [45]. This work showed that PDAC cells take 

up collagens using macropinocytosis when deprived of glucose and degrade them into amino acids, 

of which proline is then metabolized in the tricarboxylic acid cycle.  

6. Proteoglycans and Glycoproteins 

Proteoglycans and glycoproteins are additional components of the ECM that have an important 

impact on tumor cells. Proteoglycans and glycoproteins are composed of core proteins that undergo 

post-translational glycosylation, which substantially shapes their conformation and cell signaling 

function [99]. In cancers, proteoglycans and glycoproteins are frequently subject to aberrant 

glycosylation resulting in structural and quantitative changes [100]. Commonly, cancer cells undergo 

alterations involving sialylation, branch-glycans, and core fucosylation [101]. Additionally, both N-

glycosylation [102] and expression of the core proteins of periostin [102], fibulin 1 [102], and galectin 

1 [103] have been found to be upregulated in PDAC [104,105]. Galectin 1 is expressed in several tumor 

types. It is involved in proliferation, invasion, angiogenesis, metastasis, and is linked to patient 

survival [105,106]. Furthermore, combining loss of galectin-1 with genetically engineered mouse 

models of PDAC (Ela-myc and Ela-KrasG12Vp53−/−) resulted in diminished stromal activation and 

tumor cell proliferation, and increased infiltration of cytotoxic T-cells [107,108]. Thus, in accordance 

with the multitude of possible pre- and posttranslational modifications, glycoproteins have 

multifaceted roles in PDAC. This is further highlighted by fibronectin, which both shares similarities 

with collagens but also has its own distinct impact on PDAC biology. Similar to collagens, fibronectin 

binds to integrin receptors (α5β1), thereby activating the FAK pathway [109]. Furthermore, 

fibronectin has binding sites for collagens, making it a linker protein between collagens and integrins 

and supporting the role of collagens [110]. Besides these cooperative effects with collagens, 

fibronectin has been found to be a key factor in the resistance of PDAC to radiotherapy. Irradiation 

of PDAC cells induces their infiltration of the basement membrane, which is abrogated by application 

of either integrin α5β1 blocking antibodies or depletion of fibronectin [111]. In addition to its role in 

resistance to therapy, fibronectin supports the malignant biology of PDAC cells by stimulating 

proliferation [112] and production of reactive oxygen species [113]. Strikingly, fibronectin plays an 

important role in amplifying ECM synthesis by PSCs. By binding to the latent TGFβ binding protein, 

fibronectin allows for the release of active TGFβ, which in turn activates PSCs [19,114]. Accordingly, 

fibronectin is a key element of the ECM, both promoting malignant traits of PDAC cells and 

sustaining fibrogenesis. Similar to fibronectin, vitronectin is a major glycoprotein that binds to both 

integrins (α5β3) and collagens [110,115]. Involved in wound healing and hemostasis in health, 

vitronectin is overexpressed in PDAC and promotes cancer cell migration when combined with 

collagen I [116]. Promoting the malignant characteristics of PDAC cells further, vitronectin stimulates 
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secretion of interleukin 8, promoting proliferation of PDAC cells [117,118]. Interestingly, vitronectin 

promotes expression of TGFβ in hepatic stellate cells [119], providing another example of how ECM 

proteins maintain their own synthesis and the overall desmoplastic reaction.  

Proteoglycans also play an important role in PDAC biology, but their contribution appears to be 

both pro- and anti-tumorigenic. While biglycan (proteoglycan-I) negatively correlates with patient 

prognosis in PDAC [120], patients with stromal expression of lumican, a small leucine-rich 

proteoglycan [121], have markedly improved survival and a reduced occurrence of metastasis [122]. 

Several of mechanisms may contribute to these improved biological outcomes. Exposure to 

extracellular lumican renders PDAC cells into a quiescent state by inducing G0/G1 cell cycle arrest 

[123]. Furthermore, extracellular lumican induces epidermal growth factor receptor internalization, 

thereby inhibiting AKT and mitogen activated protein kinase (MAPK) signaling [122,123].  

 

Figure 1. Interactions between extracellular matrix, cancer cells, and pancreatic stellate cells. Forming 

a dense meshwork of collagen fibers around pancreatic ductal adenocarcinoma (PDAC) cells, the 

extracellular matrix (ECM) impairs tumor perfusion and penetration by anticancer drugs. On top of 

these mechanical effects, collagen fibers bind to cell surface receptors, activating intracellular 

signaling pathways that induce protumorigenic programs. Here, both the biochemical and 

biomechanical effects of the ECM may be amplified by collagen cross-linking and hyaluronic acid 

(HA). In addition to interacting with the ECM itself, PDAC cells also communicate with pancreatic 

stellate cells (PSCs), which steer the turnover of the ECM. DDR1, dimeric discoidin receptor 1; ECM, 

extracellular matrix; FAK, focal adhesion kinase; HA, hyaluronic acid; LOX, lysil oxidase; MMP, matrix 

metalloproteinase; PSC, pancreatic stellate cells; Pyk2, FAK-related protein tyrosine kinase; TG2, tissue 

transglutaminase 2; TIMP, tissue inhibitor of matrix metalloproteinases. 

Proteoglycans often bind non-covalently to hyaluronic acid (HA), a non-sulfated 

glycosaminoglycan that retains significant amounts of water and thereby contributes to the gel-like 

character of the interstitial fluid [124]. First occurring in pre-neoplastic pancreatic intraepithelial 

neoplasia (PanIN) lesions, HA is expressed in abundant amounts in the ECM [123] and following 

application of PEGPH20, an HA-degrading enzyme, intratumoral tissue pressure is decreased in 

PDAC mouse models (Pdx1-Cre;KrasG12D;Trp53R172H) [125,126]. Further studies using PEGPH20 have 
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demonstrated that depletion or reduction of hyaluronic acid results in improved tumor perfusion 

and thus improved delivery of cytotoxic therapy in PDAC mouse models [10,126,127]. Moreover, its 

importance is highlighted by its ability to promote cell survival, proliferation, and invasion via 

binding to CD44 [128–132] and the receptor for hyaluronic acid-mediated motility (RHAMM) [133]. 

In addition to PEGPH20, HA may also be targeted using angiotensin inhibitors, which have been 

shown to reduce stromal HA and collagen production [134]. However, HA is likely to require the 

help of collagen to induce an increase in tissue pressure. As shown by Chauhan and colleagues, the 

amount of HA does not correlate with vessel compression in collagen-poor tumors, whereas a strong 

effect is evident in collagen-rich tumor microenvironments [134]. Figure 1 illustrates the multiple 

interactions of PDAC cells with their microenvironment. 

7. Strategies to Overcome the ECM as a Barrier to Drug Delivery 

7.1. Using the ECM to Target Chemotherapies to the Tumor 

In addition to a multitude of genetic aberrations that make molecular targeted therapy 

challenging in PDAC, antitumor therapy has been profoundly crippled by the chemoresistance of 

PDAC to these targeted therapies. Here, the fibrotic ECM and high interstitial fluid pressure conjoin 

to reduce vascular patency thereby impeding the delivery of antitumor drugs. Despite this, efforts 

have been made to utilize the properties of the ECM to target drugs to PDAC tumors. Table 2 

provides an overview of currently active clinical trials using ECM-targeted drugs. Secreted protein 

acidic and rich in cysteine (SPARC) is frequently overexpressed in PDAC [135] and has been 

associated with impaired patient survival [136,137]. Owing to its albumin-binding properties [138], 

it has been postulated that high levels of SPARC may allow for the enrichment of tumors with 

nanoparticle albumin-bound (nab)-paclitaxel, thereby enhancing peritumoral drug delivery [139]. 

Further testing in randomized clinical trials demonstrated a survival benefit in patients treated with 

gemcitabine and nab-paclitaxel compared to gemcitabine monotherapy (metastatic PDAC, median 

survival 8.5 months vs. 6.7 months, p < 0.001) [7]. However, it is not clear whether this is attributable 

to SPARC-mediated effects. In this regard, the Metastatic Pancreatic Adenocarcinoma Clinical Trial 

(MPACT) trial, which compared nab-paclitaxel plus gemcitabine to gemcitabine monotherapy, failed 

to demonstrate an association between SPARC expression and overall survival (SPARC high vs. 

SPARC low, median survival 8.0 vs. 7.6 months, p = 0.903) [140]. Additionally, a study using a 

genetically engineered mouse model of PDAC (p48Cre;KrasLSL-G12D;Trp53flox/+) that was bred with 

SPARC-positive, and SPARC-negative mice did not find an association between intratumoral 

accumulation of nab-paclitaxel and SPARC expression [141].  

7.2. Inhibiting ECM Production 

As shown by both experimental [22,23] and clinical [13] studies, stromal depletion results in 

more aggressive disease and impaired patient outcomes. In this respect, modulation of the activation 

state of PSC, as opposed to depletion of these cells, is hypothesized to be a viable strategy. One 

approach has been to target the vitamin D receptor in PSCs. Here the vitamin D receptor serves as a 

regulator of PSC activation, and vitamin D receptor agonists revert PSCs to a quiescent state, reducing 

tumor fibrosis and enhancing delivery of chemotherapeutics [16]. Further preclinical studies have 

demonstrated that vitamin D agonists may also reduce EMT and cancer cell stemness in PDAC 

[142,143]. Several clinical trials investigating the vitamin D analog paricalcitol in both resectable and 

metastatic PDAC are currently recruiting patients (NCT03520790, NCT03415854, NCT02930902, 

NCT03331562, NCT03300921, NCT03519308), but their clinical impact remains to be determined. 

Similarly, PSCs also express retinoic acid receptors, which interact with all-trans retinoic acid 

(ATRA), a metabolite of vitamin A [15]. By binding to retinoic acid receptor β, ATRA inhibits PSC 

activation, reduces ECM remodeling, and diminishes the ability of PSC to sense external mechanical 

cues from a stiff ECM [15]. ATRA is currently being utilized in a dose-finding phase I trial, where it 

is administered as an adjunct to gemcitabine and nab-paclitaxel (NCT03307148) in locally advanced 

and metastatic PDAC. 
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Besides utilizing vitamin A and D agonists, further alterations in the composition of ECM might 

be achieved through inhibition of angiotensin, a profibrotic cytokine [144]. Inhibiting the renin-

angiotensin system has been associated with improved patient survival in retrospective studies of 

gemcitabine in advanced PDAC [145,146]. On a molecular level, losartan, an angiotensin receptor 

blocker, has been shown to reduce expression of TGFβ, HA synthases 1–3, and collagen I by cancer-

associated fibroblasts [134,147]. Furthermore, enalapril, another inhibitor of the renin-angiotensin 

system, combined with aspirin, has been demonstrated to delay progression from pre-neoplastic 

PanIN lesions to PDAC in a Pdx1-Cre;KrasG12D;Trp53R172H mouse model of PDAC [148]. Currently, 

losartan is under investigation in two clinical trials on PDAC, one where it is administered in addition 

to intraoperative gemcitabine (NCT01276613) to analyze its effect on the intratumoral accumulation 

of gemcitabine, and one where it is combined with FOLFIRINOX and proton beam radiation to 

investigate the potential effects on progression-free survival in locally advanced PDAC 

(NCT01821729).  

Table 2. Overview of currently active clinical trials on ECM-targeted therapy. 

HA Degrading Enzymes 

PEGPH20 Phase Stage Design 

NCT02910882 II LAPC PEGPH20 + GEM + Radiation 

NCT01959139 I/II Metastatic PEGPH20 + FOLFIRINOX vs. FOLFIRINOX 

NCT03193190 I/II Metastatic 
GEM/nab/mFOLFOX6 vs. Atezolizumab + Cobimetinib vs. 

Atezolizumab + PEGPH20 vs. Atezolizumab + BL-8040 

NCT03481920 I LAPC/Metastatic PEGPH20 + Avelumab (single arm) 

NCT01839487 II Metastatic PEGPH20+ GEM/nab vs GEM/nab 

Angiotensin inhibitors 

Losartan Phase Stage Design 

NCT01821729 II LAPC Losartan + FOLFIRINOX + Proton Beam Radiation (single arm) 

Vitamin D receptor agonists 

Paricalcitol Phase Stage Design 

NCT03520790 I/II Metastatic GEM/nab + Placebo vs. GEM/nab + Paricalcitol  

NCT03415854 II Metastatic Paricalcitol + Cisplatin + GEM/nab (single arm) 

NCT02930902 I Resectable  
Pembrolizumab + Paricalcitol vs. Pembrolizumab + 

Paricalcitol+ GEM/nab 

NCT03331562 II Metastatic Pembrolizumab + Paricalcitol vs. Pembrolizumab +Placebo 

NCT03300921 I Resectable Pembrolizumab + Paricalcitol vs. Pembrolizumab + Placebo 

NCT03519308 I Resectable 
Nivolumab + GEM/nab + Paricalcitol vs. Nivolumab + 

GEM/nab 

Retinoic acid receptor agonists 

ATRA Phase Stage Design 

NCT03307148 I LAPC/Metastatic ATRA + GEM/nab (single arm) 

Macropinocytosis inhibitors 

Hydroxychloroquine Phase Stage Design 

NCT01978184 II Resectable Hydroxychloroquine + GEM/nab vs. GEM/nab 

NCT03344172 II Resectable 
GEM/nab + Hydroxychloroquine + Avelumab vs. GEM/nab + 

Hydroxychloroquine 

NCT01506973 I/II Metastatic Hydroxychloroquine + GEM (single arm) 

NCT01494155 II Resectable Hydroxychloroquine + Capecitabine + Radiation (single arm) 

NCT01128296 I/II Resectable Hydroxychloroquine + GEM (single arm) 

FAK inhibitors 

Defactinib Phase Stage Design 

NCT02758587 I/II LAPC/Metastatic Defactinib + Pembrolizumab (single arm) 

NCT02546531 I LAPC/Metastatic Defactinib + Pembrolizumab + GEM (single arm) 

LAPC, locally advanced pancreatic cancer; GEM, Gemcitabine; GEM/nab, Gemcitabine + nab-

Paclitaxel; HQ, Hydroxychloroquine. 

7.3. Preventing PDAC Cells from using the ECM as a Nutritional Source 

Since the ECM serves as a source of glucose and amino acids for PDAC cells under the meager 

conditions of the desmoplastic reaction, targeting macropinocytosis might block the ECM as a 

nutritional supply for PDAC [45]. As an inhibitor of lysosomal degradation, a key step in 
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macropinocytosis, hydroxychloroquine (HQ) is currently being investigated in two phase I/II trials 

in both resectable and locally advanced or metastatic PDAC (NCT01506973 and NCT03344172), and 

initial findings from other early phase trials have already been published. Here HQ reduced CA19-9 

in resectable patients [149], but patients with metastatic disease did not show any significant 

therapeutic efficacy [150].  

7.4. Relieving Intratumoral Pressure 

As outlined in the previous section, HA constitutes a major part of the ECM and is thought to 

contribute to diminished tumor perfusion in PDAC. Prompted by studies in mouse models of PDAC 

showing that degradation of HA results in both improved interstitial fluid pressure and delivery of 

cytotoxic therapy [10,126,127], PEGPH20 was investigated in phase I and II studies on patients with 

metastatic PDAC [151,152]. Here, patients receiving PEGPH20 plus gemcitabine and nab-paclitaxel 

benefited from improved median progression-free survival (6.0 vs. 5.3 months, p = 0.049) [151]. 

Moreover, patients with high levels of HA expression showed an improved objective response and 

median survival (11.7 vs. 9.7 months, p = 0.04). Based on this data, PEGPH20 is being investigated in 

the phase III Halo 301 trial (NCT02715804) in combination with gemcitabine and nab-paclitaxel, 

where potential survival benefits of PEGPH20 in patients with metastatic PDAC are analyzed. 

Besides the Halo 301 trial, several clinical trials using PEGPH20 are ongoing, one of which is the 

phase I trial NCT03481920. In this trial, PEGPH20 is used in combination with avelumab, an 

immunological check-point inhibitor, to analyze drug safety and the overall response rate in patients 

with metastatic or locally advanced PDAC. 

7.5. Potential Novel Therapeutic Avenues 

The abundance of oncogenic effects of collagens makes therapies that directly address collagen, 

its receptors, or downstream pathways a potentially attractive antitumor strategy. As such, a receptor 

of collagens that could be targeted is DDR1. DDR1 was effectively inhibited by the orally available 

small molecule kinase inhibitor 7rh, resulting in decreased tumor burden and improved response to 

concomitant chemotherapy in xenograft and genetically engineered mouse models of PDAC [68]. 

However, clinical trials using 7rh have not been undertaken. Additionally, as a central pathway in 

collagen signaling, inhibition of the FAK pathway may be a way to interrupt the aggressive effects of 

collagens on PDAC biology. Currently, two dose-finding phase I trials are investigating the small 

molecule FAK inhibitor Defactinib in advanced PDAC (NCT02546531, NCT02758587).  

8. Future Perspectives 

Modulating the PDAC stroma bears the potential to not only ameliorate PDAC cell biology itself 

but also to increase the amenability of PDAC cells to conventional cytotoxic and radiotherapy. 

Breaking the chemo- and radiotherapy barrier could therefore possibly result in a significant increase 

of therapeutic options for patients with PDAC. However, since PDAC is characterized by a multitude 

of different mutations, pathway alterations, and genetic heterogeneity [153], both future clinical trials 

and therapies will have to be coupled with the thorough molecular characterization of patients to 

ensure optimal therapeutic efficacy. 

9. Conclusions 

The ECM possesses fundamental tumorigenic features and is a major factor in both promoting 

PDAC progression and restricting the delivery of antitumor therapy. Whether by regulating 

migration, proliferation, antiapoptosis, or cell metabolism, the ECM has a major hand in shaping the 

hallmarks of cancer in PDAC. Through various biochemical and biomechanical signaling pathways, 

the ECM creates a niche that directs the fate of PDAC cells. However, the ECM is a complex network 

of molecules having both pro- and antitumorigenic effects, and depletion of the ECM can have 

disastrous effects on survival. Therefore, remodeling the balance of these factors as opposed to 

eradicating the ECM could be a viable strategy for improving outcomes in PDAC. While the initial 
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results of ECM-targeted drugs appear promising, intensified research is required to characterize 

further therapeutic targets in the ECM. 
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