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Abstract: Low invasive tests with high sensitivity for colorectal cancer and advanced precancerous
lesions will increase adherence rates, and improve clinical outcomes. We have performed an
ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC-(TOF) MS)-based
metabolomics study to identify faecal biomarkers for the detection of patients with advanced
neoplasia. A cohort of 80 patients with advanced neoplasia (40 advanced adenomas and 40 colorectal
cancers) and 49 healthy subjects were analysed in the study. We evaluated the faecal levels of 105
metabolites including glycerolipids, glycerophospholipids, sterol lipids and sphingolipids. We found
18 metabolites that were significantly altered in patients with advanced neoplasia compared to
controls. The combinations of seven metabolites including ChoE(18:1), ChoE(18:2), ChoE(20:4),
PE(16:0/18:1), SM(d18:1/23:0), SM(42:3) and TG(54:1), discriminated advanced neoplasia patients
from healthy controls. These seven metabolites were employed to construct a predictive model that
provides an area under the curve (AUC) median value of 0.821. The inclusion of faecal haemoglobin
concentration in the metabolomics signature improved the predictive model to an AUC of 0.885.
In silico gene expression analysis of tumour tissue supports our results and puts the differentially
expressed metabolites into biological context, showing that glycerolipids and sphingolipids
metabolism and GPI-anchor biosynthesis pathways may play a role in tumour progression.
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1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer death in developed countries [1].
Although knowledge of the genetic- and diet-associated mechanisms involved in CRC establishment
and progression is rapidly increasing [2], still the best prognosis is obtained when malignancy is
detected early. CRC screening, which detects both precancerous polyps and CRC, can reduce both
colorectal cancer incidence and mortality [3–7]. Through screening, the incidence of colorectal cancer
can be reduced by 30% with a mortality reduction of 50% depending on the screening modality and the
participation rates [7,8]. These data clearly support the strategy to have efficient and sensitive screening
methods. Screening tests available include detecting haemoglobin or DNA mutations/alterations in
feces [4,9], radiologic or endoscopic (flexible sigmoidoscopy, colonoscopy, and computed tomographic
colonography) methods [10]. Each test has its own advantages, has demonstrated to be cost-effective,
and has associated limitations and risks [10]. Although colonoscopy is considered the most accurate
test for early detection and prevention of colorectal cancer [11], its applicability is limited due to the
secondary effects associated with it (mild and severe), the low adherence in average and familial-risk
populations and the limited resources available [12,13].

On the other hand, most of CRC are still diagnosed in symptomatic patients, even when CRC
screening programs are established [14]. In this regard, symptoms and symptom-based prediction
models have a limited accuracy for CRC detection in this population. CRC diagnostic biomarkers,
such as faecal haemoglobin, can improve the diagnostic process either alone or within prediction
models [15–17]. For all those reasons, the development of non-invasive methods to detect CRC
either in asymptomatic and symptomatic patients is an area of interest for patients, clinicians and
healthcare providers.

Metabolomics is the omics technology dedicated to the measurement of small molecules
(<2000 Da) that are present in a biological system. Major advances and new development of analytical
instruments, together with the implementation of bioinformatics tools for robust data analysis
allows simultaneous measurement and analysis of a huge number of metabolites from a biological
system [18–21]. In consequence, metabolomics has become one of the main technologies for biomarker
identification and for unraveling pathophysiological mechanisms in many diseases, including cancer.
The development of ultra-performance liquid chromatography (UPLC) has improved both resolution
and sensitivity of metabolomics analysis. It has also allowed the rapid separation of metabolites when
compared to conventional LC methods [22,23]. Notably, several metabolomics studies have been
performed aiming to identify new CRC biomarkers, as reviewed by Zhang et al. [24]. For diagnostics
purpose, several studies exist, although the majority of them have been performed on serum
samples [25–33], tissue [34–36] and urine [37]. To our knowledge, only one study was found that
studied metabolomics differences directly in human feces samples, like our project design, using
NMR-based metabolomics [38]. Metabolomics study of faeces may be more effective in detecting novel
colon cancer makers than other approaches because faeces are in close proximity to the colorectal
mucosa and are a product of interactions between dietary components and the microbiota. This latter
is affected by and seems to play an important role in the progression of colon cancer [39,40]. Existent
literature has identified several metabolites, some being consistently altered in CRC individuals and
others being increased in some studies and decreased in other ones [24]. These studies have allowed
the identification of several altered metabolic pathways, including carbohydrate and amino acid
metabolisms, and lipid-related metabolic pathways. Significantly, most of the studies found differences
in metabolites of the tricarboxilic acid (TCA) cycle. Also, importantly, alterations on short-chain
fatty acids (SCFAs) levels were found for feces-metabolomics study, which clearly indicates a role
for the CRC-specific microbiota composition [38]. Lipid metabolism is an important pathway of
cellular energy metabolism and its alteration has been related to CRC development and progression.
Alterations on metabolic pathways for the eight distinct pathways of lipid metabolism, including
corresponding genes and lipid-specific cell receptors, have been reviewed by Yan et al. 2016 [41].
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In this study, we evaluate by UPLC-MS the levels of 105 metabolites in lyophilized faeces
from a cohort of 129 samples including patients with advanced adenoma or colon carcinoma and
healthy individuals. After applying univariate analysis, we found significant changes between healthy
individuals and advanced neoplasia patients in 18 metabolites including sphingomyelins, ceramides,
glycerophospholipis and cholesteryl esters. A combined analysis of ChoE(18:1), ChoE(18:2), ChoE(20:4),
PE (16:0/18:1), SM(d18:1/23:0), SM(42:3) and TG(54:1) provides an AUC value of 0.821. This work
supports the usefulness of metabolomics to develop low invasive diagnostic tools for colon cancer
population screenings.

2. Results

For the study, we have analysed faecal samples collected from 49 healthy, 40 CRC patients and
40 AD patients (see Materials and Methods for more details). On these samples, we have performed a
metabolomics profiling using the UPLC-MS approach as described in Materials and Methods. There is
no single method to analyse the entire set of metabolites of a biological sample, mainly due to the
wide concentration range of the metabolites joined to their extensive chemical diversity. For this study,
we have employed an UPLC-MS method (Supplementary Figure S1) capable of detecting consistently
the 105 identified metabolites listed in Supplementary Table S1, that includes fatty acyls, glycerolipids,
glycerophospholipids, sterol lipids and sphingolipids.

2.1. Multivariate Analysis

First, we analysed the metabolomic profiling of the 105 metabolites by unsupervised principal
component analysis (PCA). We did not find any clustering of samples according to their classification
as cases (AD and CRC) and controls (C), as seen on the score plot in Figure 1; neither, did if each group
(AD, CRC and C) was compared separately each other (Supplementary Figure S2).
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Figure 1. PCA scores plot of healthy individuals and patients with advanced neoplasia. (t[1]: R2X = 0.26
and Q2 = 0.22, t[2]: R2X = 0.16 and Q2 = 0.18): CRC and AD patients (n = 80), filled circles; healthy
individuals (n = 49), open circles.
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Neither the application of orthogonal (partial least squares) projections to latent structures (OPLS)
or multivariate analysis was suitable for obtaining a separation between the groups of samples (data not
shown). This lack of discrimination between groups through multivariate analysis highlights the
expected high heterogeneity that exists between individuals.

2.2. Univariate Analysis

As it is complementary to the multivariate analysis, we have applied a univariate approach that
has been shown to be an alternative for metabolomics data sets with elevated heterogeneity [26].
The comparison of the 105 metabolites between cases (AD plus CRC) versus control (C) samples,
showed significant (adjusted p-value < 0.05) difference of the fold change for 18 of them as can
be observed in the Volcano plot (Figure 2A). Differences were mostly seen in sphingolipid family
(SM and Cer, but not CMH), but also included ChoE, PC, PE and TG metabolites. The most altered
metabolite was Cer(42:3), and all metabolites were higher in the case group, except for two of them,
Cer(d18:1/16:0) and TG(54:1), which were lower than the control group (Figure 2A). Other highly
altered metabolites (log2 fold change < 1) were Cer(d18:1/24:1) + Cer(d18:2/24:0), PE(16:0/18:1),
PE(16:0/18:2) and TG(54:1) (Figure 2A).
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Figure 2. Volcano plot representation of metabolic changes in stools from control, CRC and AD sample
groups. [log10 (p-value) vs. log2 (fold-change)] for the comparison between healthy individuals
and patients with advanced neoplasia (CRC and AD). The shape and colour of the points indicates
metabolite family, while the size is determined by the absolute value of the log2 Fold Change (A).
Heatmap of metabolites altered in stools from control, CRC and AD sample groups (B).

Paired comparisons of sample groups revealed significant differences for some metabolic classes
between CRC and AD, and also between CRC and C individuals (Table 1). Stool samples of patients
with CRC had higher levels than AD or C samples of PC and also ChoE and SM metabolite classes.
TG family showed the maximum differences when AD was compared to C samples, with alterations in
12 metabolites of the family; it was lower in AD than C. Actually, most of the differences between AD
and C groups were found in this metabolite family, with only one metabolite altered for DG, PC and
PE families. CMH and MG families did not show any difference in any comparison.

Ceramides, ChoE, PC and SM metabolite families were consistently increased in cancer samples.
Only TG metabolites showed a specific trend for AD samples, being decreased with respect to the
control samples, but showing no differences when comparing C versus CRC samples. Only PE family
was consistently increased in both CRC and AD samples when compared to C group.
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Table 1. Alteration in metabolic classes. Number of metabolites per metabolic classes differentially
expressed in cases vs. control (C), CRC vs. AD, and CRC vs. control. Arrows indicate if metabolites
are higher (↑), or lower (↓) in the Case, CRC or AD, depending on the comparison. In parentheses,
the number of metabolites analyzed for each family is indicated.

Case vs. Control C vs. CRC C vs. AD AD vs. CRC

Cer (8) 2↑ 1↓ 3↑ 1↓ 0 2↑
ChoE (10) 4↑ 5↑ 0 4↑
CMH (3) 0 0 0 0
DG (8) 0 0 1↓ 1↑
MG (3) 0 0 0 0
FAA (2) 0 1↓ 0 0
PC (21) 3↑ 7↑ 1↓ 13↑
PE (4) 2↑ 2↑ 1↑ 3↑
SM (9) 5↑ 7↑ 0 7↑
TG (37) 1↓ 0 12↓ 1↑

The analysis of the individual metabolites also showed a difference between sample groups
(Figure 2B). The heatmaps display the fold change of the 105 metabolites included in the analysis
and their significances according to the Student’s t-test for the comparisons performed between
CRC and C, CRC and AD and between AD and C groups. In the comparison of case (AD plus
CRC) versus C groups, significant metabolites were found mainly in Cer, ChoE, PE and SM families.
While the ceramide family included both increased and decreased metabolites; only increased levels of
metabolites belonging to ChoE, PC, PE and SM families were found in the case group.

The comparisons of CRC versus C, and CRC versus AD groups also revealed significant alteration
of the levels of metabolites belonging to Cer, ChoE, PE and SM families, but in this case also the
abundance of many metabolites belonging to the PC family were significantly altered. Most of the
metabolites of these families were elevated in the CRC group in both comparisons. All these changes
were not observed when comparing the AD and control groups indicating that those metabolites were
mostly altered in the CRC group. Interestingly, a significant down-regulation of metabolites belonging
to the TG family was observed mainly in the AD group (Figure 2B).

We also performed ANOVA test to detect significant differences in the metabolic profile between
the three groups studies (C vs. AD vs. CRC). As a result, 29 differentially expressed metabolites
belonging to Cer, ChoE, PC, PE and SM classes were found to be statistically significant in agreement
with the previous paired analysis (Supplementary Table S2). Also, in concordance with the previous
analysis, TG altered metabolites showed a specific pattern, being decreased in the AD group.

2.2.1. Predictive Models

In order to construct prediction models for cases (CRC and AD), the cohort was randomly
separated in the training set containing 80% of the samples, and the validation set containing the
remaining 20% of samples. To avoid possible bias derived from the data separation, we applied a
bootstrap method, generating 10,000 different combinations of both training and validation datasets.
By applying general linear models to the training set, we were able to find seven metabolites that
when combined provide an AUC value of 0.821 (sensitivity 0.833 and specificity 0.800) (Figure 3).
The metabolites were ChoE(18:1), ChoE(18:2), ChoE(20:4), PE(16:0/18:1), SM(d18:1/23:0), SM(42:3)
and TG(54:1) and the model was:

Y = −5.308 − 1.92 × ChoE(18:2) + 3.087 × ChoE(18:1) − 1.564 × ChoE(20:4) − 1.025 × PE(16:0/18:1)
− 0.289 × SM(d18:1/23:0) − 0.678 × SM(42:3) + 0.386 × TG(54:1)

We computed also the potential effects of age and sex upon the performance of our model.
We were able to slightly increase the predictive ability of the model when adding the age (AUC = 0.838),
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sex (AUC = 0.837) and the combination of both (AUC = 0.848) features to the model (Figure 3C).
When combining our metabolite model with faecal occult blood (FOB) parameter we were able to
increase the AUC value up to 0.885.
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Figure 3. ROC curve of the predictive model constructed with the seven specified metabolites, including
the value of the median AUC (A). Distribution of the model’s features (AUC, sensitivity, specificity
and accuracy) obtained from the 10,000 iterations done (B). Distribution of AUC measurements for the
combination of our model with age, sex and the age + sex combination (C).

2.2.2. Correlation of the Metabolites with Clinical Parameters

A number of clinical parameters were available for the 129 samples analysed in this study
including age, gender, FOB test (cut-off 100 ng/mL), carcinoembryonic antigen (CEA) test and
COLONPREDICT index. COLONPREDICT is a CRC prediction model that takes into account
demographic, symptoms, laboratory and anorectal examination results applicable both in primary
and secondary healthcare units [16]. Thus, we evaluated if any of the 105 metabolites analysed in
faecal samples correlated with any of the clinical parameters (Supplementary Table S3). There was
not strong correlation with age, neither with CEA nor COLONPREDICT or gender, and there were
only minor correlations with some clinical data as follows. Several TG metabolites correlated inversely
with age data. Also, some metabolites belonging to the DG family correlate with age data, in the
same direction as the TG metabolites. COLONPREDICT test showed the highest degree of correlation
with metabolites of different families including CMH, PC, ChoE, PE, and SM. Although only slightly,
ChoE(18:2) correlated directly with the FOB parameter (Supplementary Table S3).

We also studied how clinical parameters classified samples between the three groups (C, CRC
and AD) and between two groups (C and Case) (Supplementary Figure S3). Both ANOVA test for the
classification into three groups (Table 2) and Tukey’s HSD test for the classification into two groups
(Table 2) showed that COLONPREDICT was the best index to discriminate between samples, followed
by FOB. We could see that gender had nearly no differences upon the discrimination between groups,
compared to all other clinical parameters. It is important to note that no clinical parameter was able to
significantly differentiate between C and AD sample groups.
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Table 2. Differences between sample classification of several clinical parameters, either for the groups
comparison (C, AD and CRC) and for the pairwise comparison (Control vs. Case). ANOVA test has
been used for the study of differences between the three groups classification (C, AD and CRC) and
Tukey’s HSD test was used to analyse pairwise classifications (C vs. AD, C vs. CRC and AD vs. CRC).
Tukey’s HSD column depicts those pairwise combinations (of the three tested combinations) that
showed to be significantly different. Avg. stands for average.

C, AD and CRC AvgC AvgAD AvgCRC p-Value Tukey’s HSD

Gender 35.4% men 56.4% men 60% men 0.042 NA
Age 62.52 68.64 73.50 0.0003 CRC vs. C

FOB * 0 49 873 1.6 × 10−9 CRC vs. C
CRC vs. AD

CEA 1.90 1.72 14.85 0.00546 CRC vs. C
CRC vs. AD

COLONPREDICT 0.048 0.104 0.470 <2 × 10−16 CRC vs. C
CRC vs. AD

Control vs. Case AvgCONTROL AvgCASE p-Value

Gender 35.4% men 58.3% men 0.013
Age 62.52 71.10 0.00083

FOB * 0 336 7.09 × 10−8

CEA 1.900 8.367 0.0036
COLONPREDICT 0.0477 0.289 1.231 × 10−10

* For FOB index, median values are given instead of mean, due to the non-normal distribution of the measurements.

2.2.3. Gene Expression Analysis of Enzymes Involved in the Metabolism of Altered Metabolites

Metabolites that were differentially expressed between case and control samples (Figure 2A),
and with a KEGG or HMDB code already defined, were employed to identify possible metabolic
pathways altered in colorectal cancer. By using the differentially expressed metabolites, we could
in-silico identify 211 gene-encoding proteins that mainly clustered in three different metabolic
pathways (Figure 4A). The identified pathways were glycerophospholipids metabolism, sphingolipids
metabolism and the glycosylphosphatidylinositol (GPI)-anchor biosynthesis pathway suggesting
that these pathways could be altered in colorectal cancer (Supplementary Figure S4). We analysed
the expression levels of these gene-encoding proteins in the available gene-expression dataset of
biopsies of colorectal cancer and normal mucosae of the colon [42]. We have observed that 15
of them showed a significantly different fold change between control and cancer (case) samples
(Figure 4B). We have also observed a downregulation of CERS4, SMPD1 and SMPD3 (Figure 4B),
which are responsible for the transformation of sphingosines and sphingomyelins to ceramides.
We also observed downregulation of genes that encoded enzymes that catalyse the degradation of
phosphocholine into choline metabolite, mainly from the phospholipase D (PLD) family: PLB1, PLD1,
PNPLA7, PLA2G12B, PLA2G4C (Figure 4B). Furthermore, there was a significant downregulation of
the genes PIGK and PIGZ, which encode enzymes involved in GPI-anchor biosynthesis. In addition,
an upregulation of the genes LPCAT1 and LCAT (Figure 4B) that encode enzymes involved in the
synthesis of phosphatidylcholine and cholesteryl esters, respectively, was also observed. Together, all
these alterations on genes involved in lipid metabolism of the tumoral tissue support the lipid changes
detected in the faecal samples.
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pathways could be observed: Sphingolipid and glycerophospholipid metabolisms, and GPI-anchor
biosynthesis (A). Gene expression in silico analysis of CRC tumoral tissue. The expression of
gene-encoding enzymes involved in the metabolism of stool-altered lipids was analysed in publicly
available GEO dataset GSE37364 that compared tumoral versus healthy tissue of the same individual.
All displayed genes were highly significant (p-value < 0.001) except PLPP1 (p-value = 0.05) and PIGK
(p-value = 0.02) (B).

3. Discussion

CRC screening with faecal occult blood (FOB) test has demonstrated efficacy in randomized
trials. Nonetheless, the low sensitivity for advanced neoplasia of the test suggests the need for
more accurate alternative diagnostic tests. In the present study, we have performed an UPLC-based
targeted metabolomics analysis of stool to detect candidate endogenous metabolites suitable for the
assessment of colon cancer using minimally invasive techniques. Metabolomic study of faeces can be
more effective, because faeces are in close proximity to the colorectal mucosa. To date, metabolomics
analyses of faecal samples have mostly been restricted to experimental studies in animal and small
cross-sectional studies in humans [42–52]. While GC/MS-based metabolic profiling of faecal water has
been reported [53–55], there exists only limited studies on the profiling and identification of metabolites
within the complete faecal material; notably, lyophilized human faeces where its metabotype was
confirmed to be more comprehensive than faecal water [47]. Previously, Ponnusamy et al. [56]
profiled whole faeces from irritable bowel syndrome using GC/MS and identified several metabolites
as candidate biomarkers for the disease. In the current work, a semi-quantitative analysis of 105
metabolites reveals significant differences in the faecal composition of cancer samples in the following
lipids: PC(16:0/16:0), PC(32:1), PC(O-16:0/16:0), PE(16:0/18:1), PE(16:0/18:2), SM(d18:1/16:0),
SM(d18:1/23:0), SM(d18:2/24:1) + SM(d18:1/24:0), SM(42:1), Cer(d18:1/16:0), Cer(d18:1/24:1) +
Cer(d18:2/24:0), Cer(42:1), SM(42:3), ChoE(16:0), ChoE(18:1), ChoE(18:2), ChoE(20:4), TG(54:1). These
lipid alterations detected in stools were supported by the gene expression profile observed in tumoral
tissues showing deregulation of enzymes involved in glycerophospholipids and the glycosphingolipids
metabolisms (Figure 4B). Some of the genes were of special interest as they serve as union nexuses of
different metabolic pathways. Thus, PLPP1 and PLPP3 genes encoded lipid phosphate phosphatases
(LPPs) with broad substrate specificity that dephosphorylate lipid substrates including phosphatidic
acid, lysophosphatidic acid, ceramide 1-phosphate, sphingosine 1-phosphate, and diacylglycerol
pyrophosphate [57]. One of their enzymatic reactions is the conversion of phosphatidic acid to
diacylglycerol which is a central lipid for glycerophospholipids, triacylglycerols and sphingolipid
metabolisms. In consequence, they modulate different signalling pathways and generate building
blocks for lipid metabolism-regulating physiological and pathological processes including vascular
function and tumor progression [58]. These also indicate that the altered metabolism of the tumour
could be detected in stools, and consequently be detected in a non-invasive manner.

In our study, the most significant lipids altered in stool were cholesteryl esters, particularly
ChoE(18:2) and ChoE(20:4) that were increased in CRC samples. This was in agreement with the fact
that acetate—a short chain fatty acid—which is the precursor molecule for endogenous cholesterol
production, has been reported to be elevated in CRC [59]. In addition, our in silico analysis of the gene
expression profile of tumoral tissue reported by Valcz et al. [42] shows increased tumoral levels of the
gene encoding the enzyme phosphatidylcholine-sterol acyltransferase responsible for the cholesteryl
ester synthesis. Together, the data suggest that the levels of cholesteryl esters in stools can be a
suitable non-invasive measurement to detect and follow up colorectal cancer. Based on the cholesteryl
esters ChoE(18:1), ChoE(18:2) and ChoE(20:4), and complemented by PE(16:0/18:1), SM(d18:1/23:0),
SM(42:3) and TG(54:1), we have built a robust stool metabolomic signature with an AUC value of
0.821 (sensitivity 0.833 and specificity 0.800). In our set of samples, the AUC of the FOB was 0.744,
showing that our model of 7-metabolites performed better than the FOB in the detection of CCR.
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Interestingly, the combination of FOB with our 7-metabolites of our metabolomics model increases the
discriminating ability as judged by the AUC value that passed from 0.821 to 0.885.

It is important to highlight that one of the strengths of our study includes careful processing and
preservation of the faecal specimens, and our quantification of within-subject intraclass correlation
coefficient (ICC), from which we could estimate statistical power with our cutting-edge faecal
metabolomics platform. Our platform has high sensitivity and technical reproducibility, but it has
limited ability to detect some volatile and larger molecules.

Our study’s major limitations are its small size and cross-sectional, hospital-based case–control
design. It provided no assessment of temporality and could only detect strong associations with CRC.
Also, the fact that this is a targeted metabolomics obviously biases the results towards lipid species,
which is also an important limitation. As we mentioned in the introduction section, lipid alterations
have been previously associated with CRC development and progression [41]. We considered,
therefore, that our panel of metabolites would be sufficient to find potential CRC biomarkers. Also,
keeping in mind the diagnostics aim of this study, we decided to use targeted metabolomics because
it’s cheaper than an untargeted one, making it a more affordable option. Targeted metabolomics
allows an easier interpretation of results and, therefore, an easier translation to clinical practice, which
we also considered to be an important point for the diagnostics purpose. As no restriction on diet
was provided to the participants in the study, another limitation is the lack of control for potential
diet-confounding factors. Nevertheless, we believe this potential diet’s effects to be minimal, as all
participants came from two Spanish regions that share the same dietary patterns. We did not specifically
control for age, sex, tumour position and staging for this study, which constitutes another important
limitation. The decision of not to control for those factors was done taking into account the sample
size, not big enough to generate sufficiently big subgroups to obtain statistically robust data. In order
to minimize those variables effects, we incorporated the 10,000 iterations through random subsetting
of the population for the modelization step, thus generating 10,000 different populations, covering a
huge range of different composition trains and test subpopulations that could reduce the potential bias
towards some of the mentioned factors. Another strength of our study is the comparison against the
FOB test and other clinical parameters. For every one of these comparisons, our model composed by
the 7-metabolites performed better than the clinical parameters alone. Also, the integration of gene
expression data in the study supports the identification of differentially expressed metabolites and
puts them into context, providing some insights on how and why the levels are different between
healthy controls and cancer patients.

4. Materials and Methods

4.1. Chemicals

HPLC-MS grade solvents were purchase from Sigma Aldrich (St. Louis, MO, USA). Reference
metabolite standard compounds were obtained from Sigma Aldrich, Larodan Fine Chemicals (Malmö,
Sweden) and Avanti Polar Lipids (Alabaster, AL, USA).

4.2. Clinical Samples and Study Population

The samples were collected during COLONPREDICT study, a multicentre, cross-sectional, blinded
study of diagnostic tests aimed to create and validate a CRC prediction index in symptomatic patients
based on available biomarkers, clinical and demographical data [16]. The study was approved by
the Clinical Research Ethics Committee of Galicia (Code 2011/038). As the samples were collected
from the COLONPREDICT study, the population selection characteristics were the same of that
study. The cohort consisted of consecutive patients with gastrointestinal symptoms referred for
colonoscopy from primary and secondary health care to Complexo Hospitalario Universitario de
Ourense, Spain. Exclusion criteria for the COLONPREDICT study were: age under 18, pregnancy,
asymptomatic individuals undergoing colonoscopy for CRC screening, patients with previous history
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of colonic disease, patients requiring hospital admission, patients whose symptoms had ceased
within 3 months of evaluation, and patients who declined to participate after reading the informed
consent form. Patients self-collected a faecal sample from one bowel movement without specific diet
or medication restrictions the week before a colonoscopy was performed at home and delivered
to the hospital. The faecal sample was brought to the laboratory in less than 4 hours, split in
aliquots and immediately frozen at −80 ◦C. We selected samples from 40 patients with advanced
adenoma-AD- (≥10 mm, villous histology, high-grade dysplasia), 40with CRC and 49 with a normal
colonoscopy. The characteristics of the patients differed with respect to age (CRC = 73.1 ± 10.6 years,
AD = 68.8 ± 44.6 years, normal = 61.5 ± 14.4 years; p < 0.001) and sex (CRC = 60.0% male, AD = 59.1%
male, normal = 27.5% male; p = 0.004). The CRC were located in the rectum (32.5%), colon distal to
splenic flexure (45%) and proximal to splenic flexure (22.5%). The tumour stage at diagnosis was:
I (24.2%), II (30.3%), III (30.3%) and IV (15.2%).

4.3. Sample Preparation and UPLC®-MS Metabolomics Analysis

A UPLC−time-of-flight (TOF)-MS-based platform was used to analyze chloroform/methanol
extracts, including glycerolipids, cholesteryl esters, sphingolipids, primary fatty amides and
glycerophospholipids among the identified ion features. The metabolite extraction procedure was
as follows. Stools were lyophilized during 3 days by using the instrument Telstar LyoQuest −85.
Afterward, 15 milligrams of lyophilized stool samples were mixed with 45 µL sodium chloride (50 mM)
and 450 µL chloroform/methanol (30:1) in 1.5 mL microtubes at room temperature. The extraction
solvent was spiked with compounds not detected in unspiked human stool samples [SM(d18:1/16:0),
PE(17:0/17:0), PC(19:0/19:0), TAG(13:0/13:0/13:0), Cer(d18:1/17:0) and ChoE(12:0)]. After brief vortex
mixing, the samples were incubated for 1 hour at −20 ◦C. After centrifugation at 16,000 × g for 15 min,
35 µL of the lower organic phase was collected and the solvent was removed. The dried extracts
were then reconstituted in 1000 µL acetronitrile/isopropanol (1:1), centrifuged (16,000 × g for 5 min),
and transferred to vials for UPLC®-MS analysis on an Acquity-Xevo G2 QTof system (Waters Corp.,
Milford, MA, USA). Samples were randomly divided into three batches, which contained a maximum
of 78 samples. Chromatographic method and mass spectrometric detection conditions were described
by Barr et al. [60]. Of the different platforms described, the one corresponding to ours was Platform 3.

4.4. Data Pre-Processing

Data pre-processing was processed using the TargetLynx application manager for MassLynx
4.1 (Waters Corp). A total of 105 UPLC-MS features were analysed, all of them identified prior to
the analysis. Peak detection and noise reduction were performed as previously described [61,62].
Intra- and inter-batch normalization process was based on multiple internal standards and the pool
calibration samples approach described by Martinez-Arranz et al. [62].

4.5. Data Analysis

The biomarker assessment in this study was organized in sequential and consecutive
phases for discovery and biological validation. Firstly, 133 metabolites including glycerolipids,
glycerophospholipids, sterol lipids and sphingolipids were selected as candidate biomarkers for initial
analysis faeces samples from advanced neoplasia cases, colorectal cancer and cancer-free controls
(Discovery Phase). Secondly, the potential clinical use of the most promising validated candidates was
tested in faeces samples from colon cancer cases, a small set of adenomas, and cancer-free controls.
Reported STARD guidelines have been the basis for defining our protocol.

Metabolites with less than 70% of the values present were removed from the analysis (remaining
105 metabolites into the analysis). Remaining missing values were imputed metabolite by metabolite,
taking the minimal value for the metabolite and dividing it by 10. Data was then normalized with the
log10 transformation. Univariate statistical analyses were also performed calculating group percentage
changes and the analysis of variance (ANOVA) for the comparison among the different groups: CRC,
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AD and control (C). Student’s t-test p-values were calculated for the comparison between cases (AD
and CRC) and C groups, as well as for the comparisons CRC and C, CRC and AD and between AD and
C groups. Multivariate analyses were also performed, including both Principal Component Analysis
(PCA) and Partial Least Squares Discriminant Analysis one (PLS-DA). ANOVA tests and Tukey’s HSD
tests were also calculated for several clinical parameters (FOB, sex, age, CEA and COLONPREDICT test)
to determine its effectiveness to classify our samples into categories (CRC, AD and C or Case-Control).
All p-values were adjusted with Bonferroni methodology unless otherwise stated.

A logistic regression (LR) was performed to identify a predictive signature capable of
distinguishing between cases and control groups. LR is a commonly used technique for data
classification. We first analysed the correlations between metabolites, establishing a cut-off at ρ

0.75. For each pair of correlated metabolites, we removed the one that separated the worst out of
the two groups. A forward stepwise method was selected as variable selection approach, where the
analysis started with an empty model and variables were added one at a time as long as these additions
are worthy, by measuring the Area Under the Curve (AUC) value. This process finished when no more
variables could be added. All samples were randomly divided into estimation (80% of all subjects;
n = 101) and validation (20% of all subjects; n = 26) groups, both cohorts having an equal proportional
representation of individuals belonging to cases and control groups. Ten-thousand iterations of both
subsetting into estimation and validation groups and model constructing were generated, to avoid
population-based biases. Receiver operating characteristic (ROC) curve analysis was used to assess its
discriminatory power. Overall diagnostic accuracy for a given two-class comparison was given by
the area under the ROC curve (AUC) with its associated standard error. Sensitivity, specificity and
accuracy values were calculated.

All calculations were performed using statistical software package R v.3.1.1 (R Development
Core Team, 2011; http://cran.r-project.org) with caret, caTools and receiver operating characteristic R
(ROCR) packages to produce ROC curves and AUC estimate; MASS package was used to generate
the LR. Additionally, SIMCA-P+ 12.0.1 (Umetrics AB, Umeå, Sweden) was used for PCA and PLS-DA
multivariate data analysis.

Retrieval of genes and enzymes related with differentially expressed metabolites found in
the study was done with custom Python scripts, which takes advantage of the published Python
packages Biopython [63] and bioservices [64], which were used to access both HMDB and KEGG
databases. These custom scripts retrieve information on the metabolite entries on both HMDB
and KEGG databases regarding the enzymes involved in the metabolism of cited metabolites, as
in which pathways are they present. We identified gene-encoding proteins involved in the metabolism
of the seven metabolites of the predictive model, and we uploaded those genes to the STRING
database [65], in order to identify the interaction between them, any potential clusterization and
possible affected metabolic pathways. Genetic expression was obtained from publicly available GEO
databaset GSE37364 [42]. The datasets were uploaded to R and the expression of selected genes was
plotted into boxplots. Mapping of both metabolites and genes into metabolic pathways was done with
pathview package [66] and custom R scripts.

5. Conclusions

This study highlights the power of UPLC-MS-based metabolomics approach in the discovery of
novel non-invasive markers for colorectal cancer. With this study, we identified alterations in two
main metabolic pathways, the glycerophospholipids and glycosphingolipids metabolisms. We found
18 metabolites differentially expressed between case samples (CRC + AD) and healthy controls, being
mainly increased in case ones. We also showed how a discrimination model based only on metabolite
species was able to differentiate between case (CRC+AD) samples and healthy ones and is better than
those used nowadays, based in several clinical parameters like FOB, CEA, etc. The model generated
included these metabolites: ChoE(18:1), ChoE(18:2), ChoE(20:4), PE (16:0/18:1), SM(d18:1/23:0),
SM(42:3) and TG(54:1). Finally, we showed how the integration of different omics technologies

http://cran.r-project.org
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might be useful for supporting findings of one of them and to gain insights on how to explain the
results obtained.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/9/300/s1,
Supplementary Figure S1, Workflow of the UPLC-MS-based targeted metabolomic profiling. Supplementary
Figure S2, Multivariate analysis of paired group. (A) CRC vs. AD: R2X = 0.29 and Q2 = 0.24 t[2]: R2X = 0.19 and
Q2 = 0.22). Black CRC, grey AD. (B) CRC vs. control: R2X = 0.30 and Q2 = 0.25, t[2]: R2X = 0.19 and Q2 = 0.24).
Black CRC, white healthy. (C) AD vs. control: R2X = 0.28 and Q2 = 0.24, t[2]: R2X = 0.15 and Q2 = 0.15. Grey AD,
white healthy. Supplementary Figure S3, Boxplot representation of the clinical parameters distribution on the
distinct groups of samples (C, AD and CRC). Supplementary Figure S4, Mapping of altered genes and metabolites
into the three metabolic pathways identified: sphingolipid metabolism (A), glycerophospholipid metabolism (B)
and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (C). Genes detected are coloured in a range green-red,
depending on the Fold Change and metabolites in a range blue-yellow. Supplementary Table S1, List of the 105
metabolites analysed in the study. Supplementary Table S2, Metabolites differentially expressed between control,
AD and CRC groups (ANOVA test). Supplementary Table S3, Clinical correlations between metabolites included
in the study and the following parameters: FOB, Sex, Age, COLONPREDICT and CEA. Supplementary Table S4,
Number of missing values obtained for each metabolite.
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