Self-Powered Microfluidic System Based on Double-Layer Rotational Triboelectric Nanogenerator
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of TENG
2.3. Fabrication of Microfluidic Device
2.4. Measurement and Characterization
3. Results and Discussion
3.1. The Structure and Characteristics of TENG
3.2. Working Principle of Self-Powered Microfluidic System
3.3. Construction of Microfluidic Chip
3.4. Demonstration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Qiu, J.Y.; Liu, M.Q.; Wang, Y.H.; Yu, Y.; Liu, H.; Zhang, Y.; Han, L. Microfluidic biochips for single-cell isolation and single-cell analysis of multiomics and exosomes. Adv. Sci. 2024, 11, e2401263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.H.; Dong, J.P.; Hou, H.W.; Huang, L.; Li, J.H. High-throughput microfluidic systems accelerated by artificial intelligence for biomedical applications. Lab Chip 2024, 24, 1307–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.H.; Li, J.X.; Jiao, S.P.; Li, Y.; Zhou, Y.; Zhang, X.; Maryam, B.; Liu, X.H. Microfluidic sensors for the detection of emerging contaminants in water: A review. Sci. Total Environ. 2024, 929, 172734. [Google Scholar] [CrossRef] [PubMed]
- Gimondi, S.; Ferreira, H.; Reis, R.L.; Neves, N.M. Microfluidic devices: A tool for nanoparticle synthesis and performance evaluation. ACS Nano 2023, 17, 14205–14228. [Google Scholar] [CrossRef]
- Mehraji, S.; DeVoe, D.L. Microfluidic synthesis of lipid-based nanoparticles for drug delivery: Recent advances and opportunities. Lab Chip 2024, 24, 1154–1174. [Google Scholar] [CrossRef]
- Tang, H.; Niu, J.Q.; Jin, H.; Lin, S.J.; Cui, D.X. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. Microsyst. Nanoeng. 2022, 8, 62. [Google Scholar] [CrossRef]
- Chiu, D.T.; deMello, A.J.; Di Carlo, D.; Doyle, P.S.; Hansen, C.; Maceiczyk, R.M.; Wootton, R.C.R. Small but perfectly formed, Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2017, 2, 201–223. [Google Scholar] [CrossRef]
- Agnihotri, S.N.; Raveshi, M.R.; Nosrati, R.; Bhardwaj, R.; Neild, A. Droplet splitting in microfluidics: A review. Phys. Fluids 2025, 37, 051304. [Google Scholar] [CrossRef]
- Wang, J.L.; Cui, X.Y.; Wang, W.; Wang, J.H.; Zhang, Q.L.; Guo, X.N.; Liang, Y.F.; Lin, S.J.; Chu, B.F.; Cui, D.X. Microfluidic-based electrically driven particle manipulation techniques for biomedical applications. RSC Adv. 2025, 15, 167–198. [Google Scholar] [CrossRef]
- Das, S.; Unni, H.N. Advancements in microfluidic droplet generation: Methods and insights. Microfluid. Nanofluid. 2025, 29, 24. [Google Scholar] [CrossRef]
- Ryabchun, A.; Babu, D.; Movilli, J.; Plamont, R.; Stuart, M.C.A.; Katsonis, N. Run-and-halt motility of droplets in response to light. Chem 2022, 8, 2290–2300. [Google Scholar] [CrossRef]
- Sun, M.M.; Sun, B.N.; Park, M.; Yang, S.H.; Wu, Y.D.; Zhang, M.C.; Kang, W.B.; Yoon, J.; Zhang, L.; Sitti, M. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions. Sci. Adv. 2024, 10, eadp1439. [Google Scholar] [CrossRef] [PubMed]
- Bortone, O.; Fiorenza, S.; Baldassarre, M.; Falco, N.; Amidi, M.; Markkula, T.; Netti, P.A.; Torino, E. Design of a thermal stress microfluidic platform to screen stability of therapeutic proteins in pharmaceutical formulations. Curr. Res. Biotechnol. 2025, 9, 100273. [Google Scholar] [CrossRef]
- Ma, T.; Li, Y.; Cheng, H.; Niu, Y.J.; Xiong, Z.X.; Li, A.; Jiang, X.B.; Park, D.; Zhang, K.F.; Yi, C.L. Enhanced aerosol-jet printing using annular acoustic field for high resolution and minimal overspray. Nat. Commun. 2024, 15, 6317. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.D.; Timonen, J.V.I.; Carlson, A.; Drotlef, D.M.; Zhang, C.T.; Kolle, S.; Grinthal, A.; Wong, T.S.; Hatton, B.; Kang, S.H.; et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82. [Google Scholar] [CrossRef]
- Demirörs, A.F.; Aykut, S.; Ganzeboom, S.; Meier, Y.A.; Poloni, E. Programmable droplet manipulation and wetting with soft magnetic carpets. Proc. Natl. Acad. Sci. USA 2021, 118, 2111291118. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, J.; Schür, M.T.; Hardt, S. Manipulation and control of droplets on surfaces in a homogeneous electric field. Nat. Commun. 2022, 13, 289. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Li, Y.; Liu, L.L.; Mao, P.L.; Zhang, L.; Liang, J.; Zhang, J.H. Integration of an open EWOD structure and printed electrochemical sensors on common digital microfluidic platform. IEEE Sens. J. 2025, 25, 30337–30342. [Google Scholar] [CrossRef]
- Li, X.M.; Zhang, Z.M.; Peng, Z.H.; Yan, X.D.; Hong, Y.; Liu, S.Y.; Lin, W.K.; Shan, Y.; Wang, Y.Y.; Yang, Z.B. Fast and versatile electrostatic disc microprinting for piezoelectric elements. Nat. Commun. 2023, 14, 6488. [Google Scholar] [CrossRef]
- Barman, J.; Shao, W.; Tang, B.; Yuan, D.; Groenewold, J.; Zhou, G.F. Wettability manipulation by interface-localized liquid dielectrophoresis: Fundamentals and applications. Micromachines 2019, 10, 329. [Google Scholar] [CrossRef]
- Li, Z.; Fang, L.; Shu, L.L.; Wang, F.X.; Wu, J.; Wang, Z.X.; Zhang, H.N.; Wang, P.H. Self-powered vibration sensing and energy harvesting via series-resistor-enhanced triboelectric nanogenerators with charge compensation for autonomous alarm systems. Energy Technol. 2025, 13, 2402284. [Google Scholar] [CrossRef]
- Zhong, Y.M.; Guo, Y.C.; Wei, X.X.; Rui, P.S.; Du, H.J.; Wang, P.H. Multi-cylinder-based hybridized electromagnetic-triboelectric nanogenerator harvesting multiple fluid energy for self-powered pipeline leakage monitoring and anticorrosion protection. Nano Energy 2021, 89, 106467. [Google Scholar] [CrossRef]
- An, J.; Jiang, Y.; Jiang, T.; Li, F.M.; Xiang, X.J.; Wang, K.; Tan, Z.P.; Nie, J.H.; Ren, Z.W. Achieving zero leakage, ultralong lifespan, and intrinsic opening sensing in microvalves through structural superlubrication and triboelectric nanogenerator technologies. Adv. Mater. 2025, 37, e2416132. [Google Scholar] [CrossRef]
- Jiang, X.; Liang, J.M.; Wang, Y.M.; Cao, J.; Ren, Z.W. Metal-organic framework based dielectric layer toward highly improving triboelectric charge generation properties. Small 2025, 21, 2500357. [Google Scholar] [CrossRef]
- Sun, J.F.; Zhang, L.J.; Gong, S.Q.; Chen, J.; Guo, H.Y. Device physics and application prospect of the emerging high-voltage supply technology arising from triboelectric nanogenerator. Nano Energy 2024, 119, 109010. [Google Scholar] [CrossRef]
- Wang, F.X.; Cao, B.; Shu, L.L.; Li, Z.; He, W.; Wang, Z.Z.; Wang, P.H. High-performance triboelectric nanogenerator employing a swing-induced counter-rotating motion mechanism and a dual potential energy storage and release strategy for wave energy harvesting. Mater. Horizons 2025, 12, 2234–2247. [Google Scholar] [CrossRef]
- Zhu, J.L.; Fan, K.Q.; Wang, W.D.; Zhai, K.J.; Zhang, L.; Zhou, J.X.; Li, C.; Li, Y.B.; Li, J.J.; Liu, Y.; et al. A robust hybrid nanogenerator strategy achieved by regenerative motion transmission toward wind energy harvesting and self-powered sensing. Nano Energy 2025, 135, 110679. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent advances in triboelectric nanogenerators: From technological progress to commercial applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef]
- Nie, J.H.; Ren, Z.W.; Shao, J.J.; Deng, C.R.; Xu, L.; Chen, X.G.; Li, M.C.; Wang, Z.L. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano 2018, 12, 1491–1499. [Google Scholar] [CrossRef]
- Yu, J.J.; Wei, X.X.; Guo, Y.C.; Zhang, Z.W.; Rui, P.S.; Zhao, Y.; Zhang, W.; Shi, S.W.; Wang, P.H. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy. Lab Chip 2021, 21, 284–295. [Google Scholar] [CrossRef]
- Li, J.J.; Zheng, Y.; Qiu, J.; Niu, W.T.; Wu, J.P.; Cui, H.Z.; Zi, Y.L.; Li, X.Y. Triboelectric nanogenerator-based self-powered two-dimensional microfluidic system for biochemical reaction. Nano Energy 2024, 119, 109061. [Google Scholar] [CrossRef]
- Zheng, L.; Lin, Z.H.; Cheng, G.; Wu, W.Z.; Wen, X.N.; Lee, S.M.; Wang, Z.L. Silicon-based hybrid cell for harvesting solar energy and raindrop electrostatic energy. Nano Energy 2014, 9, 291–300. [Google Scholar] [CrossRef]
- Sun, J.F.; Zhang, L.J.; Zhou, Y.H.; Li, Z.J.; Libanori, A.; Tang, Q.; Huang, Y.Z.; Hu, C.G.; Guo, H.Y.; Peng, Y.; et al. Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Mater. Today 2022, 58, 41–47. [Google Scholar] [CrossRef]
- Tan, J.; Tian, P.H.; Sun, M.Y.; Wang, H.C.; Sun, N.; Chen, G.J.; Song, Y.C.; Jiang, D.Y.; Jiang, H.; Xu, M.Y. A transparent electrowetting-on-dielectric device driven by triboelectric nanogenerator for extremely fast anti-fogging. Nano Energy 2022, 92, 106697. [Google Scholar] [CrossRef]
- Yang, T.J.; Lin, Z.H.; Lu, Y.W. Self-powered digital microfluidics driven by rotational triboelectric nanogenerator. Nano Energy 2023, 110, 108376. [Google Scholar] [CrossRef]








| Mode of TENG | Output of TENG | Size of TENG | Multiple Motion Paths | Ease for Human Operation | Without Additional Switching Circuits | Continuous Movement | Long Distance Movement | Volume of Droplets | Ref. |
|---|---|---|---|---|---|---|---|---|---|
| Sliding freestanding | 3000 V | 100 mm × 350 mm | No | Yes | No | No | No | 70 nL~40 μL | [29] |
| Rotary freestanding | 1500~5000 V | Diameter: 80 mm | Yes | Yes | No | Yes | Yes | 1 μL~500 μL | [30] |
| Sliding freestanding | 35,000 V | 150 mm × 100 mm | No | Yes | No | Yes | No | 3 μL~40 μL | [33] |
| Rotary freestanding | 730~5260 V | Diameter: 30 mm | No | No | Yes | No | No | - | [34] |
| Rotary freestanding | 75~180 V | - | Yes | No | No | Yes | Yes | 1.6 μL~2.4 μL | [35] |
| Sliding freestanding | 1610 V | Each unit: 50 mm × 50 mm | Yes | Yes | Yes | Yes | No | 20 nL~1.4 mL | [31] |
| Rotary freestanding | ~4300 V | Diameter: 240 mm | Yes | Yes | Yes | Yes | Yes | 0.3 μL~43 μL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Li, H.; Wu, D. Self-Powered Microfluidic System Based on Double-Layer Rotational Triboelectric Nanogenerator. Micromachines 2025, 16, 1386. https://doi.org/10.3390/mi16121386
Zhong Y, Li H, Wu D. Self-Powered Microfluidic System Based on Double-Layer Rotational Triboelectric Nanogenerator. Micromachines. 2025; 16(12):1386. https://doi.org/10.3390/mi16121386
Chicago/Turabian StyleZhong, Yiming, Haofeng Li, and Dongping Wu. 2025. "Self-Powered Microfluidic System Based on Double-Layer Rotational Triboelectric Nanogenerator" Micromachines 16, no. 12: 1386. https://doi.org/10.3390/mi16121386
APA StyleZhong, Y., Li, H., & Wu, D. (2025). Self-Powered Microfluidic System Based on Double-Layer Rotational Triboelectric Nanogenerator. Micromachines, 16(12), 1386. https://doi.org/10.3390/mi16121386

