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Abstract: This paper reports a microfluidic viscometer based on electrofluidic circuits for measuring
viscosities of liquid samples. The developed micro-device consists of a polydimethylsiloxane (PDMS)
layer for electrofluidic circuits, a thin PDMS membrane, another PDMS layer for sample pretreatment,
and a glass substrate. As the sample flows inside the microfluidic channel, its viscosity causes
flow resistance and a pressure drop along this channel. This pressure drop, in turn, generates a
hydraulic pressure which deforms the PDMS membrane, causing changes in the cross-sectional
area and the electrical resistance of the electrofluidic resistor. This small resistance change is then
measured via the electrofluidic Wheatstone bridge to relate the measured voltage difference to
the fluidic viscosity. The performance of this viscometer was first tested by flowing nitrogen gas
with controllable pressures into the device. The relationship between measured voltage difference
and input gas pressure was analyzed to be linear in the pressure range of 0–15 psi. Another test
using pure water indicated good linearity between measured voltage difference and flow rate in the
rate range of 20–100 µL/min. Viscosities of glycerol/water solutions with volume/volume (v/v)
concentrations ranging from 0 to 30% were measured, and these values were close to those obtained
using commercially available viscometers. In addition, the sample-pretreatment layer can be used to
mix and/or dilute liquid samples to desired concentrations. Therefore, this microfluidic device has
potential for measurements of fluidic viscosity in a fast, accurate, and high-throughput manner.
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1. Introduction

Viscosity is an important fluidic property that occurs between two surfaces of that fluid moving at
different velocities. It is simply the frictional force among the molecules of that fluid. Measurements of
the viscosity of biological samples such as blood, tissue fluids, and urine can be applied to disease
diagnosis and prognosis. For example, estimates of urine viscosity provide a better characterization
of the biological system and should result in more accurate modeling of bladder hyperthermia
treatments [1]. The viscosity of urine, a Newtonian fluid [1–3], was shown to depend on the
temperature and urinary constituents, and its value increased with the appearance proteinuria [1].
Maple syrup urine disease (MSUD), a metabolic disorder affecting the process of certain amino acids,
is characterized by low-viscosity urine [4]. Urine viscosity was also used to evaluate homeostasis in
heart surgery patients in the early postoperative period [5].

Conventional viscometers such as U-tube viscometers, falling ball viscometers, vibrational
viscometers, rotational viscometers, electromagnetically spinning sphere (EMS) viscometers,
and Stabinger ViscometersTM are routinely used in laboratories. A vibrational viscometer measures the
damping of an oscillating resonator immersed in a fluid, and this damping increases with increasing
fluidic viscosity [6]. The Viscolite from Hydramotion (York, UK) is a commercially available vibrational
viscometer with a detection range of 0–10,000 cP and an accuracy of 0.1 cP. A rotational viscometer
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works by measuring the torque needed to turn an object in a fluid, and this torque is a function of
the fluidic viscosity. The Alpha series rotational viscometers from Fungilab (Barcelona, Spain) have
a detection range of 1–2,000,000 cP and an accuracy of 10 cP. In an EMS viscometer, a metal sphere
revolves under the influence of an external magnetic field, and its rotational speed depends on the
viscosity of the fluid it is immersed in [7,8]. The EMS-1000 from Kyoto Electronics Manufacturing
(Kyoto, Japan) measures viscosities from 0.1 to 100,000 cP. The Stabinger ViscometerTM (Anton Paar,
Graz, Austria), a modification of the classic Couette-type rotational viscometer, determines kinematic
viscosities with a wide measuring range. The Stabinger ViscometeTM SVMTM 3000 measures viscosities
from 0.2 to 20,000 cP and is applied to measurements of various samples [9–11].

All abovementioned, conventional viscometers have a few drawbacks, including usually large
sample consumption, inability for real-time measurements, and expensive instruments. For example,
the minimum volumes required in Viscolite and Alpha series are 100 mL and 10 mL, respectively.
As a result, a variety of microfluidics-based viscometers were developed to overcome these issues.
Micro-fabricated devices composed of micro-channels and fluidic components provide a miniature
platform where the consumption of samples is significantly reduced and the micro-environment
(such as temperature, pH value, and chemical concentration) is well controlled. With advances in
techniques of micro-fabrication from glass and silicon substrates to polydimethylsiloxane (PDMS)
and polymethylmethacrylate (PMMA) materials, the cost and time for fabricating microfluidic chips
are greatly reduced, leading to more diverse applications of these devices. Early in 2005, Srivastava
and Burns reported a micro-fabricated, glass-made nanoliter capillary viscometer for quick, easy,
and inexpensive measurements of fluidic viscosities [12]. Based on capillary pressure-driven flow
inside microfluidic channels, viscosities ranging from 1 to 5 cP were measured [12]. In the following
year, the same group fabricated a self-calibrating, micro-fabricated capillary viscometer for analyzing
non-Newtonian fluids [13]. This glass-made device monitored the capillary pressure-driven movement
of the fluid sample whose velocity and shear rate varied with time. Viscosities in the range of 1–600 cP
were measured with shear rates varying from 5 to 1000 s−1 [13]. Zheng et al. developed a PDMS
viscometer by utilizing the high solubility and permeability of air in PDMS to generate Poiseuille flow in
the degassed PDMS microfluidic device [14]. The viscosity of the fluid was obtained by measuring the
distance the sample traveled and its flow velocity in the PDMS channel. This microfluidic viscometer
was able to measure viscosities of Newtonian fluids ranging from 1 to 80 cP [14]. Kang and Yang
proposed a microfluidic viscometer equipped with a fluid temperature controller for measuring the
viscosities of both Newtonian and non-Newtonian fluids [15]. Solomon and Vanapalli demonstrated
the first high-throughput microfluidic viscometer for simultaneously measuring the viscosities of
multiple samples [16]. Other microfluidic viscometers based on diffusion, surface tension, velocimetry,
flow rate sensing, and pressure sensing were also reported [17]. The state-of-the-art techniques in
designing and fabricating microfluidic rheometers and viscometers are detailed in References [18–23].

In this study, a microfluidic viscometer based on electrofluidic circuits was developed.
This microfluidic device consists of a PDMS layer for electrofluidic circuits, a thin PDMS membrane,
another PDMS layer for sample pretreatment, and a glass substrate. The ionic liquid-based electrofluidic
circuit can monitor pressure changes by measuring the corresponding resistance changes in the circuit;
the working principles are detailed in References [18,24–26]. The idea of turning this pressure sensor
into a viscometer is as follows: inside a microfluidic channel, the flow resistance increases with
increasing fluidic viscosity, and this increasing flow resistance, in turn, increases the pressure drop
along this channel. This pressure drop generates a hydraulic pressure at the pressure-sensing area,
causing changes in the cross-sectional area and the electrical resistance of the electrofluidic circuit.
This resistance change is then measured by means of the electrofluidic Wheatstone bridge. The present
microfluidic viscometer offers some advantages as compared to that shown in the article published
earlier this year [18]. Firstly, the sample-pretreatment layer can be used to mix and/or dilute liquid
samples. By redesigning this device to have multiple samples of different concentrations [27–29], with
each corresponding to one electrofluidic sensing region, it can serve as a platform for measurements of
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fluidic viscosity in a fast, accurate, and high-throughput manner. Secondly, cells can be cultured inside
this microfluidic chip for monitoring their responses to fluidic shear stress and viscosity. Thirdly, this
microfluidic viscometer is capable of measuring low-viscosity liquids: a glycerol solution of 2.5%
(v/v in water) was measured to have a viscosity of 0.94 cP (the viscosity of water is around 0.89 cP at
25 ◦C).

2. Materials and Methods

2.1. Design and Fabrication of the Microfluidic Chip

The layer-by-layer scheme of the microfluidic chip is shown in Figure 1a. The topmost layer had
four electrofluidic resistors which constructed the Wheatstone bridge for pressure sensing (see the red
part in Figure 1b). The third layer had two symmetric parts serving for sample pretreatment (see the
green part in Figure 1b), with each part consisting of two inlets and a continuous zigzag microchannel
for mixing and diluting liquid samples. This zigzag structure is very commonly used in microfluidics
for mixing and diluting purposes [27–32]. Compared to a straight microchannel, the total length of
mixing is significantly increased in a zigzag microchannel. Moreover, by hitting the wall frequently,
the mixing process is more efficient in a zigzag microchannel. These two layers were fabricated using
the standard soft-lithography technique including photoresist SU-8 (2025, MicroChem, Westborough,
MA, USA) molding and elastomeric material PDMS (Sylgard 184, Dow Corning, Midland, MI, USA)
curing. The heights and widths of the fluidic channels (in both the electrofluidic circuit layer and the
fluidic layer), verified by α-step (Dektak XT, Bruker, Billerica, MI, USA), were about 50 and 200 µm,
respectively. As illustrated in Figure 1b, on the sample pretreatment layer, a pressure transduction
hole (diameter = 3.5 mm) was punched through and aligned with one of the four resistors on the
electrofluidic circuit layer. The PDMS membrane with a thickness of 100 µm was fabricated by spinning
a PDMS precursor (1:10 w/w of curing agent to base) onto a silicon wafer at 750 rpm for 40 s, baking
the membrane-coated wafer inside a vacuum oven at 60 ◦C for 3 h, and peeling the membrane off the
wafer. The electrofluidic circuit layer was punched using a 1.5-mm-diameter biopsy punch for ionic
liquid injection and resistance measurement (see the four red circles in Figure 1b). It was permanently
bonded to the PDMS membrane via oxygen plasma surface treatment at 18 W for 40 s under an O2

pressure of 600 mTorr (PDC-32G, Harrick Plasma, Ithaca, NY, USA). The sample-pretreatment layer,
punched for gas/liquid sample injection (see the five green circles in Figure 1b), was then bonded to
the bottom of the PDMS membrane via the same plasma treatment. Finally, the whole assembly was
oxygen plasma-boned to a 5 cm × 5 cm glass substrate. A picture of the integrated microfluidic device
is shown in Figure 1c.
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Figure 1. (a) The layer-by-layer scheme of the microfluidic chip (side view). (b) The 
sample-pretreatment layer (green) and the electrofluidic circuit layer (red) of the microfluidic chip 
(top view). (c) A picture of the microfluidic chip. PDMS—polydimethylsiloxane. 
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Figure 1. (a) The layer-by-layer scheme of the microfluidic chip (side view). (b) The sample-pretreatment
layer (green) and the electrofluidic circuit layer (red) of the microfluidic chip (top view). (c) A picture of the
microfluidic chip. PDMS—polydimethylsiloxane.

2.2. Theoretical Derivation and Simulation

The working principles of the pressure-sensing scheme in this device are detailed in
References [18,24–26]. Inside a microfluidic channel, the fluidic viscosity (µ) is proportional to the flow
resistance (Rflow), this resistance is proportional to the pressure drop along this channel (∆P), and this
pressure drop generates a hydraulic pressure (PH) at the pressure-sensing area, causing changes in the
cross-sectional area (∆A) and the electrical resistance (∆R) of the electrofluidic circuit. The basic idea
can be expressed as

∆P ∝ PH ∝ ∆A ∝ ∆R ∝ ∆VM and µ ∝ R f low ∝
d∆P
dQ

∝
d∆VM

dQ
, (1)

where ∆VM is the measured voltage difference in the electrofluidic Wheatstone bridge and Q is the
flow rate of the liquid sample.

The resistance (R) of each electrofluidic resistor is related to the resistivity (ρ) of the ionic liquid,
the cross-sectional area (A) of the microfluidic channel, and the length (l) of that channel as [25]

R = ρ
l
A

(2)

As shown in Figure 2a, when the liquid sample passes through the pressure transduction hole,
the hydraulic pressure deforms the PDMS membrane and changes the cross-section of the electrofluidic
resistor by ∆A. This, in turn, alters the resistance of the electrofluidic resistor by ∆R, expressed
as [25,28,33]

∆R ≈
(

ρl
A2

0

)
·∆A, (3)

where A0 is the cross-section of the undeformed electrofluidic resistor.
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This small resistance change is measured using the Wheatstone bridge built in the electrofluidic
circuit layer. In Figure 2b, the measured voltage (VM) is proportional to the applied voltage (Vs)
as [25,28]

VM =

(
R0

R0 + R0
− R0

R + R0

)
·VS =

(
1
2
− R0

R + R0

)
·VS, (4)

where R0 is the resistance of the undeformed electrofluidic resistor.
As R is replaced with R0 + ∆R, the measured voltage difference (∆VM) can be expressed as [25,28]

∆VM =

[
1
2
− R0

(R0 + ∆R) + R0

]
·VS =

(
1
2 ·∆R

2R0 + ∆R

)
·VS. (5)

For ∆R << R0 and from Equations (3) and (5), the relationship between ∆VM and ∆A can be
expressed as [25]

∆VM ≈
(

VS
4R0

)
·∆R ≈

(
VS

4R0

)
·
(

ρl
A2

0

)
·∆A. (6)

It follows that the hydraulic pressure (PH), and thus, the pressure drop (∆P) are proportional to
the measured voltage difference (∆VM). Next, the flow resistance (Rflow) is proportional to the pressure
drop along the microfluidic channel (∆P), the flow rate of the liquid sample (Q), the fluidic viscosity
(µ), and the dimension of the channel (w: width; h: height; L: length) as [25]

R f low =
d∆P
dQ

=
12µL
wh3

{
1 − h

w

[
192
π5

∞

∑
n = 1

1
n5 tanh

(nπw
h

)]}−1

. (7)

The viscosity is proportional to the slope in the ∆P–Q curve, and from Equation (6), it is also
proportional to the slope in the ∆VM–Q curve.

Equation (7) is used to calculate the pressure drop by assigning a finite summation up to n = N,
w = 200 µm, h = 50 µm, L = 13.2 cm, µ = 0.89 cP for water at 25 ◦C, and Q = 100 µL/min. The calculation
was performed using the Fortran programming language (version 95). Moreover, the same parameters
were used in the COMSOL Multiphysics software (version 4.4, COMSOL, Burlington, MA, USA) for
simulations on the pressure drop (via the “Laminar Flow” module) and the sample mixing process
(via the “Transport of Dilute Species” module). The purposes of performing the COMSOL simulation
are to show that (1) the calculation in Equation (7) is correct, and (2) the sample-pretreatment layer can
effectively mix two samples of different concentrations.
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Figure 2. (a) The hydraulic pressure deforms the PDMS membrane. (b) The electrofluidic Wheatstone bridge.

2.3. Experimental Setup and Procedure

Four 1-mL plastic syringes with 16-gauge flat needles (Terumo, Somerset, NJ, USA) were filled
with ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (370865-89-7, Alfa Aesar, Ward Hill, MA,
USA), and inserted into the four holes in the electrofluidic circuit layer. The liquid was gently pushed



Micromachines 2018, 9, 375 6 of 12

into the electrofluidic circuit to avoid bubble formation. Electrical wires were wound around the
needles and connected to a data acquisition board (NI-DAQ USB-6009, National Instruments, Austin,
TX, USA) for applying and receiving electrical signals through the customized LABVIEW program
(version 2011, National Instruments, Austin, TX, USA). This program was also written to control
the pressure controller (ALI-PCD-15PSIG-D, Alicat Scientific, Tucson, AZ, USA) and syringe pumps
(NE-1000, New Era, Farmingdale, NY, USA) for varying the pressure of gas and the flow rate of liquid
samples, respectively. To test the pressure-sensing performance of this microfluidic device, nitrogen
gas was flowed into the sample pretreatment layer via one sample injection hole (with other four
holes sealed). A pressure increment of 0.5 psi was applied using the pressure controller to monitor the
corresponding changes in measured voltage difference. To conduct experiments on liquids, samples
(pure water or glycerol/water solutions) were flowed into the sample-pretreatment layer via two
syringes and two sample-injection holes on the same side (with one hole on the other side serving as
the outlet and the other two holes sealed). The flow rates inside the microfluidic channel were changed
from 20 to 100 µL/min with an increment of 20 µL/min and a total waiting time of 10 min to monitor
the corresponding changes in measured voltage difference.

3. Results

3.1. Calculation and Simulation

The pressure drop between the inlets and the pressure transduction hole was calculated using the
Fortran language. In Equation (7), for values of N larger than 5, ∆P was constant and close to 12.135 psi
under a flow rate of 100 µL/min, as shown in Figure 3a. In the COMSOL simulation indicated in
Figure 3b, the pressure drop was around 12.8 psi (the difference in hydraulic pressures between the
leftmost, dark-red area and the right-most, blue area). This value was slightly (~5%) higher than that
calculated using Fortran. Figure 3c shows the flow velocity around one corner of the microfluidic
channel. Liquids tended to flow along the inner corner of the channel, leading to an increase in flow
resistance and pressure drop compared with the assumed straight channel in Equation (7). The sample
mixing process was also simulated using the COMSOL software. In Figure 3d, by flowing two solutions
with concentrations of 0 and 3 M into the two inlets at the same flow rates, a uniform solution with a
concentration of about 1.5 M was obtained in the outlet.
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velocity around one corner of the microfluidic channel. (d) The COMSOL simulation of the mixing
process in the sample-pretreatment layer.
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3.2. Gas and Pure Water Test

To investigate the pressure-sensing performance, nitrogen gas was introduced into the microfluidic
channel to deform the PDMS membrane. This gas was supplied from an N2 gas cylinder and regulated
via a pressure controller. The gas pressure was controlled to increase from 0 to 14 psi at an increment of
0.5 psi, and the waiting time between two pressure values was 10 s, much longer than the responding
time of the pressure controller. The measured voltage differences from five successive measurements are
shown in Figure 4a, indicating linear responses and good repeatability. The average values with standard
deviations (over the last 5 s for each gas pressure and over five measurements) were plotted against the
gas pressure, as shown in Figure 4b. An offset voltage difference of around −60 mV was recorded at zero
pressure. From linear fitting, a slope of 11 mV/psi indicated that a pressure of 1 psi will lead to an 11-mV
measured voltage difference. Moreover, the good linearity (R2 = 0.9967) verified the applicability of the
present device for pressure and viscosity measurements. By inserting ∆VM = 152.6 mV and VS = 5 V into
Equation (6), the resistance change ∆R under a gas pressure of 14 psi was about 12.2% of the original value.

The performance of this device in liquid pressure measurements was studied by flowing pure
water into the microfluidic channel to deform the PDMS membrane. The flow rate of the water was
controlled via syringe pumps and increased from 10 to 50 µL/min with an increment of 10 µL/min
and a total waiting time of 10 min. Since there were two inlets, this corresponded to flow rates
of 20–100 µL/min with an increment of 20 µL/min inside the microfluidic channel. The outlet of
the microfluidic channel was exposed to the atmosphere, so the measured voltage difference was
related to the pressure drop along the channel and the hydraulic pressure at the pressure transduction
hole. Figure 5a shows the corresponding ∆VM plotted against time. As indicated, the responding
time was about 3 min; thus, the data from the last 5 min were taken for the purpose of statistics.
Ripples in the voltage were observed, probably due to the stepper motor of the pump used to push the
syringe. The average values of ∆VM with standard deviations (over three successive measurements)
were plotted against the flow rate, as shown in Figure 5b. A slope of 0.70 mV·min/µL and an R2 of
0.9993 were obtained from linear fitting, indicating the good linearity in measuring liquid samples
over this flow rate range. Therefore, by assigning the viscosity of pure water (µ = 0.89 cP at 25 ◦C) to its
slope (d∆VM/dQ = 0.70 mV·min/µL, which is proportional to d∆P/dQ in Equation (7)), the viscosities
of other liquids can be obtained from their slopes of measured voltage difference versus flow rate.
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3.3. Samples with Different Viscosities

Glycerol solutions of different concentrations were obtained by flowing pure water and 30%
v/v glycerol solution in water into the two inlets of the microfluidic channel at desired flow rates.
For example, with a desired flow rate of 20 µL/min inside the channel, a concentration of 15% was
achieved by injecting water and 30% glycerol solution at flow rates of 10 and 10 µL/min, respectively.
A concentration of 2.5% was achieved by injecting water and 30% glycerol solution at flow rates of
18.3 and 1.7 µL/min, respectively. Thirteen samples, with concentrations ranging from 0% to 30%
at an increment of 2.5%, were measured under flow rates of 20–100 µL/min and an increment of
20 µL/min inside the microfluidic channel. The average values of d∆VM/dQ with standard deviations
(over three independent measurements) were plotted against the concentration, as shown in Figure 6a.
Furthermore, by assigning a viscosity of 0.89 cP to 0% concentration (pure water), the viscosities at
different concentrations could be obtained.

As clearly observed in Figure 6b, the linearity obtained through linear regression to these points
was not very good (R2 = 0.9804, data not shown). According to the literature, the relationship
between the viscosity of a glycerol/water solution and its concentration is better described by an
exponential curve [34]. The relationship among the viscosities of pure water (µw), pure glycerol (µg),
and glycerol/water mixtures (µ) can be expressed as

µ = µα
wµ1−α

g , (8)

where α is the weighting factor between 0 and 1. By letting A = ln
(

µw
µg

)
, Equation (8) can be rewritten as

µ = µge(Aα). (9)

Another parameter β is defined to relate the weighting factor to the concentration of the
glycerol/water (Cm) solution as

β = α− 1 + Cm. (10)
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For small values of Cm, β depends linearly on Cm

β = aCm (11)

The parameter a was experimentally determined to be a = 0.705 − 0.0017T, where T is the
temperature in ◦C [34]. By inserting Equation (11) into Equation (10), the weighting factor can be
expressed as

α = 1 + (a − 1)Cm. (12)

Then, Equation (9) can be rewritten as

µ = µge(A+A(a−1)Cm) = µwe(A(a−1)Cm). (13)

Given that at 25 ◦C, A = ln
(

µw
µg

)
= ln

( 0.89
905.68

)
= −6.925 and a = 0.705 − 0.0017 × 25 = 0.6625,

the viscosity of the glycerol/water solution can be expressed as

µ = µwe(2.34Cm). (14)

By inserting µw = 0.89 into and changing Cm to v/v percentage in Equation (14), the viscosity is
related to the concentration as

µ = 0.89e(0.0234Cm). (15)

This equation, with an experimental variable, was used to fit the points in Figure 6b. As shown,
an R2 of 0.9964 indicated a good fitting, and the experimental variable 0.025 was 6.83% higher than
the calculated value 0.0234 in Equation (15). This could possibly be due to the deformation of PDMS
channels during experiments [33,35].
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3.4. Comparison with Other Devices

The viscosities obtained in the present microfluidic chip were compared to those determined
from two commercially available devices, a viscometer (microVISC, RheoSense, San Ramon, CA,
USA) and a rheometer (AR2000ex, TA Instruments, New Castle, DE, USA). As shown in Figure 7a,
the differences overall were small. For example, compared with the rheometer, the differences were
0.001 cP (0.1%), 0.089 cP (4.5%), and 0.137 cP (8.9%) at concentrations of 10%, 30%, and 22.5%,
respectively. Moreover, compared with the viscometer, the differences were 0.001 cP (0.1%) and
0.174 cP (8.8%) at concentrations of 15% and 30%, respectively. Also, Figure 7b shows the viscosities
measured by the AR2000ex rheometer versus those measured by the microfluidic device. A fitted slope
of 0.98 again indicates small measured differences. These results suggest that the present microfluidic
device can serve as an alternative to other commercialized viscometers.
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4. Conclusions

This paper successfully demonstrated a microfluidic viscometer based on electrofluidic circuits.
Constructed using elastomeric PDMS, this micro-device provides several advantages over traditional
viscometers, including portability, disposability, effective cost, simple fabrication, and low sample
consumption. Inside the microfluidic channel, the fluidic viscosity is proportional to the flow resistance
and the pressure drop along this channel. This pressure drop generates a hydraulic pressure at the
transduction hole, causing changes in the cross-sectional area and the electrical resistance of the
electrofluidic circuit. This resistance change is, in turn, measured via the electrofluidic Wheatstone
bridge. By combining the electrofluidic circuit layer with another sample-pretreatment layer, this
micro-viscometer offers an additional benefit of mixing and/or diluting liquid samples. Viscosities of
glycerol/water solutions with v/v concentrations ranging from 0 to 30% were measured, and these
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values were close to those obtained using commercially available devices. In the near future,
a microfluidic viscometer based on the concepts of the present device will be designed and fabricated
to (1) measure viscosities of biological samples in a fast, accurate, and high-throughput manner, and (2)
culture cells for monitoring their responses to fluidic shear stress and viscosity.
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