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Abstract: Total ATP (adenosine triphosphate) concentration is a useful biochemical parameter for
detecting microbial biomass or biogeochemical activity anomalies in the natural environment. In this
study, we describe the development and evaluation of a new version of in situ ATP analyzer improved
for the continuous and quantitative determination of ATP in submarine environments. We integrated
a transparent microfluidic device containing a microchannel for cell lysis and a channel for the
bioluminescence L–L (luciferin–luciferase) assay with a miniature pumping unit and a photometry
module for the measurement of the bioluminescence intensity. A heater and a temperature sensor
were also included in the system to maintain an optimal temperature for the L–L reaction. In this
study, the analyzer was evaluated in deep sea environments, reaching a depth of 200 m using a
remotely operated underwater vehicle. We show that the ATP analyzer successfully operated in
the deep-sea environment and accurately quantified total ATP within the concentration lower than
5 × 10−11 M.
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1. Introduction

The importance of organic and inorganic matter circulating globally and locally in ocean
environments has prompted research in the field of marine environmental microbiology on the
abundance, distribution and roles of oceanic microbes represented by Eubacteria and Archaea.
Microbes have relevant roles especially in submarine hydrothermal sites or hydrocarbon seepage
areas, because they support unique ecosystems as primary producers [1]. Even with the rapid
progress of sophisticated DNA and RNA analysis methodologies, the determination of the number
of microbial cells in seawater samples is still indispensable for estimating microbial biomass and for
studying their spatiotemporal distribution. Generally, microscopic or flow-cytometric counting of
fluorescently stained or genetically labeled cells are conducted by well-trained researchers in onboard
or onshore laboratories, using samples collected during scientific cruises [2]. However, the quantitative
determination of microbial ATP (adenosine triphosphate), which is a ubiquitous biomolecule utilized
for energy conversion and storage in living cells, in seawater has been regarded as one of the most
useful alternatives to labor-intensive microscopic cell enumerations [3,4]. In particular, the quantity
of particulate ATP (pATP) in seawater is a representative proxy of the microbial biomass in a
sample [5]. Since dissolved ATP (dATP)—an important carbon and phosphorus source for marine
microbes—is also related to microbial activity [6], the sum of pATP and dATP (total ATP (tATP)) is a
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useful parameter indicative of the presence of biogeochemical events, such as submarine volcanisms [1],
hydrocarbon seepages [7] and occasional supply of organic resources (e.g., whale falls) [8]. By realizing
a compact and portable apparatus for in situ ATP quantification, it becomes possible to analyze
the distribution of microbial biomass anomalies with an unprecedented spatiotemporal resolution,
which enables an efficient exploration of the underwater resources as well as deep sea environmental
and microbiological studies [9].

ATP concentration can be determined by the L–L (luciferin–luciferase) bioluminescence
assay [10] (see Figure 1) that is a simple method for ATP quantification generally used for hygiene
monitoring [11,12]. The microfluidic technology has been applied to automate flow analyses in
various fields, including biochemistry and it has been used in marine environments for microbial gene
analysis [13], nutrient analysis [14] and trace metal analysis [15,16]. Previously, we developed and
evaluated microfluidic devices and in situ analyzers for intermittent (non-continuous) quantitative
determination of ATP based on the L–L assay [17–19]. For the further improvement of the
spatiotemporal resolution of the in-situ measurement, a new system with continuous measurement
capability was developed and evaluated for practical oceanography applications [20–22]. In these
studies, two microfluidic devices with single function for microbial cell lysis and bioluminescence
detection were used in combination. In this study, we improve the new system by merging the single
function microfluidic devices into one device and its performance in the deep-sea environments is
examined by comparing the in-situ ATP quantification results with manually processed values.
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Figure 1. Schematic of luciferin–luciferase reaction for ATP quantification.

2. Materials and Methods

2.1. In situ ATP Analyzer

The in-situ ATP analyzer that we have produced can quantify the ATP contained in seawater
continuously at a depth of 3000 m. Since the seawater samples are not filtered before the analysis,
tATP concentrations are measured. The analyzer consists of an analysis module, which is the core
component and of a photometry module for the bioluminescence intensity measurements based on
the L–L reaction (see Figure 2).

A flow diagram of the ATP analyzer is shown in Figure 3. The analysis module (see Figure 4)
is connected to the microfluidic device for the L–L assay (Figures 2 and 5) and contains three miniature
peristaltic pumps (RP-0.15S-P15A-DC5VS, Aquatech Co., Ltd., Daito, Japan), three solenoid-actuated
three-way valves (STV-3-1, Takasago Electric, Inc., Nagoya, Japan) and the control electronics.
The fluidic components are connected using black-colored TeflonTM FEP (fluorinated ethylene
propylene) tubes (1519, IDEX Health & Science, Oak Harbor, WA, USA) to shield the analysis module
from the ambient light. A cascaded connection of the three-way valves enables the selection of four
kinds of fluids (the sample and three standard solutions) through the three valves. The control
electronics is based on a miniature microprocessor board (ML100 series, Microtec Co., Ltd., Funabashi,
Japan) and is used to control the valves, pumps and heater. Sequential scenarios for pump and valve
operation and temperature setting can be stored on a micro SD card in the control electronics. All the
components of the analysis module are enclosed in a cylindrical plastic container filled with fluorinated
oil (Fluorinert FC-43, 3M, Maplewood, MN, USA) for electrical insulation and pressure equalization
during underwater operations. Since it employs a pressure-balanced configuration, the system does not
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require a complicated and large pumping mechanism to manage the elevated underwater hydrostatic
pressure and overcome the differences between the internal and external pressures. The seawater
sample is led from the outside of the system through a short tube to the container. The chemicals
for the L–L assay and standard solutions are stored in plastic bags, connected to the system via the
TeflonTM FEP tube. One end of the oil-filled analysis module has a transparent window facing the
photometry module. The total power consumption of the in-situ ATP analyzer is approximately 24 W
in maximum (when all the valves and the heater are activated) including the photometry module
described later.
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Figure 3. Flow diagram of the in-situ ATP analyzer. ST1–3: ATP standard solutions 1–3, SP: sample,
CL: cell lysis reagent, LL: L–L reagent, CLC: cell lysis channel, BLC: bioluminescence channel,
WS: waste outlet, PP: peristaltic pump, SV: solenoid three-way valve, TS: temperature sensor,
HT: heater, MR: mirror, PMT: photomultiplier tube.
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2.2. Microfluidic Device

The microfluidic device for the in-situ ATP analyzer is made of transparent PMMA (Poly (methyl
methacrylate)) to detect the bioluminescence produced by the L–L reaction taking place in the
device (Figure 5). Channels for cell lysis and the L–L reaction are engraved by means of precision
milling on a PMMA disk (47 mm in diameter and 2 mm in thickness) and bonded with the top
plate (11 mm in thickness) with 1/4-28 UNF threaded tubing interfaces by a diffusion bonding
method (Takasago Electric., Inc., Nagoya, Japan). Each channel is 0.5 mm wide and 1.5 mm deep.
First, the sample (SP) is mixed with a cell lysis (CL) reagent that releases ATP from the microbial cells
as the mixture passes through a serpentine cell lysis channel (CLC), which is approximately 133 mm in
length (this takes approximately 23 s). The extracted ATP is mixed with the L–L reagent immediately
at the end of the CLC to initiate the L–L bioluminescence reaction that takes place in the serpentine
bioluminescence channel (BLC) folded in a circular shape. Along the approximately 482 mm of the
BLC, bioluminescence is emitted and its intensity corresponds to the ATP concentration in the sample.
Even though the microfluidic device does not include a mixer structure, the asynchronous pulsated
flow generated by the three peristaltic pumps enables the mixing of the reagents. The mixing ratio
of the sample and reagents is 1:1:1 (SP/CL/LL). At the flow rate of 133 µL/min for each component,
it takes approximately 54 s for the final mixture to pass through the L–L reaction channel. The waste
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is discharged from a waste port (WS) and collected in a plastic bag outside of the analysis module.
A miniature flat mirror (MR) reflects the bioluminescence to a PMT (photomultiplier tube) in the
photometry module. A film heater (HT) and a temperature sensor (TS) are fixed behind the mirror
in order to maintain the optimal temperature for the L–L reaction. The TS was placed just behind
the HT and the activation of the HT was regulated by the control electronics in the analysis module.
The temperature is typically kept to 35 ◦C (higher than room-temperature) considering the situation
of operation under the room-temperature condition with the waste heat generation from pumps and
valves in the analysis module.

2.3. Photometry Module

The photometry module consists of a photon-counting PMT and a data logging electronics
located in a cylindrical pressure-tight housing. In contrast to the analysis module that has a
pressure-balanced configuration, all the key components of the photometry module are protected from
ambient hydrostatic pressure. The PMT faces a pressure-resistant glass window (18 mm in thickness)
fixed at the end of the pressure-tight housing for the bioluminescence measurement. The measured
bioluminescence intensity data are stored on a micro SD card in the data logging electronics based on
ML100 series (Microtec Co., Ltd., Funabashi, Japan) and transferred in real-time to a PC connected to
the in-situ ATP analyzer via RS-232 format.

2.4. Reagents

For the L–L assay, a commercially available kit for bacterial biomass determination
(CheckLite HS Set, Kikkoman Biochemifa Co., Tokyo, Japan) containing the ATP releasing
(cell lysis) reagent and the L–L reagent was modified for seawater sample measurement [18,19].
EDTA (ethylenediaminetetraacetic acid, Wako Pure Chemical Industries, Ltd., Osaka, Japan) was added
to the ATP releasing reagent at a final concentration of 10 mM to avoid precipitation in the presence
of the seawater samples or the seawater-based ATP standard solutions. To avoid the adsorption of
the reagents and the adhesion of natural particles or debris to the micro-channels, 2% (v/v) Tween 20
(MP Biomedicals LLC, Santa Ana, CA, USA) was added to the L–L reagent. Both EDTA and Tween 20
were sterilized by autoclaving prior to use to eliminate potentially contaminating ATP. Seawater-based
ATP standard solutions (5 × 10−12, 5 × 10−11, 5 × 10−10 M ATP and blank) were prepared from an
original ATP standard solution (2 × 10−6 M ATP, Kikkoman Biochemifa Co., Tokyo, Japan) by diluting
it with autoclaved artificial seawater (Daigo’s artificial seawater SP for marine microalgae medium,
Nihon Pharmaceutical Co., Ltd., Tokyo, Japan). All reagents and standards were aseptically introduced
into sterilized plastic bags (DSF-300, Tsukada Medical Research Co. Ltd., Ueda, Japan) for use in the
in-situ analyzer.

2.5. Evaluations

The in-situ ATP analyzer was evaluated in the laboratory environment using three ATP standard
solutions and blank to acquire the relationship between ATP concentration and bioluminescence
intensity. For the evaluation, ATP standard solutions and blank were filled in an aseptic plastic test
tube and introduced into the analyzer from the sample inlet. After the saturation of the bioluminescence
intensity at each ATP concentration, consecutive 10 s values were used for calibration.

2.6. In Situ Evaluations

The evaluation of the in-situ ATP analyzer developed in this study was carried out in the real
field during the scientific cruise KS-17-J07C using R/V SHINSEI MARU and ROV (remotely operated
vehicle) HYPER-DOLPHIN (Japan Agency for Marine-Earth Science and Technology, JAMSTEC)
in May 2017. The in-situ ATP analyzer was mounted on the ROV (see Figure 6), which provided
electricity and RS-232 communication. Real-time monitoring of the bioluminescence data and control
of the in-situ ATP analyzer were carried out on board using a PC, which was connected to the ROV



Micromachines 2018, 9, 370 6 of 10

via an underwater cable. During the 2021st dive of HYPER-DOLPHIN, the ROV and the analyzer
were dived to the Oomuro Hole located in the northern Izu-Ogasawara arc, where the existence of
hydrothermal activity has been reported [23]. Continuous tATP measurements were performed from
the sea surface to the seafloor at a depth of approximately 200 m. The system calibration was also
carried out in situ using the ATP standard solutions to compensate the changes on the reagent flow-rate
or temperature on the microfluidic device caused by unexpected effect of elevated hydrostatic pressure
on the pumps, temperature sensor and heater controller. Furthermore, effect of the temperature
and pressure on the L–L reaction [24] must be considered for accurate in situ quantification of tATP.
Water samplers (see Figure 6c) equipped with aseptic plastic syringes were installed on the ROV for
sample collection for data comparison. The collected water samples were transferred to clean test tubes
immediately after the dive and tATP concentration was measured by a conventional method using test
tubes on board using a desktop luminometer (NU-2600, Microtec Co., Ltd., Funabashi, Japan) and a
CheckLite HS Set (Kikkoman Biochemifa Co., Tokyo, Japan) without modification. Bioluminescence
intensity was integrated for 10 s and all the measurements were triplicated.
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3. Results

As a result of the calibration in the laboratory environment, highly linear relationship
(R2 > 0.99) between the ATP concentration and the bioluminescence intensity was obtained (Figure 7).
Therefore, extrapolation of the result of in situ calibrations obtained using the 5 × 10−12, 5 × 10−11 M
of ATP standards and the blank is reasonable up to 5 × 10−10 M of ATP concentration.

A continuous tATP measurement from the sea surface to the bottom of the Oomuro Hole area
was carried out successfully using the in-situ ATP analyzer developed in this study. After calibrating
the system using ATP standard solutions, a linear correlation between the ATP concentration and
the bioluminescence intensity (R2 > 0.99) was obtained (see Figure 8) and was later applied to the
measured raw data to calculate tATP concentration in the samples (see Figure 9). For data exceeding
the bioluminescence intensity corresponding to the ATP concentration of 5.0 × 10−11 M, such as data
from the surface, the calibration formula was extrapolated.

At the beginning of the measurement at the surface, the measured tATP concentration was
extraordinarily low and increased rapidly within five minutes. This was due to a time lag at the
beginning of the measurement required to reach and fill the reagents and the sample to the microfluidic
device. A high concentration of tATP, corresponding to 1.0 × 10−10 M or more, was measured at
the surface after the reagents and sample were filled in the microfluidic device. This is consistent
with the formation of a larger microbial biomass layer at the surface supported by photosynthetic
primary productions. As the ROV dived more deeply, the tATP concentration decreased rapidly. In situ



Micromachines 2018, 9, 370 7 of 10

calibration was successfully performed at the bottom of the sea, as shown in Figure 9. The measurement
precision rates of the analyzer, estimated from the 3σ value calculated from three consecutive 10 s
measurements of bioluminescence intensity of the 5.0 × 10−12 and 5.0 × 10−11 M ATP standard
solutions, were 43% and 4.5% (2.2 × 10−12 and 2.3 × 10−12 M) of the measured values, respectively.
Conversely, the measurement precision rate calculated for manually measured triplicate data were
14% and 9.9% of the measured values. The in-situ ATP analyzer showed better performance for the
determination of ATP concentration close to 5 × 10−11 M. In contrast, the measurement precision rate
for lower ATP concentrations was better for the desktop apparatus. This was due to fluctuations of the
bioluminescence intensity data during the measurement of the 5 × 10−12 M standard.
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Figure 9. Result of in situ ATP measurement at the Oomuro Hole during the 2021st dive of
HYPER-DOLPHIN. Raw bioluminescence data were converted to ATP concentration and plotted
as the green line with time. The time was shifted 3 min ahead considering the time-lag between sample
intake and bioluminescence emission in the analyzer. The depth profile measured by a depth sensor on
the ROV is shown in the blue line. ATP concentrations measured onboard using the collected water
samples were shown as red squares.

In the Oomuro Hole, tATP concentration was in the range of 2.0 to 3.0 × 10−11 M with occasional
increases to values higher than 1.0 × 10−10 M. The ATP concentrations measured on board of two
seawater samples collected by the ROV were consistent with the data provided by the in-situ ATP
analyzer, as shown in Figure 9. The occasional ATP concentration peaks were likely due to the
introduction of inorganic-organic aggregated particles including microbes [25] or marine snow particles
originated from the surface water. After more than 2 h of the operation of the in-situ ATP analyzer was
halted because of an electric trouble alert on the ROV system.

4. Discussion

In this study, an in-situ ATP analyzer was developed by employing a PMMA microfluidic device
as a core element of the system. The performance of the in-situ ATP analyzer was evaluated in a real
deep-sea environment. The ATP analyzer successfully measured the tATP concentrations at different
depths, providing data that were consistent with those measured manually. These results demonstrate
that a portable, simple and reliable flow analysis system such as our microfluidic device can be used
in extreme environments for real-time biochemical analyses. The calculated measurement precision
rates showed successful value (4.5%) at 5 × 10−11 M range of ATP concentration and decreased
performance for the determination of ATP concentrations as low as 5 × 10−12 M (43%). Because the
lower measurement precision has been led by fluctuation of light intensity value and it is caused by
electric noise from control electronics, improvement in the precision may be achieved by the reducing
the noise by enhancing the control electronics in the near future.

The pATP concentration required for the quantitative estimation of the microbial biomass can
be determined using the current system by subtracting dATP concentration, measured by the L–L
assay without using the cell lysis reagent, from the tATP concentration [26]. However, to measure
the dATP, it is necessary to perform additional calibrations of the in-situ ATP analyzer, specific for
dATP measurements. In the current system, the ATP measurement must be interrupted during the
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system calibration with ATP standard solutions. The calibration process required approximately
30 min during the in-situ evaluation at the Oomuro Hole. To overcome this limitation, we have been
developing and evaluating a novel calibration method using an optically activated caged ATP as an
internal standard [21,22,26]. By applying the new calibration technology, it will be possible to utilize
the in-situ ATP analyzer for practical underwater resources surveys and environmental assessment
missions in the near future.

Instruments for in situ flow-analysis based on the technologies developed in this study and
consisting of a simple microfluidic device and a pumping apparatus can be employed for various in
situ biological and biochemical analyses in human-inaccessible extreme environments.
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