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Abstract: The basic rules of self-organization using a totalistic cellular automaton (CA) were
investigated, for which the cell state was determined by summing the states of neighboring cells,
like in Conway’s Game of Life. This study used a short-range and long-range summation of
the cell states around the focal cell. These resemble reaction-diffusion (RD) equations, in which
self-organizing behavior emerges from interactions between an activating factor and an inhibiting
factor. In addition, Game-of-Life-type rules, in which a cell cannot survive when adjoined by too
many or too few living cells, were applied. Our model was able to mimic patterns characteristic of
biological cells, including movement, growth, and reproduction. This result suggests the possibility
of controlling self-organized patterns. Our model can also be applied to the control of engineering
systems, such as multirobot swarms and self-assembling microrobots.

Keywords: cellular automata; Game of Life; reaction-diffusion system; self-organization; Turing
pattern model; Young model

1. Introduction

Self-organization phenomena, in which global structures are produced from purely local interactions,
are found in fields ranging from biology to human societies. If these emergent processes were to
be controlled, various applications would be possible in engineering fields. For this purpose, the
conditions under which they emerge must be elucidated. This is one of the goals of the study of
complex systems. Such control methods may allow the automatic construction of machines. They
could also be applied to the control of engineering systems, such as controlling robot swarms or
self-assembling microrobots. In addition, the methods allow for the growth of artificial organs or the
support of ecosystem conservation, as well as clarifying the emergence of the first life on ancient earth.

Mathematical modeling of self-organization phenomena has two main branches: the mathematical
analysis of reaction-diffusion (RD) equations, and discrete modeling using cellular automata (CA).

The Turing pattern model is one type of RD model. This was introduced by Turing in 1952 [1],
where he treated morphogenesis as the interaction between activating and inhibiting factors. Typically,
this model achieves self-organization through the different diffusion coefficients for two morphogens,
equivalent to an activating and an inhibiting factor. The general RD equations can be written as follows:

∂u
∂t

= d1∇2u + f (u, v),

∂v
∂t

= d2∇2v + g(u, v),
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where u and v are the morphogen concentrations, functions f and g are the reaction kinetics, and d1

and d2 are the diffusion coefficients. Previous studies have considered a range of functions f and g,
and models such as the linear model, the Gierer–Meinhardt model [2], and the Gray–Scott model [3]
have been used to produce typical Turing patterns.

By contrast, CA models are discrete in both space and time. The state of the focal cell is determined
by the states of the adjacent cells and the transition rules. The advantage of CA models is that they can
describe systems that cannot be modeled using differential equations. Historically, various interesting
CA patterns have been discovered.

In the 1950s, von Neumann introduced the mathematical study of self-reproduction phenomena,
and proved, theoretically, that a self-replicating machine could be constructed on a two-dimensional
(2D) grid using 29 cell states and transition rules [4]. Von Neumann’s self-reproducing machine was
too large to be implemented until powerful computers became available in the 1990s [5]. Codd [6]
showed that the number of cell states could be reduced to eight, and proved the possibility of a
self-reproducing machine. However, this model was too complex to be applied to biological processes.
In the 1970s, the Game of Life (GoL), invented by Conway [7], became popular. It is a simple CA model
that is defined by only four rules, yet produces complex dynamic patterns. Wolfram [8] investigated
the one-dimensional (1D) CA model and identified four categories of pattern formation. One of these
was the chaotic behavior group. Langton [9] developed a simple self-reproducing machine that did
not require von Neumann’s machine completeness. While having a very simple shape, Langton’s
machine’s transition rules were complex and produced only specific circling shapes. Byl [10] simplified
the Langton model, and Reggia [11] identified the simplest possible reproducing machine. Ishida [12]
demonstrated a self-reproducing CA model that resembled a living cell, with DNA-like information
carriers held inside a cell-like structure.

On the other hand, many studies have applied CA models to biological phenomena, such as
the generation of seashell-like structures by Wolfram [8], the development by Young of an RD
model in a CA setting that reproduced the patterns of animal coloration [13], the application of
the Belousov–Zhabotinskii reaction CA model by Madore and Freeman [14], the catalytic modeling
of proteins by Gerhardt and Schuster [15], the modeling of the immune system by De Boer and
Hogeweg [16] and by Celada and Seiden [17], the tumor growth model of Moreira and Deutsch [18], the
genetic disorder model of Moore and Hahn [19], the modeling of the hippocampus by Pytte et al. [20],
and the dynamic modeling of cardiac conduction by Kaplan et al. [21]. Furthermore, Markus [22]
demonstrated that a CA model could produce the same output as RD equations.

In addition, CA has two types of model. The first one is a totalistic CA, for which each cell
state is determined by summing the states of the neighboring cells. Conway’s GoL is one such CA.
GoL produces the three typical patterns from the particular initial cell state configurations shown in
Figure 1: “still”, “moving”, and “oscillating”. Meanwhile, most of the initial cell state configurations
reach extinction, i.e., all cell states become 0. However, it is impossible to deduce the transition rules to
make specific shapes automatically.

In contrast with the totalistic CA, the second type of CA model counts all the neighbor cells’ state
patterns. Wolfram’s 1D CA is one such CA, in which there are two states (0 and 1) of three inputs
and one output. As there are 23 = 8 inputs, and each input has two outputs (0 or 1), there are 28 = 256
transition rules. Wolfram researched all these transition rules and divided the output patterns into four
classes. Class 1 covers the steady states, Class 2 the periodical patterns, Class 3 the random patterns
(edge of chaos), and Class 4 the chaotic patterns. Figure 2 shows one result of the Class 3 rules, which
produce unique patterns like that of a certain type of seashell.

However, in a Wolfram-type model, increasing the inputs to five produces an explosive increase
in the number of output combinations, to 232. It therefore becomes impossible to investigate all outputs.
A similar situation occurs in the case of a 2D CA model, making it, again, impossible to investigate
all possible patterns. Langton proposed the λ parameter [23] to elucidate the condition to give rise
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to the diversity of patterns—edge of chaos. However, this could not derive the rule to construct
favorite patterns.
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Figure 1. Patterns from Conway’s Game of Life under four rules: (1) a cell with one or no living neighbors
dies; (2) a cell with four or more living neighbors dies; (3) a cell with three living neighbors is born;
and (4) a cell with two or three living neighbors survives. The typical patterns that emerge can be
categorized into three groups: still, moving, or oscillation.

Micromachines 2018, 9, x FOR PEER REVIEW  3 of 19 

 

give rise to the diversity of patterns—edge of chaos. However, this could not derive the rule to 

construct favorite patterns. 

 

Figure 1. Patterns from Conway’s Game of Life under four rules: (1) a cell with one or no living 

neighbors dies; (2) a cell with four or more living neighbors dies; (3) a cell with three living neighbors 

is born; and (4) a cell with two or three living neighbors survives. The typical patterns that emerge 

can be categorized into three groups: still, moving, or oscillation. 

 

Figure 2. One of the patterns produced by Wolfram’s 1D cellular automaton (CA) model. Rule 126: 

white cell indicates the 0 state, while the black cell indicates the 1 state. The upper line corresponds to 

the initial condition. Applying this rule, the time series pattern produces a range of triangular 

shapes, in this case resembling a certain type of seashell. 

CA models reduce the computational load by removing the need to solve differential equations 

numerically. However, it is necessary to translate the partial differential equations of the RD 

equations into the transition rules of the CA model. In a study of up to present, no general method 

currently exists for doing this, with the exception of the ultra-discrete systems [24] used in certain 

soliton equations. Normally, the transition rules driving the emergent phenomena must be found by 

trial and error. Studies that attempted to derive the transition rules using genetic algorithms [11,25] 

demonstrated the difficulty of deriving generalized rules. The Ishida cell division model [12] is a 

hybrid of the Wolfram- and Conway-type CAs, in which part of the rules are totalistic transition 

rules, and the others are head-to-head-type transition rules, and these rules were discovered by trial 

and error. 

The Young model [13] is one of the 2D totalistic models that bridges the RD equations and CA 

model; this model is used to produce Turing patterns. Some other examples to produce Turing 

patterns are below. Adamatzky [26] studied a binary-cell-state eight-cell neighborhood 

 

 

0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0
1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1
1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0
1 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0
1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1
1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 0 0 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0

Figure 2. One of the patterns produced by Wolfram’s 1D cellular automaton (CA) model. Rule 126:
white cell indicates the 0 state, while the black cell indicates the 1 state. The upper line corresponds to
the initial condition. Applying this rule, the time series pattern produces a range of triangular shapes,
in this case resembling a certain type of seashell.

CA models reduce the computational load by removing the need to solve differential equations
numerically. However, it is necessary to translate the partial differential equations of the RD equations
into the transition rules of the CA model. In a study of up to present, no general method currently exists
for doing this, with the exception of the ultra-discrete systems [24] used in certain soliton equations.
Normally, the transition rules driving the emergent phenomena must be found by trial and error.
Studies that attempted to derive the transition rules using genetic algorithms [11,25] demonstrated the
difficulty of deriving generalized rules. The Ishida cell division model [12] is a hybrid of the Wolfram-
and Conway-type CAs, in which part of the rules are totalistic transition rules, and the others are
head-to-head-type transition rules, and these rules were discovered by trial and error.

The Young model [13] is one of the 2D totalistic models that bridges the RD equations and CA
model; this model is used to produce Turing patterns. Some other examples to produce Turing patterns
are below. Adamatzky [26] studied a binary-cell-state eight-cell neighborhood two-dimensional cellular
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automaton model with semitotalistic transitions rules. Dormann [27] also used a 2D outer-totalistic
model with threes states to produce a Turing-like pattern. Tsai [28] analyzed a self-replicating
mechanism in Turing patterns with a minimal autocatalytic monomer-dimer system.

Young’s CA model uses a real number function to derive the distance effects, with two constant
values within a grid cell: u1 (positive) and u2 (negative). The calculation begins by randomly distributing
black cells on a rectangular grid. Then, for each cell at position R0 in 2D fields, the next cell state of R0,
due to all nearby black cells at position Ri, are added up. Ri is assumed to be a black cell within radius
r2 from R0 cell. The function v(r) is a continuous step function, as shown in Figure 3b. The activation
area, indicated by u1, has a radius of r1 and the inhibition area, indicated by u2, has a radius of r2

(r2 > r1). At position R0, when Ri is assumed to be a grid within r2, function v(|R0 − Ri|) value is
added up. Function |R0 − Ri| indicates the distance between R0 and Ri. If ∑i v (|R0 − Ri|) > 0, the
grid cell at point R0 is marked as a black cell. If ∑i v (|R0 − Ri|) < 0, the grid cell becomes a white cell.
If ∑i v (|R0 − Ri|) = 0, the grid cell does not change state [13]. Using these functions, Young described
that a Turing pattern can be generated. Spot patterns or striped patterns can be created with relative
changes between u1 and u2.
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an outer radius r2; (b) Function v(r) is a continuous step function representing the activation area and
inhibition area.

In this Young model, let u1 = 1, u2 = w (here 0 < w < 1), and further, if the state of the cell is set to 0
(white) and 1 (black), this model can be arranged as follows. The state of cell i is expressed as ci(t)
(ci(t) = [0, 1]) at time t. The following state ci(t + 1) at time t + 1 is determined by the states of the
neighboring cells. Here, N1 is the sum of the states of the domain within S meshes of the focal cell.
Similarly, N2 is the sum of the states of the domain within t meshes of the focal cell, assuming that
S < t.

N1 =
S

∑
i=1

ci(t)

N2 =
T

∑
i=1

ci(t)

Here, S (T) is the number of cells within s (t) meshes from focal cell. Figure 4 shows the schematic
of the total sum of states N1 and N2. The next time state of the focal cell is determined by the following
Expression (1):
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Cell state at the next time step=


1 : if N1 > N2 × w

Unchange : if N1 = N2 × w
0 : if N1 < N2 × w

(1)
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The inner area has a domain within s grids of the focal cell and the outer area a domain within t grids.

The essence of the Turing pattern model is that the short- and long-range spatial scales are
each affected by separate factors [29], and pattern formation emerges from nonlinear interactions
between the two factors. Turing used two chemicals with different diffusion coefficients to create these
short- and long-range spatial effects. However, as long as there exists a difference between long- and
short-range effects, other implementation methods can be applied. This model used two ranges of s
mesh and t mesh to create a difference. It is therefore thought that this model is essentially the same as
an RD model.

Figure 5 shows the results for the Expression (1) model using a square grid. As the initial
conditions, 300 state 1 cells were set randomly in the calculation field 80 × 80. Turing-like patterns
emerged as parameter w changed. When w was greater than 0.4, spot patterns were observed, whereas
at w = 0.3, stripe patterns emerged. When w was 0.20 or lower, all cells in the field had a value of 1
(shown in black). Changing the parameters N1 and N2 merely changed the scale of the patterns.

On the other hand, the GoL is one of the 2D totalistic CAs to emerge patterns of diversity. In this
model, the state of the focal cell is activated when the total number of surrounding states is within a
certain range. Therefore, we considered the extended model of GoL. Whereas the GoL uses the states
of the eight surrounding cells (the Moore neighborhood), an extended neighborhood is possible that
considers two or more meshes from the focal cell like Young model. Such models are expected to
generate a similar variety of patterns to the GoL.

In natural phenomena, short-distance influences play a stronger role than more distant influences.
Under this circumstance (1) The influence decreases as the distance from the focal cell increases, which
is N1 + N2 × w type model (w: weight parameter, 0 < w < 1). However, reaction diffusion phenomena
are created with long-distance influences that play a negative role than more near influences. (2) The
influence reverses as the distance from the focal cell increases, which is N1 − N2 × w type model
(w: weight parameter, 0 < w < 1).
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Figure 5. Results for the model of Expression (1) with s = 5 and t = 9 in a square grid. As the initial
condition, 300 state 1 cells were set randomly in the calculation field. Turing-like patterns emerged as
parameter w changed. When w was greater than 0.4, spot patterns were observed, whereas at w = 0.3,
stripe patterns emerged. When w was 0.20 or lower, all cells in the field had a value of 1 (shown in
black).

The first type of the model is expected to produce results similar to those of other totalistic
CAs. Under specific conditions, GoL-like patterns will be found. The second model is expected to
produce results similar to those of a Young model, which similarly takes account of the nearness of the
activating and inhibiting factors.

This study adopted the second type of the model, and the emergence of a variety of patterns, such
as the Turing pattern, were confirmed. In addition, by applying GoL-type rules to the second model
type, more complex patterns are expected, such as self-reproducing and growth patterns. Our study
model was able to produce not only a Turing-like pattern while using a simple transition expression,
but also the model produces various patterns such as still, moving, and oscillation. Furthermore, this
model can control these patterns with two parameters, which means the possibility of controlling
self-organized patterns with a totalistic CA model.

2. Model

We investigated the results of an N1 − N2 × w type totalistic CA model in a 2D field that was
implemented in Java. The GoL-like rules assumed in this model which limit the range of survival as
state 1. To address this, by extending Expression (1), we introduced Expression (2). This expression was
obtained by adding Rule 4 to Expression (1). When N2 = 0, it is assumed that Rule 4 takes precedence.

Cell state of the next time step=


0 : if N1 > N2 × w2 (Rule 4)
1 : if N1 > N2 × w1 (Rule 3)

Unchange : if N1 = N2 × w1(Rule 2)
0 : if N1 < N2 × w1(Rule 1)

(2)

N1 =
S

∑
i=1

ci(t)
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N2 =
T

∑
i=1

ci(t)

Here, 1 > w2 > w1 > 0, and N1 is the sum of the states of the domain within s meshes of the focal
cell. Similarly, N2 is the sum of the states of the domain within t meshes of the focal cell, assuming that
s < t. S (T) is the number of cells within s (t) meshes from focal cell. As with the Young model, we used
“Unchange” as the equality in Expression (2) to prevent all cells becoming state 1 or 0 in the next time
step when N1 = 0 and N2 = 0.

The model used 2D hexagonal grids (Figure 6), in which the transition rules were simple to apply.
Although square grids are generally used in 2D CA modeling, we also used hexagonal grids for the
reason that a hexagonal grid is isotropic as opposed to a square grid. The models were implemented
under the following conditions:

- Calculation field: 80 × 80 cells in hexagonal grids
- Periodic boundary condition
- Initial conditions were assumed following two types of conditions:

Condition (a): some state 1s were set randomly in the calculation field;
Condition (b): some state 1s were set in the center of the calculation fields (Figure 7).
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Figure 6. Hexagonal grid field. Here, N1 is the domain within s meshes of the focal cell. Similarly, N2 is
the sum of the states of the domain within t meshes of the focal cell, assuming that s < t.

Micromachines 2018, 9, x FOR PEER REVIEW  7 of 19 

 

𝑁2 = ∑ 𝑐𝑖(𝑡)

𝑇

𝑖=1

  

Here, 1 > w2 > w1 > 0, and N1 is the sum of the states of the domain within s meshes of the focal 

cell. Similarly, N2 is the sum of the states of the domain within t meshes of the focal cell, assuming 

that s < t. S (T) is the number of cells within s (t) meshes from focal cell. As with the Young model, we 

used “Unchange” as the equality in Expression (2) to prevent all cells becoming state 1 or 0 in the 

next time step when N1 = 0 and N2 = 0. 

The model used 2D hexagonal grids (Figure 6), in which the transition rules were simple to 

apply. Although square grids are generally used in 2D CA modeling, we also used hexagonal grids 

for the reason that a hexagonal grid is isotropic as opposed to a square grid. The models were 

implemented under the following conditions: 

- Calculation field: 80 × 80 cells in hexagonal grids 

- Periodic boundary condition 

- Initial conditions were assumed following two types of conditions: 

Condition (a): some state 1s were set randomly in the calculation field; 

Condition (b): some state 1s were set in the center of the calculation fields (Figure 7). 

 

Figure 6. Hexagonal grid field. Here, N1 is the domain within s meshes of the focal cell. Similarly, N2 

is the sum of the states of the domain within t meshes of the focal cell, assuming that s < t. 

 

  

Figure 7. Initial conditions of hexagonal grids field. The black cell indicates the 1 state and the white 

cell indicates the 0 state. These configurations of state 1s were set in the center of the calculation 

fields. 

 

 

Figure 7. Initial conditions of hexagonal grids field. The black cell indicates the 1 state and the white
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3. Results

Figure 8 maps the model results against parameters w1 and w2. Initial condition is based on
300 randomly arranged state 1 cells. Different patterns were observed at different values of w1 and
w2. As in the Young-type model, the parameter w1 determined the pattern type, whether spotted or
striped. As w2 became smaller, pulsing and unsteady white spots were born within the black pattern.
The vibration of these white spots became more intense as the value of w2 was reduced. Figure 9
shows the results when varying the number of states 1 (black cell) to place them randomly in the initial
state. The calculation conditions were s = 5, t = 9, w1 = 0.40, and w2 = 0.80 in a hexagonal grid. Based
on the results of this figure, if there are more than a certain number of states 1, it is evident that a
similar pattern formation develops. Furthermore, Figure 10 shows the transition of the ratio of states 1
and 2, and the ratio of the applied cells of Rule 4 at each time step. This result was calculated when
w2 was changed (s = 5, t = 9, and w1 = 0.35). When w2 was 1, Rule 4 was not applied, and the result
was equivalent to the Young model. As w2 was lowered, the application ratio of Rule 4 increased.
At this time, white regions were generated in the black spots, and the instability increased and became
pulsating. This phenomenon is attributed to Rule 4.
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Figure 8. Results for the model with s = 5 and t = 9 in a hexagonal grid. The results image of each
w1 and w2 value is based on 300 randomly arranged state 1 cells. Instability became stronger as w2

decreased to w1.

Figure 11 shows the effect of the initial condition which is centrally arranged on four black cells.
The instability became more pronounced as w2 decreased, and the central spotted pattern grew as an
unstable wave in the calculation field. By contrast, when w2 was relatively large, the central spot did
not spread.
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Figure 9. Results when varying the number of states 1 (black cell) to place them randomly in the initial
states. The calculation conditions were s = 5, t = 9, w1 = 0.40, and w2 = 0.80 in a hexagonal grid. Based
on this result, if there are more than a certain number of states 1, it is evident that a similar pattern
formation develops.
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Figure 10. Transition ratio of states 1 and 2, and the ratio of the applied cells of Rule 4 at each time step.
This result was calculated when w2 was changed in s = 5, t = 9, and w1 = 0.35. When w2 was 1, Rule 4
was not applied, and it was equivalent to the Young model. As w2 was lowered, the application ratio
of Rule 4 increased. In comparison with Figure 8, white regions were generated in the black spots, and
instability increased and began pulsating. This phenomenon is attributed to Rule 4.
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Figure 11. Results for the model with s = 5 and t = 9 in a hexagonal grid. The image of each w1 and w2

value is based on centrally arranged four black cells as shown in Figure 7. Instability became stronger
as w2 decreased. The initial central spotted pattern grew as an unstable wave in the field. When w2

was relatively large, the central spot did not spread.

Figure 12 shows the time series results of the model with s = 4, t = 8, w1 = 0.40, and w2 = 0.75.
In this figure, i shows the iteration number of the calculation. The video of Figure 12 can be viewed in
the Video S1 of Supplementary Materials. As the initial condition, four state-1 cells (black) were set
in the center of the field shown in Figure 7. The central spotted pattern was divided into two spots,
and these divisions spread until the field was filled with spotted patterns. Figure 13 shows the results
when the initial condition of state 1 was subjected to the same conditions as in Figure 12 (s = 4, t = 8,
w1 = 0.40, and w2 = 0.75 in a hexagonal grid). When there was only one state 1 in the initial field, Rule
4 was applied around this state 1, which disappeared at the next step. If there are two or more states 1
as the initial state, it was observed that the state 1 survived, and pattern formation similar to Figure 12
occurred. In the case of several state 1s, due to the balance between Rules 3 and 4, complicated
patterns were observed in two or three steps from the beginning of the calculation, and thereafter,
a self-replicating pattern was observed.

In addition, Figure 14 shows the calculation results when increasing the black region as the initial
condition, under the same conditions as in Figure 12 (s = 4, t = 8, w1 = 0.40, and w2 = 0.75 in a hexagonal
grid). The point symmetrical initial shape tended to be a fixed pattern due to the balance of the rules.
On the other hand, if the black area was larger than a certain size, Rule 1 was mostly applied, and
disappeared at the second step. To produce a self-replicating pattern, an asymmetric shape must
initially occur. Figure 15 shows the transition of the ratios of states 1 and 2, and the ratio of applied
cells of Rule 4 per time step under the same conditions as in Figure 12 (s = 5, t = 9, w1 = 0.40, and
w2 = 0.75). In 90 to 100 steps, the frequency of pattern division became high, and the application ratio
of Rule 4 increased. Rule 4 generated a white area in the black spot patterns, and instability increased;
hence, the symmetrical shape collapsed and became a trigger for division.
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Figure 12. Results for the model with s = 4, t = 8, w1 = 0.40, and w2 = 0.75 in a hexagonal grid. As the
initial condition, four state 1 cells (black) were set in the center of the field as shown in Figure 7.
The central spotted pattern was divided into two spots, which then spread until the field was filled
with spotted patterns.
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Figure 13. Results with the initial condition of state 1 under the same conditions as in Figure 12 (s = 4,
t = 8, w1 = 0.40, and w2 = 0.75 in a hexagonal grid). If there is only one state 1 in the initial field, Rule 4
was applied at that location, which disappeared at the next step. If there are two or more state 1s as the
initial state, state 1 was observed to survive, and a pattern formation similar to Figure 12 occurred.

Figures 16 and 17 show the results with an initial pattern of a symmetrical ring with state 1 s.
In the case where the initial shape was symmetrical, the still pattern or the oscillation pattern often
appeared in a wide range of w1 and w2. When w1 = 0.45 and w2 = 0.55, the ring pattern spread while
dividing spots. In an opposite way, as w2 was approached as w1, the instability increased and the
pattern disappeared.
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pattern tends to be generated from the breaking of symmetry. As w2 approaches 1, it approaches 
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Figure 14. Calculation results, when increasing the black region as the initial condition, under the
same conditions as in Figure 12 (s = 4, t = 8, w1 = 0.40, and w2 = 0.75 in a hexagonal grid). The point
symmetrical initial shape tended to be a fixed pattern, due to the balance of each of the rules. On the
other hand, if the black area is larger than a certain size, Rule 1 is mostly applied, and disappeared at
the second step. To produce a self-replicating pattern, an asymmetric shape must initially occur.
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Figure 16. Results for the model with s = 5 and t = 8 in a hexagonal grid. The initial pattern was a
symmetrical ring. When w1 = 0.45 and w2 = 0.65, the ring pattern became an oscillation pattern with
period 2. When w1 = 0.45 and w2 = 0.72, the ring pattern likewise became an oscillation pattern with
period 2. When w1= 0.45 and w2 = 0.75, a still pattern was formed.
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Figure 17. Results for the model with s = 5 and t = 8 in a hexagonal grid. The initial pattern was a
symmetrical ring. When w1 = 0.45 and w2 = 0.48, the ring pattern disappeared. When w1 = 0.45 and
w2 = 0.55, the ring pattern spread while breaking apart. When w1 = 0.45 and w2 = 0.60, still patterns
were formed.

Figure 18 shows the initial pattern of a deformed ring with a thick upper boundary. When
w1 = 0.45 and w2 = 0.65, the ring pattern was divided while moving. When w1 = 0.45 and w2 = 0.72,
a constantly moving ring-like pattern formed. When w1 = 0.45 and w2 = 0.75, a single fixed symmetrical
ring pattern formed. Thus, when the initial shape is asymmetric, a moving pattern or dividing pattern
tends to be generated from the breaking of symmetry. As w2 approaches 1, it approaches fixed patterns,
and results in a pattern close to the Turing pattern.Micromachines 2018, 9, x FOR PEER REVIEW  14 of 19 
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Figure 18. Results for the model with s = 5 and t = 8 in a hexagonal grid. The initial pattern was
a deformed ring with a thick upper boundary. When w1 = 0.45 and w2 = 0.65, the ring pattern was
divided while moving. When w1 = 0.45 and w2 = 0.72, a moving ring-like pattern formed. When
w1 = 0.45 and w2 = 0.75, a single fixed symmetrical ring pattern formed.

4. Discussion

In this study, we constructed a model in which the focal state 1 survives only when a moderate rate
of the number of state 1 cells surrounds the focal cell. This model created a central white part (state 0)
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within the black domain by changing parameter w2. The patterns then became increasingly unstable
over the calculation field, and this instability increased the rate of pattern emergence, including
self-reproducing spot patterns and stripe patterns.

The self-reproducing spot pattern of Figure 12 seems to have some association with the Gray–Scott
model, which is a type of RD model. Generally, the Gray–Scott model produces a self-reproducing
spot pattern when the parameters are adjusted. In future work, we will investigate the relationship
between the current model and the Gray–Scott model.

Particularly, in the case of the model with s = 5 and t = 8 shown in Figures 16–18, the result
suggests the possibility of controlling self-organized patterns. When w1 is increased, a spot shape can
be generated, and by decreasing w1, a stripe pattern can be grown from spotted seeds.

In the symmetric shape, when w2 is large, it is stable in many cases. However, by making the
value of w2 small and making it close to w1, the spotted pattern becomes unstable, and asymmetric
shapes are born. Furthermore, these spots are moving or divided by the controlling w2 parameter, as
shown in Figure 19.
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Figure 19. Possibility of self-organized ring patterns with one parameter. The results are a part of
the model with s = 5 and s = 8 in a hexagonal grid, as shown in Figure 13. The ring pattern can be
controlled with parameter w2. When w2 = 0.65, the ring pattern was divided while moving. When
w2 = 0.72, a moving ring pattern formed. When w2 = 0.75, a fixed ring pattern formed.

The robustness of the initial conditions was found to have the following tendencies. (1) If state 1
is one, it disappears; (2) When state 1 is randomly arranged, if two or more states 1 are distributed in
the range for counting the number of surrounding states, the development of the pattern is recognized.
Next, depending on the degree of instability due to the w2 parameter, it is decided whether the
pattern develops spatially. Due to random initial placement, an identical pattern does not occur,
but qualitatively similar patterns can be stably generated; (3) When several states 1 are gathered,
complicated pattern changes occur in the first two or three steps due to the balance between Rules 3
and 4, and if a shape that is not point symmetric is subsequently generated, a pattern spreading in the
space is generated. When a point symmetric shape is born, a circular or ring-fixed pattern is generated;
(4) When the black (state 1) area is large, the black area disappears due to Rule 1.
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In a future study, if CA rules can translate to a chemical reaction process, a control technology
for nanomachines becomes feasible. Thus, the simple totalistic CA presented in this paper allows the
emergence of a wide range of self-organization patterns to be observed.Micromachines 2018, 9, x FOR PEER REVIEW  16 of 19 
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Figure 20. Calculation results in which w1 and w2 are changed over time at each step. The initial
pattern was a hexagonal ring shape of state 1s, with s = 5 and t = 8 in a hexagonal grid. As in this
result, it is possible to create changes by changing w1 and w2; when i = 1–9, w1 = 0.44, and w2 = 0.98,
birth of annulus was observed; when i = 11–19, w1 = 0.44, and w2 = 0.70, an oscillating spot pattern
was observed; when i = 20–29, w1 = 0.32, and w2 = 0.50, a growing ring pattern was observed; when
i = 30–39, w1 = 0.30, and w2 = 0.70, a growing ring pattern was observed; when i = 40–99, w1 = 0.45, and
w2 = 0.70, divide patterns and replication were observed; when i = 100–139, w1 = 0.58, and w2 = 0.70,
pattern disappearance was observed; when i = 140–259, w1 = 0.47, and w2 = 0.71, moving spotted
patterns were observed; when i = 260–279, w1 = 0.44, and w2 = 0.98, still circle patterns were observed;
when i = 280–319, w1 = 0.37, and w2 = 0.70, a growing ring pattern was observed; when i = 320–449,
w1 = 0.47, and w2 = 0.71, divide patterns and replication were observed; when i = 460–, w1 = 0.58, and
w2 = 0.65, disappearance of all patterns was observed.
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Based on these results, if the parameters w1 and w2 are changed at each time step, it is possible to
generate a continuously changing pattern. Figure 20 shows a calculation case in which w1 and w2 are
changed in time over time. The video of Figure 20 can be viewed in the Video S2 of Supplementary
Materials. As in this result, it is possible to create changes by changing w1 and w2; birth of annulus ->
growth -> division -> move -> decline -> growth -> annihilation.

Figure 21 shows the transition of the ratio of states 1 and 2, and the ratio of the applied cells of
Rule 4 in each time step during the calculation of Figure 20. Rule 4 was applied more frequently when
spot patterns replicated, as compared to when the spot moved or vibrated. Furthermore, when the
pattern disappeared, the application frequency of Rule 4 increased. Thus, it is suggested that pattern
stability can be controlled by changing the application ratio of Rule 4.

Since this research is still in its first stage, discussions are limited mainly to qualitative
considerations, but in future work, it will be necessary to investigate further quantitative assessments.
There is a possibility of finding an index like Langton’s λ parameter with the evaluation of many
calculation cases. Furthermore, since it has rules similar to the Game of Life, basically like the Game
of Life, many trials are necessary to find the desired pattern. Slight changes in the initial value may
develop into different patterns. In the future, it is necessary to make a catalog of pattern formation on
the relation between the initial condition and patterns based on many calculation results.Micromachines 2018, 9, x FOR PEER REVIEW  17 of 19 
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 Figure 21. Transition of the ratio of states 1 and 2, and the ratio of the applied cells of Rule 4 in
each time step during the calculation of Figure 20. Rule 4 was applied more frequently when spot
patterns replicated than when the spot moved or vibrated. Furthermore, when the pattern disappeared,
the application frequency of Rule 4 increased. Thus, it is suggested that pattern stability can be
controlled by changing the application ratio of Rule 4.

5. Conclusions

To observe special patterns of emergent behavior that mimic biological systems, we developed
a totalistic CA model with an activating inner area and inhibiting outer area. This is a CA model,
yet it works in a way that is equivalent to that of RD approaches like the Turing pattern model. If a
multiple CA model can be designed that allows the number of states to be increased, we may witness
the emergence of more complex patterns, like those of living things.

Our model also has potential applications in the engineering field. For example, it may be possible
to develop swarming robots that can work as a single unit or divide into groups. As shown in the
result of Figure 13, spot-like regions can be formed in the space by this algorithm. If many robots are
dispersedly arranged in this space, it becomes possible to gather by grouping the robots within this
spot-like rounded area. Furthermore, using this algorithm, it is also possible to divide one spot area
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into two. Therefore, robots can be divided into two groups simply by paying attention so that the
robot that was in the first spot area does not come out of the area.

The model can further be applied to information networks. If the transition rules can be applied
to Internet of Things (IoT) devices through the Web, hierarchical structures of IoT devices may emerge.
For example, if the IoT devices know their own position, this algorithm can be applied by transmitting
tokens to the nearby devices. Then, the spotted structure can be formed in the network space of
devices, and the devices can be divided into plural groups. Furthermore, if our method can be applied
to microsystems, it may become possible to make a production process of self-organizing a microrobot
from nanoparts automatically.

The model also produces Turing-like patterns using a simple algorithm and without the need
to solve complex simultaneous differential equations. However, a weak point is the necessity to
add up the state quantities within a certain area. While these calculations are simple to perform
using electronic devices, it is difficult to see how an individual living cell in an organism would be
able to calculate the states of distant cells. To apply this model to morphogenesis, therefore, further
modification is needed.

Other outstanding questions include the mathematical relationship between this model and the
RD equations, and the relationship with a Turing machine. It would also be interesting to consider the
entropy of the model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/7/339/s1,
Video S1: Video of Figure 12 (Results for the model with s = 4, t = 8, w1 = 0.40, and w2 = 0.75 in a hexagonal grid);
Video S2: Video of Figure 20 (Calculation results in which w1 and w2 are changed over time at each step).
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