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Abstract: Microstructure is important to the development of energy devices with high performance.
In this work, a three-dimensional Si-based metal-insulator-metal (MIM) capacitor has been reported,
which is fabricated by microelectromechanical systems (MEMS) technology. Area enlargement is
achieved by forming deep trenches in a silicon substrate using the deep reactive ion etching method.
The results indicate that an area of 2.45 × 103 mm2 can be realized in the deep trench structure with
a high aspect ratio of 30:1. Subsequently, a dielectric Al2O3 layer and electrode W/TiN layers are
deposited by atomic layer deposition. The obtained capacitor has superior performance, such as
a high breakdown voltage (34.1 V), a moderate energy density (≥1.23 mJ/cm2) per unit planar area,
a high breakdown electric field (6.1 ± 0.1 MV/cm), a low leakage current (10−7 A/cm2 at 22.5 V), and
a low quadratic voltage coefficient of capacitance (VCC) (≤63.1 ppm/V2). In addition, the device’s
performance has been theoretically examined. The results show that the high energy supply and
small leakage current can be attributed to the Poole–Frenkel emission in the high-field region and the
trap-assisted tunneling in the low-field region. The reported capacitor has potential application as
a secondary power supply.

Keywords: microelectromechanical systems (MEMS); microstructures; metal-insulator-metal
capacitors; secondary power supply; electrical properties

1. Introduction

Metal-Insulator-Metal (MIM) capacitors, which are typical passive components, have been widely
used for radio-frequency decoupling and analog mixed signal integrated circuits applications [1–8] due
to their low parasitic capacitance and low resistivity electrode [6,9]. Also, MIM capacitors are attractive
energy storage devices and can act as a secondary power supply due to the excellent advantage of
their rapid-moving charge and high burst power [10].

A typical application for a secondary power supply is as an ignition device, for which some key
parameters, including moderate energy density and excellent power density combined with high
capacitance density, a high breakdown voltage, and a low leakage current, are required. Generally,
energy density, which is usually referred to as areal energy density, is proportional to capacitance
density and the square of breakdown voltage. It is clear that high capacitance density can be achieved
by using a high-k dielectric and low dielectric thickness according to the operating principle of planar
capacitors. In contrast, this way can result in a low breakdown voltage according to the empirical
relation [11] and the electric field strength equation. It seems that there is an established inherent
tradeoff between capacitance density and breakdown voltage. However, the high energy density of
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a MIM capacitor can only be achieved by using a high dielectric thickness [12] due to the coupling
effect of thickness on capacitance density and breakdown voltage.

In some secondary power supply applications, the footprint area of the capacitors is limited.
Under these conditions, the energy density per unit planar area instead of the areal energy density
is an exact evaluation criterion for MIM capacitors. Hence, the question of how to increase the
specific surface area based on fixed appearance sizes becomes particularly important. Concerning
this, many researchers have made much effort to fabricate three-dimensional (3D) structures by anodic
aluminum oxide macro-holes [10] or silicon micro-holes [13], in which large areal MIM layers are
grown. So far, more attention has been paid to high-k dielectrics, including HfO2 [1,8], Al2O3 [2,14],
TaYOx [3], ZrO2 [4], Lu2O3 [6], and Eu2O3 [15] and their combinations, such as sandwiched [9,16],
stacked [5,7], and laminate structures [17,18], based on the substrate areas of within the millimeter
scale in the past few years. Currently, most of the 3D MIM capacitors are being used for dynamic
random access memory. Specifically, a flexible 3D MIM capacitor on silicon fabric has been successfully
fabricated and experimentally demonstrated by Hussain et al. [19–21], which is very innovative about
the manufacturing process and is very promising for flexible electronics. In these capacitors, the
working voltages are mostly around the 10 V used for integrated circuits. However, a high working
voltage is essential for MIM capacitors with a large specific surface area to meet the requirement of
a secondary power supply, where the typical voltages range from 20 V to 30 V. It is noticeable that
keeping a high breakdown voltage is difficult for a large areal MIM capacitor, because large areas make
the probability of defective dielectrics greatly increase and easily induce a large leakage current, which is
the origin of the premature breakdown of MIM capacitors. So, an effective way is to use a large dielectric
thickness. Still, high-k dielectrics would be necessary to compensate for the reduced capacity induced
by a thick dielectric [12]. In this work, to meet the requirement of a secondary power supply application,
the planar area and 3D area of the MIM capacitors are designed to be 100 mm2 and 2.45 × 103 mm2,
respectively. To the best of our knowledge, the two values are much larger than the previously reported
ones. Therefore, it is necessary to systematically investigate the MIM capacitors’ performance.

In this present paper, we successfully fabricated high-performance MIM capacitors with a thick
Al2O3 dielectric on high aspect ratio substrates. To evaluate the electrical properties of the MIM
capacitors, the capacitance’s dependence on voltage and frequency, the conduction mechanism, and
the energy density are investigated experimentally. We found that the fabricated MIM capacitors show
a large breakdown voltage, a low leakage current, moderate energy density, and small capacitance
variation, which largely benefit secondary power supply applications.

2. Materials and Methods

In our study, one 8 inch, 750 µm thick, double-side polished (100) n-type silicon wafer is designed
as 224 square cells with the size of 10 mm × 10 mm. Figure 1 exhibits the process sequence to
fabricate the MIM capacitors. Firstly, the wafer is etched by the deep reactive ion etching process into
micro-trench arrays with a width of 6 µm and a depth of 160 µm as shown in Figure 1a. The capacitors
are formed on high aspect ratio micro-trench structures that we have previously reported [22]. Then,
300 nm SiO2 is grown by dry oxidation as an isolation layer to avoid the premature breakdown of
the MIM capacitors due to the rough sidewall surface of the trenches. In Figure 1b, the electrode
films of W/TiN and the dielectric film of Al2O3 are deposited by atomic layer deposition with the
precursors WF6/SiH4, Al(CH3)3/H2O, and TiCl4/NH3 at 300 ◦C, respectively. The resulting MIM
capacitors are comprised of the stack of TiN (10 nm)/W (50 nm)/TiN (10 nm)/Al2O3 (40 nm and
55 nm)/TiN (10 nm)/W (50 nm). Next, the void of the trenches is filled and smoothed with chemically
evaporated SiO2, which acts as a chemical passivation layer for the top electrode as shown in Figure 1c.
Subsequently, conventional lithography steps are employed to create the top and the bottom electrodes
of the MIM capacitors as shown in Figure 1d–f. In Figure 1g–h, an Al film with the thickness of 1 µm
is evaporated and then patterned to produce Al pads for the back-end wire bonding and electrical
testing of the capacitor device.
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The morphologies of the MIM capacitors were characterized using a Hitachi S-5500 (Tokyo, Japan)
scanning electron microscope (SEM). The C–V curves on different frequencies and the J–V curves of the
MIM capacitors were obtained using an Agilent 4284A (Santa Clara, CA, USA) and a Keithley 4200SCS
(Cleveland, OH, USA), respectively. All of the measurements were carried out at room temperature.
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3. Results and Discussion

3.1. Structural Morphologies

In our study, two kinds of MIM capacitors with the dielectric thickness of 40 nm and 55 nm are
fabricated, and are labeled as capacitor A and capacitor B, respectively. Figure 2a shows the overview
cross-sectional SEM images of capacitor A with the as-deposited electrodes and dielectric layers, while
Figure 2b–d present the close-up view images of the top, bottom, and sidewall of the capacitor marked
in circles in Figure 2a. The thicknesses of the Al2O3 are 40.5 nm, 40.2 nm, and 39.7 nm in Figure 2b–d,
respectively. Also, the MIM capacitors exhibit clear boundaries at the interfaces between different
layers. This indicates that large areal MIM capacitors were obtained on large areal high aspect ratio
structures combined with the atomic layer deposition process.
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3.2. Frequency Characteristics

To investigate the frequency characteristics, capacitors A and B were measured using 4284A
and 4200SCS. Figure 3 shows the capacitance density per unit planar area (C) and dissipation factor
(tanδ) with applied frequency (f ) for capacitors A (the circle line) and B (the triangle line). It is
found that the capacitance densities of both capacitors exhibit a slight degradation with increasing
frequencies in the range of 1 kHz to 10 kHz. This indicates that frequencies higher than 100 Hz result
in notable dispersion, which is supported by the report [10]. This phenomenon reflects a middle and
high frequency dispersion feature of the dielectric and indicates the formation of stronger dipolar
polarization [23]. Further, the dependence of capacitance density per unit planar area with an applied
frequency can be expressed by the following equation [3]:

C = Cm

(
1 +

A

1 + ( f / fc)
2n

)
(1)

where the bracket item at the right of the equation represents the non-linearity factor, fc is the cutoff
frequency and equals 1/2πτ (τ denotes the relaxation time constant of the dielectric), Cm represents
the bulk-related capacitance (f >> fc), n is a value in the range of 0 to 1, and A is an amplitude factor.
When the values of fc and Cm are constant, the non-linearity factor decreases with increasing applied
frequency. Thus, the resulting capacitance density per unit planar area decreases. In addition, the
capacitance C is defined as dq/dt = C dv/dt, where the left item and the right second one of the
equation denote the rate of change in the charge and voltage in the measurement setup, respectively.
Compared with a planar capacitor, 3D capacitors with high aspect ratio structures have complex
morphologies, such as edges, corners, and sidewall spikes, resulting from the deep reactive ion etching
process. These irregular morphologies easily cause localization of an enhanced electric field, which
might impede the response of charge. Due to the carriers’ inability under a fast-changing voltage,
dv/dt is unable to follow a higher frequency and then C has to drop [20,21].
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Figure 3. Capacitance density per unit planar area and dissipation factor with frequency of capacitors
A and B.

In this work, a series equivalent circuit model was used. For the dissipation factor, it is observed
from Figure 3 that capacitors A and B present a decline from 0.107 to 0.023 and from 0.075 to 0.017
towards a higher frequency, and have a minimum average value 0.047 and 0.033 in the frequency range
of 1 kHz to 10 kHz, respectively. The dispersion of dielectric loss can be calculated by the following
equation [8,21]:

Gs = DωCs (2)
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where Gs, CS, and D are the conductance, series capacitance, and dissipation factor, respectively,
and ω equals 2πf. As can be seen, the dissipation factor decreases with increasing frequency and
is frequency-dependent.

Figure 4 depicts the dependencies of permittivity (εr) on frequency for capacitors A and B. In this
figure, the circle line and the triangle line represent the εr–f curves of capacitor A and capacitor B,
respectively. It is observed that the permittivity of the two capacitors decreases as the frequency
increases ranging from 1 kHz to 10 kHz. This result indicates that the MIM capacitors have frequency
dispersion, especially in the range of middle and high frequency. The frequency dispersion of the
fabricated MIM capacitors is attributed to the universal dielectric response.
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Generally, capacitors for energy and high-power applications operate in the dozens of Hertz
only [10]. Therefore, we would like to emphasize the performance of the capacitors in the lower
frequency region. In this contribution, the average permittivity of capacitors A and B is approximately
8.2 at 100 Hz. The result is close to the bulk level εr = 8~9, and is comparable with other planar
capacitors’ reported values of εr = 9 for 100 nm [12] and εr = 8.7 for 40 nm [14].

3.3. J–V Characteristics

To study the leakage current density performance of the symmetric MIM capacitors, an experiment
on the leakage current density dependencies on the voltage (J–V) for capacitors A and B was performed.
Figure 5 shows the experimental results for the two capacitors using 4200SCS. In this figure, the
circle line and the triangle line represent the J–V curves of capacitor A and capacitor B, respectively.
For capacitor A, the current density keeps almost constant from 0 V to 17.5 V, and then increases
from 1.2 × 10−7 A/cm2 to 5.7 × 10−6 A/cm2, followed by a sharp increase to 10−2 A/cm2 at 23.8 V.
For capacitor B, the current density varies very little from 0 to 22.5 V and then increases rapidly from
8.9 × 10−8 A/cm2 to 4.0 × 10−4 A/cm2 at 22.5 V and sharply to 10−2 A/cm2 at 34.1 V. It is found that
the J–V curves of both capacitors A and B are divided into two regions. The variation of the J–V curves
may be due to different conduction mechanisms for the MIM capacitors at low and high electric fields,
which will be discussed later.

From the J–V curves in Figure 5, it is demonstrated that dielectric breakdown occurs at 23.8 V and
34.1 V for capacitor A and capacitor B, respectively. According to the electric field strength equation
of E = U/d, the obtained breakdown field strength of both capacitors is 6.1 ± 0.1 MV/cm. The high
breakdown strength generally enables capacitors to have a large and stable working voltage and
reflects the MIM capacitor’s lifetime [2], which is strongly dependent on time-dependent dielectric
breakdown (TDDB), where accelerated voltage tests are carried out to stress the capacitor at different
voltages lower than the breakdown voltage for long times [21]. Also, according to the energy density
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equation W = CU2/2, the largest energy density per unit planar area of capacitor A and capacitor B
is 1.23 and 1.84 mJ/cm2, respectively. The values of the energy density are qualified especially for
a secondary power supply application.Micromachines 2018, 9, x  6 of 10 
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Moreover, it is noticeable that the two capacitors have a leakage current density of approximately
10−7 A/cm2 at the low electric field. This leakage current density can meet the requirement for high
density capacitors [9], shown as the red dotted line in Figure 5, and is competent for a secondary
power supply application.

3.4. Leakage-Current-Conduction Mechanism

Figure 6 shows the measured leakage current density at different temperatures for capacitor
A, which is taken as an example. It is found that the leakage current increased with increasing
temperatures from 50 ◦C to 150 ◦C. The significant temperature dependence of the J–V characteristics
suggests that the Schottky and Poole–Frenkel (PF) conduction mechanisms may be responsible for the
obtained data.
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Figure 6. Measured leakage current density at different temperatures for capacitor A.

To further understand the conduction mechanism of MIM capacitors at low and high electric
field strengths, the J–V data of capacitor A was fitted with the two important conduction models of
Poole–Frenkel emission and Schottky emission, which are shown as Equations (3) and (4), respectively.

J = CE exp
[
−
(

qφPF − βPFE1/2
)

/kT
]

(3)
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J = AT2 exp
[
−
(

qφs − βsE1/2
)

/kT
]

(4)

where C and A are constants, E is the electric field, T = 298 K, q is the electron charge, φPF is the trap
height in the dielectric for PF emission [15], and φS is the barrier height of the interface between the
dielectric and the injecting electrode for Schottky emission, k is the Boltzmann constant, βPF and βS are
(q3/πε0εr,OP)1/2and (q3/4πε0εr,OP)1/2, respectively, in which ε0 is the permittivity in vacuum, and εr,OP
denotes the dynamic permittivity measured in the optical domain (square of the refractive index, n2).

Figure 7 shows the plot of ln(J/E) versus E1/2 of capacitor A according to the PF emission. It is
found that the plot can be well-fitted by a straight line in the high electric field region. From the slope of
the fitted line, the extracted n is 1.42, which is close to the reported value of 1.61 [24]. This indicates that
the PF emission dominates the conduction mechanism of the MIM capacitor with an Al2O3 dielectric
at high electric field regions, which is in line with that reported in Ref. [2].

The inset in Figure 7 shows the plot of ln(J) versus E1/2 for the Schottky emission in the low
electric field. It is observed that φS is 0.18 eV, which is far less than the theoretical Al2O3/TiN barrier
height of 3.8 eV [14]. It indicates the presence of many interface states in the oxide, which modulate
the value of the barrier height [5,7]. Also, the deduced n value is 68.80, which deviates severely from
the aforementioned theoretical one. The result implies that no Schottky emission is present for the
Al2O3 capacitor in the lower electric field.

It is a fact that neutral electron traps in oxide can generate when the electrical field is stressed on
the oxide [25]. Especially, within high-k materials, there are more traps [1,3]. Moreover, thick oxide
increases tunnelling distance but contains a large trap density, which can cause an increase in electrical
stress-induced leakage current. Hence, the leakage current in the low electric field region is ascribed to
trap-assisted tunnelling.
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3.5. C–V Characteristics

Figure 8 shows the variation of capacitance with applied voltage for capacitor A at different
frequencies. It is observed that the capacitance remains nearly constant at the fixed applied frequency,
which indicates the capacitor’s stability under a continuously increasing voltage stress.

Further, the C–V characteristics can be evaluated using the normalized capacitance expressed
by the voltage coefficients of capacitance (VCC), which can be fitted with the following polynomial
equation [9]:

C(V) = C0

(
αV2 + βV + 1

)
(5)

⇒ C(V)− C0

C0
× 106 =

[
αV2 + βV

]
ppm

(6)
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where C0 is the zero-bias capacitance, α represents a quadratic VCC and is driven by the application of
MIM capacitors to radio-frequency circuits, and β is the linear VCC and demonstrates the balance of
the capacitance [3]. This fitting result is shown in Figure 9.
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Figure 9 shows the plot of the normalized capacitances measured at different frequencies of
capacitor A. As can be seen, the extracted α values decrease from 63.1 ppm/V2 to 49.1 ppm/V2 with
increasing frequency. It is attributed to the increasing frequency resulting in a longer relaxation time
and a smaller capacitance variation [2]. In addition, the α values are lower than 100 ppm/V2. The result
reflects a very small capacitance change of the MIM capacitors, which indicates that the fabricated
capacitors have stable storage performance.

4. Conclusions

In this contribution, large areal (2.45 × 103 mm2) MIM capacitors with high aspect ratio (30:1)
trenches on silicon substrates using atomic-layer-deposited Al2O3 dielectric and W/TiN electrodes
for a secondary power supply have been successfully fabricated and characterized in an electrical
application. The resulting capacitors yield a high energy density per unit planar area of at least
1.23 mJ/cm2 and a high breakdown electric field of 6.1 ± 0.1 MV/cm at the voltage of 34.1 V. Also, the
capacitors show a low leakage current of about 10−7 A/cm2 at 22.5 V and a low quadratic VCC of less
than 63.1 ppm/V2. These excellent electrical properties indicate that the fabricated capacitors have
high performance and can be competent for a secondary power supply application. In our future work,
sandwiched multilayer MIM capacitors will be developed to meet a much larger energy density, and
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the effect of the microelectromechanical systems (MEMS) process on the properties of MIM capacitors
will be further investigated.
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