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Abstract: In order to analyze the DNA amplification numerically with integration of the DNA 
kinetics, three-dimensional simulations, including flow and thermal fields, and one-dimensional 
polymerase chain reaction (PCR) kinetics are presented. The simulated results are compared with 
experimental data that have been applied to the operation of a continuous-flow PCR device. 
Microchannels fabricated by Micro Electro-Mechanical Systems (MEMS) technologies are shown. 
Comprehensive simulations of the flow and thermal fields and experiments measuring 
temperatures during thermal cycling are presented first. The resultant velocity and temperature 
profiles from the simulations are introduced to the mathematical models of PCR kinetics. Then 
kinetic equations are utilized to determine the evolution of the species concentrations inside the 
DNA mixture along the microchannel. The exponential growth of the double-stranded DNA 
concentration is investigated numerically with the various operational parameters during PCR. 
Next a 190-bp segment of Bartonella DNA is amplified to evaluate the PCR performance. The 
trends of the experimental results and numerical data regarding the DNA amplification are 
similar. The unique architecture built in this study can be applied to a low-cost portable PCR 
system in the future. 
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1. Introduction 

Since the polymerase chain reaction (PCR) was invented in the early 1980s, PCR has become 
one of the most important techniques in gene analysis, identification of infectious diseases, clinical 
diagnostics, and so on [1]. PCR is a procedure that exponentially amplifies a small amount of 
deoxyribonucleic acid (DNA) fragments into a lot of sample products during several thermal cycles. 
A PCR process goes through three major steps: double-stranded DNA is separated into two single 
strands at about 95 °C during denaturation; then primers bind specifically to their complementary 
site of the single-stranded DNA at about 55 °C during annealing; and DNA strands are extended by 
a thermostable DNA polymerase at about 72 °C during the extension. These steps complete one 
PCR cycle, and ideally each piece of DNA in the mixture is duplicated. By carrying out the three 
steps, the DNA concentration can be increased dramatically and then the DNA mixture can be 
analyzed through a commercial detector for the duration of PCR. 

Nowadays PCR is mostly performed in a thermal cycler. Due to the large thermal mass of a 
commercial thermal cycler, the complete process usually takes more than 1 h. In order to reduce the 
processing time, miniaturized PCR systems have attracted much attention and accelerated the 
integration with the sample preparation, the DNA amplification, and the product detection into 
nucleic acid amplification testing systems since the 2000s. The small-scale thermocycling devices 
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can be categorized into two groups: a chamber type and a continuous-flow type. These devices 
shorten the PCR reaction time from hours to minutes and have been reported for decades [2]. 

For a continuous-flow PCR (CFPCR) device, the reaction mixture moves through several 
different temperature regions in a thin channel or a tube instead of cycling the temperature of the 
whole reaction chamber for a chamber-type PCR device. The reaction time is the sum of each 
transition time and each residence time. The transition time is the time period for the sample 
traveling between two adjacent temperature regions. The residence time is the amount of time for a 
sample exposed to each temperature region to continue each PCR step. The transition time, the 
residence time, and the number of thermal cycles are determined by the flow rate of the DNA 
mixture, the arrangement of different temperature regions, and the geometrical pattern of the 
microchannel or the tube [3]. It has the benefit of the rapid thermal cycling by reducing the spacing 
between adjacent temperature regions and increasing the moving speed of the DNA mixture. 

There are three main types of CFPCR reactors: unidirectional, closed-loop, and oscillatory 
reactors. Each has its own characteristic advantages [4]. In the unidirectional reactor, only an 
external device is needed to push the DNA sample through a single channel. The sample flows into 
the channel, experiences several temperature regions repeatedly, exits from the outlet, and 
completes the amplification process [5]. A self-propelled CFPCR in a microfluidic device that 
requires no external pump to drive the flow was also proposed. The PCR solution was dropped 
onto the inlet and autonomously transported by a capillary force [6]. For the unidirectional PCR 
device, no auxiliary devices such as valves and movable parts are needed. A home-made syringe 
pump [4] or reaction chip made of the polymer material [7] that is utilized in the unidirectional 
devices can greatly reduce the total cost of the system. 

Each PCR step requires a specific temperature, so it is common to provide three temperature 
regions in the unidirectional PCR system [8–10]. When the DNA sample has reached the requisite 
PCR temperatures, the denaturation and annealing reactions happen within a very short period, 
and the extension rate is on the order of 60–100 bases per second [11]. A previous study also 
showed that the extension step could occur during the transition between the annealing and 
denaturation temperatures and no holding time was required [12]. This means that three distinct 
temperature regions arranged inside the CFPCR device are not necessary. In order to reduce the 
effort of the system integration and the cost of the device, some researchers have reduced the 
number of heaters to two while still obtaining the desired PCR thermal profile inside the CFPCR 
system [13–15]. A thermal system comprised of a heater and a heat sink was also designed to 
generate high- and low-temperature regions within the PCR device [16]. Furthermore, a CFPCR 
device employing only one heater was proposed. The geometry of the device was determined by 
proper simulations and the thermal control process for CFPCR was simplified [17]. 

Practically, the extent of PCR is related to the reaction rates of the kinetic equations inside the 
PCR mixture, which are functions of the temperatures and concentrations of reactants and enzyme 
[18]. Therefore, some researchers have developed mathematical models of PCR kinetics to 
investigate the mechanisms of PCR and calculate the DNA concentrations during reactions. 
Athavale et al. [19] performed a numerical simulation for PCR chemistry to evaluate the sample 
temperature and the concentrations of some chemical species in an oscillatory PCR reactor. A total 
of five major chemical species were assumed to control PCR. Mehra and Hu [20] mathematically 
analyzed the kinetics of each PCR step and investigated the effect of various kinetic parameters and 
operation conditions on the amplification efficiency. Priye et al. [21] presented the PCR process in a 
Rayleigh–Bénard convection cell. The PCR kinetics was incorporated into the flow model to obtain 
the time-dependent concentration profiles of some individual species. Papadopoulos et al. [22] 
proposed a comparison of the CFPCR and the chamber-type PCR devices through a computational 
investigation. The implementation of PCR kinetics to evaluate the performance of DNA 
amplification was shown. 

To construct a CFPCR chip employing one heater or two heaters, the extension regions or the 
annealing regions are generated by the thermal gradients between the high-temperature and 
low-temperature regions. In previous studies, the temperature distributions inside the reaction 
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regions were demonstrated numerically and/or experimentally and utilized to ensure that the 
requisite temperatures for PCR were existed [23,24]. In addition, by the rearrangement and 
enlargement of the channel geometry at the extension region, the residence time during the 
extension step can be properly extended to complete PCR [25]. However, the required thermal 
fields for PCR and the adequate residence time of each PCR step are not enough to connect with the 
successful PCR process. To understand the DNA amplification in a unidirectional CFPCR device, 
Wang and Wang [26] numerically studied the flowing effects on the DNA amplification with a 
simplified temperature distribution along the microchannel. 

In our previous study [4], numerical simulations and thermal experiments have shown that the 
temperature distribution in the five-temperature-region (i.e., annealing, extension, denaturation, 
extension, and annealing regions) CFPCR chip was appropriate for DNA amplification. By utilizing 
one heater and two heat pipes to create the denaturation region and the annealing regions, efficient 
amplifications of DNA segments were proved to occur in our prior device. The main contribution of 
the current work is to fabricate a modified system and test the PCR performance of the one-heater 
CFPCR device by incorporating with one Peltier element. The unique architecture utilized in this 
flow-through PCR device can be successfully applied to a low-cost PCR system. In order to analyze 
the DNA amplification numerically with integration of the DNA kinetics, three-dimensional steady 
simulations, including flow and thermal fields, and one-dimensional PCR kinetics are presented. 
The central temperatures and velocity profiles of the cross-sectional area along the channel are 
exploited to calculate the concentrations of some specific species in the mixture. The simulated 
results are compared with experimental data that have been applied to the operation of a CFPCR 
device. Finally, results show that a 190-bp segment of Bartonella DNA is amplified successfully in 
the DNA amplification system. 

2. Theoretical Modeling and Numerical Method 

The continuous-flow PCR device is modeled to assess the flow, temperature, and concentration 
distributions of the DNA mixture inside the microchannel. The physical problem is a microfluidic 
chip based on a single meandering channel passing repeatedly through several temperature 
regions. The device consists of a reaction polydimethylsiloxane (PDMS) channel chip, a cover chip 
made of glass, and two aluminum blocks in contact with a cartridge heater and a Peltier element. 
The channel chip is 40 mm long × 25 mm wide × 1.9 mm high, and the glass substrate is 65.5 mm 
long × 25 mm wide × 1.1 mm high. The denaturation (high-temperature) region is heated by the 
cartridge heater and arranged at the chip center and the annealing (low-temperature) regions are 
located at the two sides. The temperatures of two annealing regions are regulated by the Peltier 
element. The extension regions are generated by the thermal gradients between the denaturation 
and the annealing regions. A combined radiation and natural convection condition is assumed 
except for the area in contact with the aluminum blocks. 

A rectangular microchannel with a depth of 50 μm is utilized in the simulated model. The 
width of the microchannel is either gradually expanded from 200 μm to 540 μm and contracted 
back to 200 μm for the extension region, or 200 μm for the rest. Water is used as the required 
sample and the fluid properties are set as the physical and thermodynamic properties of water at 
300 K. The sample is injected at the inlet at 300 K. Then it flows repeatedly through the denaturation 
(368 K) and annealing regions (328 K). Finally, it flows out of the outlet after passing the final 
extension region, as shown in Figure 1. 

The governing equations consist of conservation of mass, momentum, and energy equations. 
The fluid flow is Newtonian, incompressible, and laminar. In symbolic notation, the steady state 
heat equation in the solid substrates can be expressed in vector form and shown below: 

02 =∇ iT  (1) 

where Ti indicates the temperature of the material i, for i = 1 and 2. T1 and T2 indicate the 
temperatures of the materials of PDMS and glass, respectively. The steady state equations inside the 
microchannel can be expressed as follows: 
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Where  is the fluid velocity vector in the channel; p indicates the pressure; and ρ, ν, T3, and α3 are 
the density, kinematic viscosity, temperature, and thermal diffusivity of the fluid, respectively. 

 

Figure 1. The schematic drawing of the continuous-flow polymerase chain reaction (CFPCR) chip. 

The convection effect inside the microchannel on the temperature distributions within the chip 
is investigated in this study. In our study, the sample passes through three PCR steps repeatedly for 
30 cycles to complete the PCR process. In order to simplify the simulation and reduce the 
computational time, the computational domain including only four of the thermal cycles is 
simulated and used to obtain the approximated condition. 

The boundary conditions for the energy equation are thus as follows. The temperature regions 
in the device supported by the separate heating sources supply uniform temperature inputs. 

kwTT ,2 =  (5) 

where Tw,k is the temperature of the heater and the Peltier element for k = 1 and 2, respectively. The 
three isothermal regions are a denaturation region and two annealing regions. The thermal contact 
resistances between two different materials are excluded, i.e., perfect contact surfaces are assumed. 
The temperature and the heat flux at the interface between two different materials, m and l, are set 
to be the same: 

lm TT =  (6) 
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Thermal radiation energy transfer between the system and the ambient air is considered. The 
combined radiative and natural convective boundary conditions are used on all external surfaces 
except the surfaces in contact with the heater and the Peltier element. 
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where ki is the thermal conductivity of the material i, for i = 1 and 2; h is the convective heat transfer 
coefficient and is chosen as 5.005 W/m2·K [4]; T∞ is the ambient temperature; ε is the emissivity of 
the surface and is chosen as 1; and σ is the Stefan–Boltzmann constant, equal to 5.670367 × 10−8 
W/m2·K4. For the microchannel, no-slip conditions are arranged at all the solid walls; a 
fixed-velocity and a preset temperature condition are set at the inlet; the boundary condition at the 
outlet is a fixed pressure. 

PCR kinetics is employed for solving the species concentrations during the DNA amplification 
process. The overall process of PCR is complicated and a detailed chemistry model for PCR was 
proposed in the previous studies [20,27]. In our study, six major chemical species (i.e., 
double-stranded DNA molecule, single-stranded DNA molecule, enzyme, single-stranded primer 
molecule, single-stranded template–primer complex, and single-stranded template–primer–enzyme 
complex) are assumed to control the PCR process and five chemical reactions involved in the three 
steps of PCR are described as follows: 

1) Denaturation: The double-stranded DNA molecules, D, dissociate into two single strands, S. In 
addition, the high melting temperature causes thermal denaturation of enzyme, E, into 
inactivated enzyme, Ei. 

 
(4) 

i
k EE E→  (5) 

where kD is the denaturation constant for melting of D at melting temperature; k−D is the 
renaturation constant for binding of S at melting temperature; kE is the enzyme inactivation 
constant. The arrow symbols “→” and “←” are used to denote net forward and backward 
reactions. 

2) Annealing: The single-stranded primer molecules, P, bind to S and form the single-stranded 
template–primer complexes, SP. 

 
(11) 

where k−SP is the annealing coefficient of P to S; kSP is the dissociation coefficient of SP. 
3) Extension: The polymerase enzyme, E, binding to SP to form the single-stranded 

template–primer–enzyme complexes, E·SP. Then the E·SP dissociates into E and D molecules 
at the beginning of the subsequent denaturation step. 

 
(12) 

DESPE catk +→⋅  (13) 

where ke is the addition constant of E to SP; k−e is the dissociation coefficient of E from E·SP and 
kcat is the rate of nucleotide addition. From the previous study [21], increasing the complexity of 
the reaction model by addition of other kinetic reactions did not significantly alter the DNA 
amplification efficiency. 

The kinetic reactions inside the continuous-flow PCR chip are modeled and the governing 
equations are presented as follows: 
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where s is the location along the central line inside the microchannel; v is the speed at the location s; 
and [D], [E], [S], [P], [SP], and [E·SP] mean the concentrations of double-stranded DNA molecules, 
enzyme, single-stranded DNA molecules, single-stranded primer molecules, single-stranded 
template–primer complexes and single-stranded template–primer–enzyme complexes, respectively. 
Reaction parameters in the present numerical simulation are listed in Table 1 and values reported in 
the literature are used [18–22,26]. L is the length of a DNA molecule. The rate constants in 
denaturation and annealing steps have a very sharp transition where the rates change from 
minimum (maximum) values to maximum (minimum) values. The rate constant for the extension 
step has a sharp peak at a reference temperature. 

Table 1. Reaction parameters in the kinetic equations. 

Parameter Value 

kD ( ) 11 3582500 1 tanh s
2 2

T
L

− −  × +     
 

k−D ( ) 16 mol s1 35810 1 tanh
2 2

T −−  × + − 
⋅ 

 

kSP ( ) 14 1 33810 1 tanh s
2 2

T −−  −  × +     
 

k−SP ( ) 15 1 3385 10 1 tanh
2 2

mol sT −−  × × + −   
⋅


 

ke ( ) 18 1 34810 1 ta h oln m s
2 2

T −−  × +    
⋅


 

k−e ( ) 11 34810 1 tanh s
2 2

T − −  × + −    
 

kcat ( )
2348

1560 s
T

e
− −  − ×  

kE ( ) 14 1 3581.9 10 1 tanh s
2 2

T −−  −  × × +     
 

The commercial software CFD-ACE+TM (version 2006, ESI Group, Paris, France), which uses a 
finite volume approach, is used to examine the three-dimensional steady velocity and temperature 
distributions in the continuous-flow PCR device, and the detailed simulation method was described 
in our previous study [4]. In order to achieve grid independence of the numerical results, several 
grid densities are investigated by comparing flow and thermal fields at various steps and the grid 
density is optimized for the accuracy and the speed of the simulation. 

The numerical technique employed to solve the set of the governing equations of the kinetic 
reactions is the finite difference method. The central difference for the spatial derivatives in these 
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equations is used to allow for yielding more accurate results than those from the forward or 
backward difference. The grid systems have been also checked to ensure grid-independent results. 

3. Experimental Method 

The microfluidic device consists of three subsystems including a PDMS-glass bonding chip, a 
home-made syringe pump, and a thermal control system. A serpentine channel with various widths 
meandering inside the PDMS chip is used for the DNA mixture to be pumped through. The 
comprehensive fabrication process of the PDMS-glass bonding chip has been depicted in our earlier 
work [3]. The PCR chip consists of a PDMS and a glass layer with thicknesses of 1.9 and 1.1 mm, 
respectively, as shown in Figure 2. The 30-loop channel of 50 μm depth is 200 μm in width, except 
for the extension region with a maximum width of 540 μm. The reactor channel of the chip is 
replaced after use. 

 
Figure 2. The PCR chip consists of a polydimethylsiloxane (PDMS) and a glass layer. 

The mixture is injected into the channel through the inlet and is driven by the syringe pump. 
After a designated number of thermal cycles, the reagent is taken out of the channel for further 
analysis. In our previous work, a home-made syringe pump was built and used to force the DNA 
sample passing through the reaction channel [4]. It costs less than $400 and is successfully applied 
to a low-cost PCR system. 

In our designed chip, the denaturation region heated by one heater is located at the center of 
the chip and the annealing regions supported by a Peltier element are set at the two sides of the 
chip. The extension regions can be created by lateral heat conduction from the denaturation region 
to the annealing regions. A PCR thermal cycle is completed when the reagent leaves the extension 
region. The symmetric management creates the five reaction regions in the chip. The 
five-temperature-region design requires only one half-loop per PCR cycle in contrast to the 
conventional three-region design. The total chip volume can be greatly reduced. 

When performing PCR, the PCR chip is attached tightly to the top-side of the aluminum 
blocks. The aluminum heating blocks and the PDMS-based chip are assembled and fixed onto a 
poly(methyl methacrylate) (PMMA) housing. The thermal control modules are designed to be 
detachable from the channel chip and to be reused. The chip temperature at the denaturation region 
during the operation is held by using the cartridge heater under a home-made 
proportional-integral-derivative (PID) controller. The temperature sensor, DS18B20, mounted onto 
the aluminum heating block is utilized to supply temperature feedback. 

The annealing temperature is controlled by the contacted Peltier element module and the 
sensor through a similar thermal control program for the cartridge heater. An aluminum block of a 
U-squared shape is put in contact with a Peltier element and a cooling fan is placed under the 
CFPCR chip to achieve the required temperature at the annealing regions. The block is in contact 

25 mm 

65.5 mm 
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with the chip via some thermal conductive adhesive. The advantages of a Peltier element include: 
either heat or cool depending upon the polarity of the applied power, control temperatures to better 
than ±0.1 °C. The temperature difference of the block surface at three measured points is about ±1 
°C. Figure 3a,b shows the assembled CFPCR device and the exploded view drawing of the device 
respectively. Compared with our previous study [4], two 6 mm-diameter heat pipes were pressed 
flat and placed in contact with the annealing regions of the chip. Attaching a fan to a portion of the 
heat pipe makes the heat pipe cool to the specific temperature for annealing. However, the optimal 
annealing temperature depends on the GC content of the primers, and is somewhere between 318 K 
and 338 K. It is impossible to heat up the region to the requested annealing temperature by placing 
the heat pipe in contact with a cooling fan when different kinds of DNA templates and primers are 
used. So it is more flexible utilizing the Peltier element than the heat pipe in the CFPCR chip. 

To reduce the binding of biomolecules on the PDMS surface, the microchannel walls are 
treated with polysorbate 20 (Tween 20). Besides, mineral oil is introduced before the DNA mixture 
to suppress the formation of air bubbles, which tend to appear when performing the denaturation 
step [3]. 

Cat scratch disease (CSD) is the most frequent clinical manifestation of Bartonella infections in 
immunocompetent patients. Recently, several PCR-based assays have been developed for detection 
of Bartonella DNA in clinical samples. Evaluation of infected tissue or blood using PCR has been 
shown to be an effective tool for diagnosing Bartonella infection [28]. On the PCR chip and 
commercial PCR machine (MJ Mini™ 48-well Personal Thermal Cycler, Bio-Rad Laboratories, Inc., 
Hercules, CA, USA), a 190-bp segment of Bartonella DNA is amplified to evaluate the performance 
of the DNA amplification. The forward and reverse primers comprise the following sequences: 
5′-ACG AAA GTC TGA TGG AGC AAT A-3′ and 5′-ACG CCC AAT AAA TCC GTA TAA T-3′, 
respectively. The PCR mixture contains 2× reaction buffer, deoxynucleotide (dNTP) mixture (400 
μM), MgCl2 (3 mM), the forward and reverse primers (0.5 μM), DNA polymerase from Thermus sp. 
(0.05 U/μL) and template DNA (0.1 μg/μL). 

The off-chip PCR for the commercial thermocycler involves heating the mixture at 95 °C for 3 
min to activate the polymerase and denature the initial DNA, followed by thermal conditions 
consisting of denaturing at 95 °C for 30 s, annealing at 55 °C for 30 s, and extension at 72 °C for 30 s. 
Upon completion of up to 30 thermal cycles, the chip is kept at 72 °C for 3 min for the final 
extension. The negative control experiment is conducted by replacing the template genomic DNA 
with the nuclease-free water. 

 
(a) 

Cuboid aluminum block 
(for denaturation) 

Two extension regions 

U-squared aluminum block 
(for annealing) 

unit: mm 
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Figure 3. (a) The assembled CFPCR device; (b) an exploded view of the device. 

After the PCR process is finished, the products are analyzed by an agarose gel electrophoresis 
(Mini-Sub Cell GT System, Bio-Rad). Each sample is loaded onto 2% of agarose gel (Certified 
Molecular Biology Agarose, Bio-Rad) and electrophoresed in 10× Tris/Boric Acid/EDTA (TBE) 
buffer. The gel is run for about 40 min at 120 V. After electrophoresis, the gel is stained with 10 
mg/mL ethidium bromide solution (Bio-Rad) and imaged under ultraviolet (UV) illumination. 

We design a PDMS-based PCR chip consisting of a serpentine microchannel to perform the 
PCR process. Ten microliters of PCR solution were introduced into the microchannel by a 
home-made syringe pump at a specific flow rate. Mineral oil used to suppress the bubble formation 
in the microchannel is first injected into the microchannel and then followed by the PCR solution. 
The PCR solution consists of 0.25 μL of each of the forward primer and reverse primer, 2.5 μL of 
nuclease-free water and 2 μL of template DNA. After 30 thermal cycles, the PCR product is taken 
out of the chamber for further analysis. 

4. Results and Discussion 

The microfluidic chip is exposed to one heater and one Peltier element in order to create 
several temperature regions for PCR. In the following sections, the influences of operational 
parameters, such as sample flow rates and temperature settings at the isothermal regions, on the 
temperature distributions and the concentration profiles along the channel are comprehensively 
studied. Then the temperature measurements are demonstrated to ensure the requested PCR 

Aluminum block 

PMMA holder 

Peltier element 

Heat sink 

Insulator 
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PMMA cover 

Cartridge heater 
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temperatures inside the chip. Finally, the PCR experiments are carried out in the serpentine 
channel. 

4.1. The System Design Concepts 

In this study, three design concepts are used to lessen the chip volume and save system costs. 
(1) One cuboid aluminum block with a cartridge heater to create the high-temperature region 
(denaturation) at the center of the chip and one U-squared aluminum block with a Peltier element 
to construct the low-temperature regions (annealing) at the opposite sides of the chip are 
integrated. Only two thermal modules for accomplishing the required PCR temperatures inside the 
chip are utilized; (2) By lateral heat conduction from the thermal blocks for denaturation and 
annealing, two extension regions are created without further active heating. Both the construction 
of five temperature regions within a PCR chip and the reduction of the chip volume are achieved; 
(3) The channel width at the extension region is enlarged. Because of the enlarged channel width, 
the flow rate of the DNA mixture is decreased and the residence time during the extension step is 
prolonged. This ensures that there is enough time for DNA extension without a longer channel. The 
fluid properties are set to the physical and thermodynamic properties of water, which are thermal 
diffusivity, α, of 1.39 × 10−7 m2/s, thermal conductivity, k, of 0.613 W/ms and kinematic viscosity, ν, 
of 8.55 × 10−7 m2/s. Thermal conductivities of PDMS and glass are respectively 0.15 W/ms and 0.58 
W/ms. Five temperature regions are located within the chip width of 25 mm. The three temperature 
regions at the central part (6 mm wide) and the opposite sides of the chip (6 mm wide) are at 
temperatures of 368 K and 328 K. The above values of the parameters are used unless noted 
otherwise. 

For an efficient PCR process, the temperature variation of the DNA sample is one of the most 
important issues. The influences of various mixture flow rates on the cross-sectional temperature 
distributions at the Y-half cut cross section of the channel are plotted in Figure 4a. The arrow is 
given in Figure 4a to indicate the flow direction. The temperature distribution at this cross section 
can be treated as the temperature of the PCR mixture flowing along the microchannel. Flow rates of 
0.2, 0.5, 1, 5, 10 and 50 μL/min are considered; these flow rates correspond to inlet flow velocities of 
0.333, 0.833, 1.667, 8.333, 16.667 and 83.333 mm/s, respectively, and Reynolds number (Re) of 0.027, 
0.067, 0.133, 0.667, 1.333, and 6.667, respectively. The temperature distributions show the three 
distinct temperature regions in the center area (for denaturation) and at the two sides of the chip 
(for annealing). The uniform temperature distributions at the regions of denaturation and annealing 
are obvious for our PDMS-glass bonding chip. The respective temperature is almost the same 
except for the flow rate of 50 μL/min and it changes gradually between three temperature regions. 
The temperature about 345 K can be created at the enlarged part of the channel for extension. The 
five-temperature region within a chip for PCR is apparent to be constructed. To accomplish the PCR 
temperatures inside the chip by using two different thermal regions is successful. For a laminar 
flow with a flow rate less than 5 μL/min, the fluid reaches the equilibrium temperature within a 
very short distance. The symmetric pattern of the temperature distribution with respect to the 
central region is observed and the heat convective effect inside the microchannel can be neglected. 
By increasing the flow rate, the heat convective effect inside the channel is enhanced. The distortion 
of the symmetric pattern of the temperature distribution is evident. This is because as the flow rate 
increases, there is less time for the mixture to achieve the desired PCR temperatures. We found that 
the flow rates of the DNA sample larger than 10 μL/min are not suitable for efficient PCR. 

Figure 4b demonstrates the velocity profiles along the central line at the enlarged part of the 
channel for different flow rates. Simulated velocities are obtained along the downstream direction, 
which is shown in the top-right corner in Figure 4b. The velocities are almost the same except near 
the entrance and exit of the enlarged part of the channel for each flow rate. The flow velocity near 
the entrance and exit of the enlarged part of the channel is the fastest and almost equal to the 
velocity along the regular channel. The ratio of flow velocities in the enlarged and regular 
microchannels is about 3. The residence time during each PCR step can be calculated by the channel 
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volume of the working region divided by the flow rate. This means the residence time during the 
extension step is extended without any doubt. 

 
(a) 

 
(b) 

Figure 4. (a) The cross-sectional temperature distributions at the Y-half cut cross section of the 
channel and (b) the velocity profiles along the central line at the enlarged part of the channel for 
different flow rates. 

4.2. The Temperature Measurements 

Figure 5 shows the transient temperature profiles of two thermal blocks. After the heater and 
Peltier element are switched on, the measured temperatures of the thermal sensors attached under 
the heater block and onto the U-squared block are recorded. Results show that the rise times to 
reach the setting temperatures of 368 K and 323 K are less than 1 and 6 min. The time response for 
the Peltier element longer than that for the heater is partially due to the large thermal resistance 

Distance 

0.2 μL/min 0.5 μL/min 1 μL/min  5 μL/min 10 μL/min 50 μL/min 
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across the thermoelectric cooler. The rise time specifies the time taken for the block temperature to 
rise from the ambient temperature to the setting temperature. In our device, it preserves a fast 
transition. The temporal variations of the block temperatures during the steady state are within 2 °C 
and 4 °C at the aluminum blocks with the heater and Peltier element, which fall in the allowable 
range. 

 
Figure 5. The transient temperature profiles of two thermal blocks. 

Temperature uniformity is one of the important issues that influence the efficiency of 
biological reactions. An infrared (IR) camera (TAS-G100EXD, Nippon Avionics Co., Ltd., Tokyo, 
Japan) is utilized to characterize the spatial temperature distribution across the surface of the 
PDMS-based chip and evaluate the performance of the thermal modules. After reaching a steady 
state temperature distribution, IR images of the PCR device are captured. Figure 6a displays three 
distinct regions represented the denaturation region at the central part and the annealing regions at 
the two sides of the chip. The five-temperature region is arranged to support the DNA 
amplification. The captured digital images are then analyzed to determine the temperature profiles 
across the chip surface. The average temperatures of two paths are calculated from the 
experimental results. The channel temperatures are measured using thermocouples that are 
inserted into the chip [4], placed in contact with the glass and connected to a data acquisition 
system (Model NI 9211, National Instruments, Austin , TX, USA), shown in Figure 6b. The 
dimension of the chip is the same as that of the chip used for PCR (shown in Figure 2). A computer 
receives the temperature signals through the NI 9211 interface and records the real-time 
temperature profiles. The average temperature profiles are illustrated in Figure 6c. The solid line 
with cross marked symbols indicates the temperatures measured by the infrared imager, and that 
with square marked symbols represents the temperatures measured by the thermocouples. Results 
show a certain temperature difference between the chip surface (measured by the IR imager) and 
the PCR mixture (measured by the thermocouples) is found. 
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(a) 

 
(b) 

 
(c) 

Figure 6. (a) The infrared (IR) image of the chip surface of the CFPCR device; (b) the channel 
temperatures are measured using thermocouples that are inserted into the chip; (c) the average 
temperature profiles for the IR image and the channel measurement. 
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The thermocouples are calibrated in a water bath. After reaching a steady state temperature, 
the temperatures of the thermocouples are recorded. The thermocouple wire and extension wire are 
supplied to meet special tolerances, 1.1 °C, of ASTM E 230 (Pentronic, Västervik, Sweden). For the 
NI 9211 measurement system, measurement sensitivity, which represents the smallest change in 
temperature that a sensor can detect for the data acquisition system, is less than 0.07 °C. The 
uncertainty of the temperature measured in our experiments is less than 2.2% within the 
temperature range of 50 °C to 95 °C. 

The sample transporting along the microchannel can also be visualized qualitatively using a 
thermally sensitive dye (TM-SL 70-3441, New Prismatic Enterprise Co., Ltd., Taipei, Taiwan). Using 
the thermally sensitive dye with an approximate transition temperature of 343 K, a visualization of 
the channel temperature distribution can be achieved. The dye becomes colorless when the 
temperature is greater than approximately 343 K and darker when the temperature is lower than 
roughly 343 K. Figure 7a shows that with a flow rate equal to 0.2 μL/min, the temperatures are 
within the PCR temperature limits. For a flow rate of 10 μL/min, neither the denaturation nor the 
annealing region temperatures are met for the setting temperatures of two thermal modules in 
Figure 7b. The dimension of the chip is the same as that of the chip used for PCR (shown in Figure 
2). 

 
(a) 

 
(b) 

Figure 7. The temperature distribution visualized using a thermally sensitive dye. The fluid with 
dye is moving at the flow rate at (a) 0.2 μL/min and (b) 10 μL/min. 

4.3. DNA Kinetic Characteristics 
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Papadopoulos et al. [22] proposed an investigation into PCR amplification efficiency inside a 
CFPCR device through a numerical study. Regarding the specific boundary condition, the 
concentration distribution of double-stranded DNA molecules at the middle height of the 
microchannel was shown and the DNA amplification efficiency was demonstrated, too. In this 
section, DNA kinetic characteristics are analyzed by utilizing the PCR kinetics. The comprehensive 
analyses of the operational parameters on the concentration distributions of six species in the DNA 
mixture are investigated. 

From our previous work, the maximum temperature difference of the liquid flow at the cross 
section along the channel is less than 2 K [4]. So the temperature along the central line of the 
channel can be seen as the mixture temperature inside the channel. The fluid temperature and 
speed along the channel are introduced into the DNA kinetic equations (i.e., Equations (14)–(19)) to 
solve the concentration profiles of six species during the PCR process. The flow rate of the DNA 
mixture equal to 0.2 μL/min is used unless noted otherwise. The temperatures of the heater and the 
Peltier element are set at 368 K and 343 K. The length of the double stranded homologous DNA is 
assumed to be 200 bps. The initial concentration of each species in the PCR mixture is listed in Table 
2. The concentration profiles of double-stranded DNA molecules, single-stranded DNA molecules, 
single-stranded template–primer complexes and single-stranded template–prime–-enzyme 
complexes (i.e., [D], [S], [SP] and [E·SP]) along the central line of the channel are presented in 
Figure 8a–d, respectively. These show the variation of the concentration profiles versus time for five 
cycles. The dashed line denotes the temperature profile. We can find in Figure 8a that the mixture 
enters the denaturation region, [D] decreases to a very small amount with an extremely fast speed 
and the dissociation of double-stranded DNA molecules is almost complete. Then [D] rises to a 
high value in the extension region. From Figure 8b, [S] starts with a specific value of initial 
concentration, grows to a high value (double in decreasing of [D]) in a very short period, declines in 
the annealing region, and then erupts when it enters the denaturation region. This local maximum 
[S] in one cycle is almost twice of the local maximum [D] in the former cycle. Not all 
single-stranded DNA molecules are bind to the primers in the annealing region and some of them 
enter the extension region. Corresponding plots for the single-stranded template–primer complexes 
are demonstrated in Figure 8c. With regard to [SP], it starts with a low concentration after 
denaturation, builds up when the mixture flows through the annealing region and is diminished in 
the extension region. This can be extended to generate single-stranded template–primer–enzyme 
complexes, shown in Figure 8d. Because of the large value of ke, that is the reaction constant of the 
binding of E and SP, [E·SP] follows up with [SP] simultaneously. After five thermal cycles, [D] 
increases exponentially as the mixture travels down the channel. 
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Figure 8. The concentration profiles of (a) double-stranded DNA molecules, (b) single-stranded 
DNA molecules, (c) single-stranded template–primer complexes and (d) single-stranded 
template–primer–enzyme complexes (i.e., [D], [S], [SP] and [E·SP]) along the central line of the 
channel. 

Table 2. Initial concentrations of the species of the polymerase chain reaction (PCR) 
mixture. 

Species Initial Concentration (mol/L) 
[D]0 0 
[S]0 6.64 × 10−15 
[P]0 2.23 × 10−7 

[SP]0 0 
[E‧SP]0 0 

[E]0 4.95 × 10−9 

The mixture flow rate is important for the DNA mixture to achieve the requested temperatures 
in the CFPCR chip and it modulates the residence time of the DNA mixture in each reaction step. 
For the mixture with a flow rate less than 5 μL/min, the convective heat effect inside the 
microchannel can be neglected and the temperature distributions for various flow rates are similar. 
The effect of the flow rates on [D] shown in Figure 9 is noticeably more pronounced than the effect 
on temperature distribution. When the flow rate is equal to 0.2 μL/min, [D] increases dramatically 
as the number of thermal cycles became large. The higher the flow rate is, the slower the [D] 
increases. As the flow rate increases, all the reaction times in each step become short and the time 
for complete dissociation is not enough. From Figure 9, when the flow rate is larger than 5 μL/min, 

(a) (b) 

(d) (c) 
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no longer does [D] almost increase after the cycle numbers larger than 10. So the amount of DNA 
product after 30 thermal cycles is still tiny and it almost cannot be detected. 

 
Figure 9. The influence of various flow rates on [D]. 

For the CFPCR device, the reaction mixture meanders through several different temperature 
regions in a microchannel. The temperatures of the thermal blocks define the temperatures of the 
reaction regions and have a profound impact on the temperatures distributions of the DNA 
mixture. The influence of various temperatures of the heater and the Peltier element on the [D] is 
illustrated in Figure 10. The flow rate is set to be 0.2 μL/min. From Figure 10a, the heater 
temperature is changed from 353 K to 368 K. The temperatures in the denaturation region shift to 
lower values as the heater temperature decreases so that the DNA solution will spend less time in 
high-temperature regions. However, the rate constants in the denaturation step have a very sharp 
transition over a 10 degree temperature change. For the constant values of the hyperbolic tangent 
functions used in kD and k−D are both 358, that is, the melting temperature for specific DNA strands 
is 358 K. This means the dissociation of D starts from 353 K to 363 K. As the heater temperature is 
equal to 353 K, the mixture temperature increases from 328 K (the temperature of the Peltier 
element) to about 353 K. Results show that the dissociation of D is not complete during the 
denaturation and the increasing of [D] in the extension region is not apparent. When the heater 
temperature is increased to be greater than 358 K, the mixture flows from a low-temperature region 
to the denaturation region and the mixture temperature is heated over 353 K. So the enhancement 
of [D] in the extension region is presented. Due to the fast dissociation process of D, the 
concentration profiles of D are similar for the cases of the heater temperature great than 358 K. 
Figure 10b demonstrates the results of various temperatures of the Peltier element on [D]. The 
temperature of the Peltier element is varied from 328 K to 343 K and the heater temperature is equal 
to 368 K. The constant values of the hyperbolic functions in the expression of kSP and k−SP are both 
338, i.e., the melting temperature of a primer. Then single-stranded primer molecules can bind to 
single-stranded DNA molecules in the temperature range from 333 K to 343 K. When the 
temperatures of the Peltier element are 328 K and 333 K, the temperature of the annealing region is 
less than 333 K. As the mixture flows through the annealing region and the mixture temperature 
also decreases to a value of less than 333 K. Then P can bind to S successfully and D can 
exponentially increase in the extension region. Results show that the temperatures of the Peltier 
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element are 328 K and 333 K and [D] is increased noticeably. As the temperature of the Peltier 
element equals 338 K, binding between S and P is not enough during the annealing step and the 
DNA amplification is not very successful. Finally, the temperature of the Peltier element is 343 K 
and almost no DNA amplification can be seen. 

 
(a) 

 
(b) 

Figure 10. The influence of various temperatures of (a) the heater and (b) the Peltier element on the 
[D]. 

4.4. PCR Amplification in the Microfluidic System 



Micromachines 2018, 9, 48 19 of 24 

 

The performance of PCR amplification of the microfluidic system is compared to the results in 
the conventional PCR machine. The electrophoresis data of the PCR products are shown in Figure 
11. The lane Mk in Figure 11 indicates the DNA ladder. From this gel electrophoresis analysis, the 
amplification products are successfully amplified in our device at a flow rate of 0.3 μL/min (lane T) 
and a PCR machine (lane M). A mixture containing all the reagents in the PCR mixture but the 
DNA template for a negative control is injected into the channel and collected after the total thermal 
cycles for analysis (lane NC). The 190-bp PCR products are observed and non-specific products are 
not found. Images are analyzed using the image processing software (ImageJ, Version 1.50b, 
National Institutes of Health (NIH), Bethesda, MD, USA). Intensity linescans of the fluorescence 
intensities are utilized to determine those intensities. The bottom of the figure also illustrates the 
grey intensities of PCR products by image analyses. It is noticed that the fluorescence intensity of 
the PCR product at lane T is smaller than that of the PCR products at lane M. The thermal cycling 
program for the commercial PCR machine includes each PCR step for 30 s and 35 cycles. The 
residence times for three PCR steps in the present device are less than 30 s. It might cause the 
inefficient reaction. However, the result is still obvious. 

Results shown at the top of Figure 12 demonstrate the PCR product in the commercial PCR 
machine (Lane M), in our device with various flow rates (Lanes 0.25, 0.3, 0.4 and 5), and the DNA 
template for a negative control (Lane NC). The bottom of Figure 12 also illustrates the grey 
intensities of PCR products. As the flow rate increases, all the reaction times in each step become 
short and the time for amplification is insufficient. The reaction time can be calculated by the 
channel volume of the working region divided by the flow rate. So the cycle time associated with 
the flow rate of 0.2, 0.25, 0.3, 0.4, 0.5, 1, 5, 10 and 50 μL/min is 82.3 s, 65.8 s, 54.9 s, 41.1 s, 32.9 s, 16.5 
s, 3.3 s, 1.6 s and 0.3 s, respectively. From Figure 9, [D] after 30 cycles is only about 100-fold more 
than that after 1 cycle with the flow rate of 1 μL/min. When the flow rate is larger than 5 μL/min, no 
longer does [D] almost increase after the cycle numbers larger than 10. Thus the sample flow rates 
utilized in the PCR are less than 0.5 μL/min. 
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Figure 11. Agarose gel electrophoresis of the polymerase chain reaction (PCR) yield. The first lane 
(Lane Mk) indicates the DNA ladder. The 190-bp PCR product in the commercial PCR machine 
(Lane M) and in our device (Lane T). Lane NC indicates a mixture for a negative control. The gray 
intensities of PCR products are created by image analysis. 
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Figure 12. Agarose gel electrophoresis of the polymerase chain reaction (PCR) yield with various 
flow rates (Lanes 0.25, 0.3, 0.4, and 5). The grey intensities of PCR products are created by image 
analysis. 

The CFPCR chip is performed using various heater temperatures for 368 K, 363 K, 358 K and 
353 K, and various temperatures of the Peltier element for 328 K, 333 K, 338 K and 343 K. Figure 13 
shows the effects of various temperatures of the heater and the Peltier element on PCR 
amplification when the PCR mixture flows through the microchannel at the flow rate of 0.3 μL/min. 
It demonstrates that the amount of CFPCR products almost decreases with heater temperature from 
368 K to 353 K, shown in Figure 13a. PCR performed with various temperatures of the Peltier 
element is shown in Figure 13b. When the temperature of the Peltier element increases, the PCR 
amplification time is decreased. For a successful PCR, the temperature of the DNA mixture should 
reach the requested temperature for each PCR step. In our simulated study, the melting 
temperature for specific DNA strands and the melting temperature of a primer are set to be 358 K 
and 338 K. The melting temperature for specific DNA strands is related to the length of the DNA 
molecule and its specific nucleotide sequence; the melting temperature of a primer also depends on 
both primer length and sequence. From our simulation results in DNA kinetic characteristics, the 
rate constants in denaturation and annealing steps have a very sharp transition where the rates 
change from minimum (maximum) values to maximum (minimum) values over a 10-degree 
temperature difference. The kinetic reactions happen if the mixture temperature reaches the 
temperature range in our simulated results. However, the trends of the experimental results and 
numerical data are similar. 

Mk M 0.25 0.3 0.4 0.5 NC 

200 bp 

500 bp 
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(a) 

 
(b) 

Figure 13. Agarose gel electrophoresis of the polymerase chain reaction (PCR) yield with (a) various 
heater temperatures for 368 K, 363 K, 358 K and 353 K and (b) various temperatures of the Peltier 
element for 328 K, 333 K, 338 K, and 343 K. The gray intensities of PCR products are created by 
image analysis. 

5. Conclusions 

In order to analyze the DNA amplification numerically with integration of the DNA kinetics, 
three-dimensional simulations, including flow and thermal fields, and one-dimensional PCR 
kinetics are presented. The performance of the CFPCR device fabricated on a PDMS-glass bonding 
chip with integrated a cartridge heater and a Peltier element is investigated by simulations and 
experiments. The governing equations, which consist of conservation of mass, momentum, and 
energy equations, are utilized to solve the flow and thermal fields in the CFPCR chip. An IR camera 
is used to characterize the spatial temperature distribution across the surface of the PDMS-based 
chip; the channel temperatures are measured by thermocouples that are inserted into the chip and 
put in contact with the glass. Furthermore, a visualization of the channel temperature distribution 
can be achieved by means of the thermally sensitive dye with an approximate transition 
temperature of 343 K. Numerical and experimental results have shown that the temperature 
distribution in the five-temperature-region PCR chip can be suitable for DNA amplification. The 
DNA kinetics in the CFPCR device is used to evaluate the DNA amplification by introducing the 
velocity and temperature profiles of the DNA mixture along the microchannel. Results show that 
for the mixture with a flow rate less than 5 μL/min, the heat convective effect inside the 
microchannel can be neglected and the temperature distributions for various flow rates are similar. 
However, the effect of the flow rates on [D] is noticeably more pronounced than the effect on 
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temperature distribution. As the flow rate decreases, all the reaction times in each step become 
enough and the increasing of [D] is obvious. Furthermore, by the variation of the temperatures of 
the heater or the Peltier element, the resultant temperatures of the DNA mixture during the PCR 
steps are changed. The rate constants in denaturation and annealing steps have a very sharp 
transition where the rates change from minimum (maximum) values to maximum (minimum) 
values over a 10-degree temperature difference. The kinetic reactions can be happened ideally if the 
mixture temperature reaches within the temperature range. When the heater temperature is 
increased to be greater than 358 K (i.e., the melting temperature of double-stranded DNA 
molecules), the enhancement of [D] in the extension region is presented. As the temperature of the 
Peltier element equals 338 K (i.e., the melting temperature of a primer), binding between S and P is 
not enough during the annealing step and the DNA amplification is not very successful. When the 
temperature of the Peltier element is 343 K and almost no DNA amplification can be seen. The 
fabricated microfluidic chip is successfully capable of a 190-bp segment of Bartonella DNA 
amplification. The agarose gel electrophoreses of the PCR yields at various operational parameters 
are in similar trends with the simulation results. The major goals of this paper are to investigate the 
physical insights of the kinetic characteristics in the CFPCR device. Our future work is to optimize 
the geometry design and the operational parameters by systematically integrating a specific set of 
reaction parameters in the kinetic equations for the target DNA fragment. Future work will include 
a quantitative result to compare the predicted and measured PCR efficiencies to perform a 
comprehensive analysis of the unidirectional continuous-flow PCR devices. 
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