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Abstract: Culturing cellular tissues inside a microchannel using an artificial three-dimensional (3D)
microstructure is normally conducted to elucidate and reproduce a biological function. The thick
photoresist SU-8, which has a microscale resolution and high aspect ratio, is widely used for
the fabrication of microchannels and scaffolds having 3D structures for cell culture. However, it is
difficult to accurately fabricate a mesh structure with a pore size that is smaller than the cells
that has an overall height greater than 50 µm because of the deterioration of the verticality of
exposure light and the diffusion of acid, which accelerates the crosslinking reaction in the SU-8 layer.
In this study, we propose a method of integrating a vertical porous membrane into a microchannel.
The resolution of the vertical porous membrane becomes more accurate through inclined oxygen
ashing, without degrading the robustness. Because a single mask pattern is required for the proposed
method, assembly error is not generated using the assembly-free process. The fabricated vertical
porous membrane in the microchannel contained micropores that were smaller than the cells
and sufficiently robust for a microfluidic system. HepG2 cells were attached three-dimensionally
on the fabricated vertical porous membrane to demonstrate 3D cell culture.

Keywords: vertical porous membrane; inclined exposure; inclined oxygen ashing; assembly-free;
SU-8; biomicrofluidics

1. Introduction

The purpose of cell culture inside a microchannel or a scaffold of microstructures is to elucidate
and reproduce biological functions by creating biological tissues inside an artificial environment.
Inside the human or animal body, multiple types of cells are arranged three-dimensionally.
By mimicking the three-dimensional (3D) cellular tissue in a microchannel, not only is the biological
function elucidated, but a medical and chemical assay can also be conducted without animal
tests [1–6]. Because cell culture inside a microchannel fabricated by microfabrication method for
fabricating semiconductor can minimize the amount of culture medium and control the flow rate
and pressure easily, this technique is suitable for fabricating high-density and stable biological
models. Meanwhile, because cell culture on scaffolds such as thin membranes or porous structures
has the advantage of enabling control of the shape and size of cellular tissues by designing the scaffold,
it is easy to construct two-dimensional (2D) and 3D cellular tissues. In addition, because cellular
tissues with a complex structure are constructed by simple cell seeding on the scaffold, it can reduce
the risk of contamination.
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Researchers have used the advantages of cell cultures both inside a microchannel and on a scaffold.
Chung et al. [7] and Osaki et al. [8] created cellular tissues on microstructures integrated or fabricated
inside a microchannel. Meanwhile, Esch et al. [9] and Satoh et al. [10] assembled cellular tissue
pre-cultured on a scaffold into a microchannel. However, when integrating microstructures inside
a microchannel or insert scaffold, it is difficult to fabricate 3D cellular tissues because of problems such
as difficult assembly, low resolution, or low aspect ratio. When a scaffold with pre-cultured tissues is
assembled into a microchannel, it is difficult to create high-density cellular tissues because of the dead
volume. When 3D structures are accumulated in the microchannel in advance by 2D semiconductor
manufacturing technology, it is difficult to achieve a resolution lower than the cell size and a height
necessary for cell loading and 3D culture.

A thick photoresist, SU-8, having micrometer-scale resolution and submillimeter-scale coated
thickness is often used for fabricating 3D microstructures [11–14]. Moreover, because SU-8 exhibits
chemical stability and cell culturing capability as a scaffold material for cells [15], it is possible
to create complex artificial cellular tissues by seeding cells on the SU-8 structure [16–18].
However, because the attenuation of exposure light and the diffusion of acid accelerate the crosslinking
reaction in the SU-8 film thickness direction, the resolution of an SU-8 structure decreases with
increasing thickness. Therefore, it is difficult to fabricate a vertical porous membrane with a height of
over 50 µm and a pore size smaller than the cell size.

In this research, we propose an assembly-free integration method for fabricating a high-resolution
vertical porous membrane using inclined exposure and inclined oxygen ashing. The closed micropores
in the membrane with a decreasing resolution of a thick film of SU-8 were treated uniformly using
inclined oxygen ashing, and high-resolution pores on the vertical porous membrane were obtained
without fabrication errors such as sticking. Moreover, because the vertical porous membranes
and microchannels were fabricated simultaneously, fabrication error during assembly did not need to
be considered. To confirm the usability of the proposed method for fabricating the microchannel for
3D cell culture, a cell culturing test was performed on the fabricated vertical porous membrane.

2. Method

2.1. Principle of Vertical Porous Membrane Integration Method Using an Inclined Exposure Method
and Inclined Oxygen Ashing

In this paper, we propose an integration method for fabricating a vertical porous membrane inside
a microchannel using inclined exposure and inclined oxygen ashing. The principle of the proposed
integration method is shown in Figure 1. In this method, SU-8 photoresist on a glass substrate
is partially exposed through patterned metal on the glass substrate by simple inclined exposure
to fabricate a vertical porous membrane and microchannel walls along the pattern and surface of
the developed SU-8, which is treated by inclined oxygen ashing to open the micropores of the porous
membranes. Because the inclined exposure uses a mask pattern on a glass substrate, the contact gap
generated by edge beads of the thick photoresist coated on the substrate need not be considered.
Inclined oxygen ashing is conducted to improve the ratio of open micropores on the vertical porous
membranes. Because oxygen plasma has a high oxidizability, it can etch the surface of the vertical
porous membrane and make it porous. In conventional methods, because inclined plasma is used for
selective etching, it is necessary to fabricate micropatterns in advance. As the proposed method is
used for etching the surface of a vertical porous membrane, the patterning process is not required [19].
In this research, in order to etch the side of the vertical porous membrane, an angle is created between
the etching stage and the substrate. By creating the angle, the oxygen plasma is irradiated on the side
surface of the vertical porous membrane, even though it is placed in parallel. Using the proposed
method, a high-resolution vertical porous membrane can be fabricated easily.
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Figure 1. Principle of inclined exposure and inclined oxygen ashing. The inclined exposure is applied
from the back side of the substrate, which contains a pattern. The mesh structure on the vertical porous
membrane is fabricated by inclined exposure, the angle of which is θE. The angle of inclined ashing
is from a 90◦ to the Z axis. The inclination angle θA is determined such that etching is performed
on the etched vertical porous membrane.

2.2. Inclined Backside Exposure

The minimum size fabricated by the inclined exposure was evaluated using the dot
pattern size, interval, and exposure dose as the parameters. The machining accuracy primarily
depends on the attenuation and the scatter of exposure light in the thickness direction of SU-8.
Because the exposure light was scattered at the height of several tens of micrometers from the surface
of the mask, the resolution of the structure decreased as the height of the fabrication structure increased.
Therefore, the optimum value of the resolution and the height of structure—which is a tradeoff
relationship—were evaluated through an exposure test.

On the sample for exposure evaluation, the optimal exposure dose differed according to
the change in the pattern size. Therefore, a dot pattern as a lattice structure on the porous
membrane was used as the sample pattern. The dot size, which decides the size of the lattice,
was from 1 to 6 µm, and the interval of the dot patterns was from 5 to 26 µm. In the backside
exposure process, the exposure light passed through air, glass, and SU-8, thereby exhibiting different
refraction indices. Considering the change in the angle of the exposure light, the incident angle
of θE was set to 30◦. The vertical porous membrane was fabricated in two exposure steps,
with the symmetrical axis perpendicular to the substrate. The total exposure dose of the two exposure
steps in the evaluation experiment was set from 300 to 600 mJ/cm2 at intervals of 100 mJ/cm2.

The fabrication process of the sample for evaluating the size of the vertical porous membrane
is shown in Figure 2. First, a Cr layer was deposited on a glass substrate. Dot patterns were
fabricated on the Cr layer by photolithography and wet etching. An SU-8 3005 (MicroChem Corp.,
Westborough, MA, USA.) layer was deposited by a spray coater. After removing the solvent through
soft baking, the SU-8 layer was exposed twice from the back side of the substrate. After a post-exposure
bake at 95 ◦C for 10 min, the SU-8 layer was developed. The fabricated structure was observed by
scanning electron microscope (SEM, JCM-5700LV, JEOL Ltd., Tokyo, Japan).
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Figure 2. Process flow for vertical porous membrane on Cr patterned glass substrate by inclined
exposure. The vertical porous membrane was fabricated by inclined exposure from the back side of
the substrate. Because patterns created in advance using Cr patterns were used, a contact gap was not
generated between the Cr pattern and SU-8, and no alignment was necessary.

2.3. Double-Sided Inclined Oxygen Ashing

The ability of inclined oxygen ashing to increase the ratio of open micropores on the vertical
porous membrane was evaluated. It is difficult to balance between resolution and robustness by
changing the dot size and exposure dose. Therefore, double-sided inclined oxygen ashing was adopted
to obtain the vertical porous membrane with open micropores.

In oxygen ashing, activated oxygen moves in the direction of the ions. Therefore, the etched
surface should be placed in the ion direction. For etching multiple layers simultaneously, the vertical
porous membrane was etched at a 45◦ angle, as shown in Figure 3. The samples for evaluation were
fabricated using the dot pattern size:interval settings 3:5, 3:7, and 3:9 µm. Since the dot pattern is
square, the dot pattern size refers to the size of one side of the square. The interval means the distance
between adjacent squares. The fabrication process was the same as that of the sample for exposure
evaluation, with the exposure dose of 600 mJ/cm2. The fabricated sample was inclined and etched
by oxygen plasma at the RF power of 200 W, temperature of 60 ◦C, oxygen flow rate of 110 sccm,
and pressure of 40 Pa. After ashing, the fabricated structure was observed using SEM.

Figure 3. Inclined oxygen ashing method. Oxygen plasma irradiates the vertical porous membrane,
inclined at 45◦ on an ashing stage. Ashing was performed twice from both sides of the vertical
porous membrane.
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3. Results

3.1. Fabrication of Vertical Porous Membrane Using Inclined Exposure

SEM images of the vertical porous membrane fabricated using inclined exposure without
inclined oxygen ashing are shown in Figure 4. The resolution and robustness of the vertical porous
membrane depends on the dot size, interval, and exposure dose. While decreasing the exposure
dose, the resolution became higher and the robustness became lower. Additionally, the structure
collapsed when the dot size was small, the interval was long, or the exposure dose was low
(Figure 4a). Meanwhile, the pore on the vertical porous membrane did not open with a high exposure
dose (Figure 4b). The exposure intensity attenuated as the distance from the substrate increased.
Therefore, the size of the pores became smaller and closed gradually, and the fabricated structure
was porous until the middle point (Figure 4c). When an exposure dose that was suitable for the dot
size and interval was used, the fabricated vertical porous membrane contained pores and was robust
(Figure 4d). An enlarged view of the porous membrane to the middle point is shown in Figure 5.
As shown, the closed pore was closed by the thin film.

Figure 4. SEM images of the vertical porous membrane fabricated using inclined exposure. The vertical
porous membrane was fabricated by changing the dot size, interval, and exposure dose. The fabricated
structures are divided to (a) collapse, (b) standing with no pore, (c) porous to middle point,
or (d) standing and fully porous.
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Figure 5. SEM image of the enlarged view of a membrane which is porous to middle point. The pore
in the case of “porous to middle point” is closed by a thin film.

Figure 6 shows the height of the opened pore from the surface of the substrate as a function of
the dot size, interval, and exposure dose. The X axis is the dot size, the Y axis is the dot interval,
the Z axis is the distance from the substrate to the opened pore. The color of each point indicates
the exposure dose. The blue, green, yellow, and red points correspond to 300, 400, 500, and 600 mJ/cm2,
respectively. The collapsed or vertical porous membrane had no opened pore such as the structure
shown in Figure 4a,b and hence is not shown in the graph. It is clear that a higher exposure energy
is required for creating a higher vertical porous membrane. Meanwhile, too much exposure energy
rendered closed pores.

3.2. Evaluation of the Inclined Oxygen Ashing after Inclined Exposure

For evaluating the effect of the inclined oxygen ashing, a sample fabricated by an inclined
exposure with the exposure dose of 600 mJ/cm2 was prepared. The dot size was 3 µm, and the interval
was from 5 to 9 µm. The inclined ashing time was 10 or 20 min on a single side. The SEM
images of the vertical porous membrane etched by inclined oxygen ashing are shown in Figure 7.
Particularly, for the pores closed by the thin film on the vertical porous membrane, the dot size
of 7 or 9 µm was opened by the inclined oxygen ashing. Meanwhile, the pores on the vertical porous
membrane fabricated using the dot pattern of 5 µm were not opened, even after the inclined oxygen
ashing. Through inclined oxygen ashing for 20 min, not only the closed pores but also the vertical
porous membrane were etched and collapsed.
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Figure 6. Height of the open pores from the substrate as a function of the dot size, interval, and exposure
dose. The X axis is the dot size, Y axis is the dot interval, and Z axis is the distance from the substrate
to the open pore. The color of each point indicates the exposure dose. The blue, green, yellow,
and red points are 300, 400, 500, 600 mJ/cm2, respectively.

4. Application for Biomicrofluidics

4.1. Method for Integration of Vertical Porous Membrane in Microchannel

Microchannels allow easy control of the internal environment, and are used for multiple kinds of
biological experiments. Meanwhile, porous membranes contain numerous micropores and are used for
scaffolds to seed cells. Because a porous membrane can pass through a material metabolized by cells,
it can mimic a barrier tissue [20–22]. However, when porous membranes are arranged in a microchannel
with microscale intervals, it is difficult to set the porous membranes with the intended interval, owing to
the problem of alignment accuracy.

Inclined exposure is useful not only for fabricating vertical porous membranes, but also for
the fabrication of microchannels [23]. Moreover, by creating the micropattern for fabricating vertical
porous membranes and microchannels on the same layer, a vertical porous membrane can be integrated
into a microchannel without an alignment process. Using the fabrication results of the proposed
methods, we describe a method for a highly accurate method of integrating a vertical porous membrane
with pores capable of seeding cells into a microchannel.
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Figure 7. SEM images of the vertical porous membrane inclined oxygen ashing. To evaluate the effect of
the inclined oxygen ashing, a fabricated vertical porous membrane with a dot size of 3 µm was etched.

To design the dimensions of the vertical porous membranes, HepG2, a liver cell line, was adopted
as the seeding cell to the membranes. Considering the HepG2 cell size, the inlet size, and microchannel
height, the pore size was designed as 10 µm, and the heights of the microchannel and vertical porous
membrane were over 50 µm. Using the evaluation results of the inclined oxygen ashing after inclined
exposure, the dot size was set as 4 µm, and the interval as 10 µm. Figure 8 shows the design of
the microchannel integrated in the vertical porous membrane. In the center of the microchannel, the dot
patterns were arranged in three layers with an interval of 200 µm. Each microchannel was independent
and connected only by the pores on the vertical porous membrane. By the cellular tissue covering
the vertical porous membrane, multiple cell layers were arranged in parallel inside the microchannel.

The vertical porous membrane and microchannel were fabricated using inclined exposure
and inclined ashing. First, a Cr layer was deposited on a glass substrate and patterned. Next, to prevent
resist peel-off, a primer was spin-coated on the glass and baked at 200 ◦C for 1 min. SU-8 3050 was
spin-coated on the substrate at 3000 rpm. After removing the solvent, inclined exposure was performed
at 420 mJ/cm2. After developing the SU-8, inclined oxygen ashing was performed for 10 min on both
sides of the vertical porous membranes. Finally, the Cr layer was etched by a wet etchant.

SEM images of the fabricated microchannel integrated with the vertical porous membranes are
shown in Figure 9. Every micropore in the vertical porous membranes was opened, and the porous
membrane did not collapse. The height of the vertical porous membrane was 79.42 µm. The maximum
and minimum sizes of the micropores were 9.40 and 4.03 µm, respectively. Therefore, an integrated
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vertical porous membrane with height over 50 µm and pores smaller than the cell size in the microchannel
was achieved.

Figure 8. Schematics of microchannel integrated with vertical porous membranes. In the design,
there are four individual microchannels. Each microchannel is connected by only the pores
on the vertical porous membranes. In the vertical porous membrane, the width is 300 µm,
and the interval of each vertical porous membrane is 200 µm. The dot size is 4 µm, and the interval
is 10 µm for fabricating the micropores of the vertical porous membrane.

Figure 9. SEM images of fabricated microchannel integrated with vertical porous membranes.
The microchannel was fabricated by inclined exposure with exposure dose 420 mJ/cm2

and double-sided inclined oxygen ashing for 10 min. The SEM images were captured at a 60◦ angle.
The size of the micropores close to the substrate surface were 6.84 ± 0.59 µm in width and 9.40 ± 0.22 µm
in height. The size of the micropores close to the top were 4.07 ± 0.30 µm in width and 4.03 ± 0.19 µm
in height.

4.2. Cell Culture on Vertical Porous Membranes

To evaluate the cell culture ability of the vertical porous membranes, HepG2 cells were seeded
on the fabricated vertical porous membrane integrated in the microchannel. Because HepG2
cells are able to adhere to scaffold surfaces, they were used to evaluate the surface effects of
the membrane on cells [24,25]. First, the fabricated microchannel was sterilized with ethanol
and rinsed with phosphate-buffered saline (PBS). The microchannel was put into fibronectin
(fibronectin:PBS = 10 µL:10 mL) for 30 min. After washing three times with PBS, the microchannel
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was covered with a sterilized PDMS chip. HepG2 cells were collected from a confluented culturing
flask that had a bottom surface of 25 cm2. The HepG2 cells were stained with CellTracker Red
(Thermo Fisher Scientific, Waltham, MA, USA). The CellTracker Red was dissolved with 12.5 µL
of DMSO and mixed with 10 mL of PBS. The HepG2 cells were placed in the solution for 30 min.
After washing three times with PBS and centrifugation, 5 mL of medium was added and a cell
suspension was generated. A cell suspension of 200 µL was added into each microchannel by pipetting.
The microchannel was set vertically inside the incubator and statically incubated for 24 h without
a flow rate. The PDMS chip was removed, and the microchannel was washed with the medium.
Subsequently, the microchannel was put into PBS and observed using an inverted microscope.

Fluorescent images of the HepG2 cells are shown in Figure 10. For observing three locations
at different heights of the vertical porous membranes, three images were captured with different
focal positions. The bottom is the surface of the glass substrate (Figure 10a). The middle is the center
in the vertical porous membrane in the vertical direction (Figure 10b). The top is opposite to the glass
substrate (Figure 10c). The HepG2 cells were observed in every focal position.

Figure 10. Fluorescent images of cells on a vertical porous membrane integrated microchannel.
Two days after seeding, HepG2 cells adhered to the vertical porous thin film. Cell images were
obtained by changing the focal length of the microscope, and the cells were observed at each height of
the vertical porous membrane.

5. Discussion

5.1. Fabrication of Vertical Porous Membranes by Inclined Exposure

As a result of the fabrication by the inclined exposure of the vertical porous membrane, a structure
with a dot size of 4 µm, spacing of 10 µm, and height of over 50 µm was fabricated. Typically, a vertical
porous membrane is fabricated using inclined exposure [23,26,27], and a vertical porous membrane
that has a pore of approximately 10 µm is usually fabricated using a pattern with a larger dot size.
Owing to the large dot size and the void content, the ratio of the lattice area of the vertical porous
membrane to the area of the pores produced by conventional methods is lower than that of the vertical
porous membrane fabricated in this study. Regardless of the void content, the minimum pore size
produced by conventional methods is generally equal to or larger than that obtained in this study.
Therefore, the size of pores on SU-8 fabricated by the inclined exposure was the smallest fabricated
size in this study. Additionally, this study describes the fabrication method and processing conditions
of a hollow structure having a higher void content.

5.2. Ratio of Open Micropores Obtained by Inclined Oxygen Ashing

Using inclined oxygen ashing, a closed pore covered by a thin film of SU-8 can be opened.
The thickness of the thin film sealing the pore is considered as extremely thin as compared
to the lattice part. The film is extremely thin because it was produced by the reduction of
the perpendicularity of exposure light and the diffusion of acid. This implies that even though
the entire portion (including the lattice portion) is etched by inclined oxygen ashing, the ratio of
open micropores is improved without disrupting the lattice because the thin-film portion is etched
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in a short time. Therefore, inclined oxygen ashing is useful for improving the porosity of a vertical
porous membrane.

Suzuki et al. [28] reported an etching process for SU-8 using oxygen plasma. They used
oxygen plasma to fabricate micropores using SU-8. The pores were vertical to the plasma direction.
However, they did not use and verify the inclined oxygen ashing for the etching of the side structure.
In this research, we report the effect of oxygen ashing for the side etching by inclined plasma irradiation.

5.3. Robustness of Vertical Porous Membrane Fabricated by Inclined Oxygen Ashing

A vertical porous membrane was prepared using the proposed inclined oxygen ashing such
that the vertical porous membrane did not collapse during the drying process after development.
The vertical porous membrane might collapse due to sticking, owing to the meniscus force during
the drying process. In the drying process, meniscus force is applied to the structure, and the structure
collapses or deforms. To prevent sticking, a conventional method using supercritical drying can be
applied [29]. In a supercritical fluid of high temperature and high pressure, the meniscus force does
not occur. Therefore, using the supercritical drying process, the influence of sticking can be reduced.
Because oxygen ashing is also a dry etching method, no meniscus force is added to the structure.
Therefore, the vertical porous membrane was fabricated by the proposed method without collapsing.

Yoon et al. [23] reported that the strength of the structure is improved by exposing the vertical
porous membrane from the upper surface. They found that structure collapse is prevented by
reinforcing the upper part of the vertical porous membrane. However, it is necessary to perform
alignment when using this method. Moreover, when a thick photoresist such as SU-8 is deposited
with a thick film of several tens of micrometers or more, a difference in the height of the surface
called edge beads occurs. The edge beads generate an undesirable contact gap. The contact
gap is the distance between the photosensitive material surface and the mask pattern surface,
which lowers the fabrication accuracy. Therefore, it is difficult to construct a high-precision alignment
from the top surface direction as well as a high-resolution structure. Because the proposed method
is assembly-free, it has the advantages that not only can fine structures be fabricated by a short-term
process, but also fabrication errors do not occur.

Compared to the mesh structure fabricated in Yoon’s research, the significant difference here is
the area ratio of the pore/lattice. The pore size in Yoon’s research and our research was the same.
However, in Yoon’s research, they fabricated lattices larger than 10 µm to prevent mesh collapse
by sticking. Sticking occurs during drying. Because our process does not involve drying before
the mesh becomes finer by oxygen plasma, a vertical porous membrane with a high pore/lattice ratio
can be fabricated.

5.4. Cell Culture on Vertical Porous Membrane

The seeded HepG2 cells on the SU-8 surface adhered to the surface of the vertical porous
membrane in this study. Cell culture on SU-8 has been performed previously, and adherent cells
adhered to the structure, similar to our results [16–18]. Meanwhile, other studies have improved
the cell adhesion rate using oxygen ashing on SU-8 [30]. The primary reason for applying inclined
oxygen ashing is to improve the porosity. However, inclined oxygen ashing is considered applicable
for treating the surface of SU-8 for cell culture.

The seeded HepG2 cells were observed from the bottom to the top of the vertical porous membrane.
During the cell culture in the microchannel, the PDMS-covered chip stood upright in a culture
dish. Therefore, the vertical porous membrane was located on the bottom of the microchannel,
and the seeded cells were maintained in contact with the membrane. Because they were washed
with PBS before the observation, cells that did not adhere to the vertical porous membrane were
removed. Therefore, the seeded cells adhered to the surface of the vertical porous membrane with
sufficient adhesive strength. By culturing for a longer period of time, the boundary is expected to be
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constructed by the cell layer, and metabolites can be acquired separately between each microchannel
that is separated by the mimicked barrier tissues.

6. Conclusions

In this paper, we proposed an integration method using inclined exposure and inclined oxygen
ashing for fabricating microchannels with vertical porous membranes made of the thick photoresist
SU-8. Inclined oxygen ashing was demonstrated to be useful for improving the ratio of open
micropores of the vertical porous membrane. Using the proposed methods, a vertical porous
membrane having a pore size smaller than the cell size and a membrane height of 50 µm could
be fabricated. Moreover, the vertical porous membrane was integrated into a microchannel through
an assembly-free process. When HepG2 cells were seeded on the prepared vertical porous membrane,
adhesion of the HepG2 cells to the surface of the membrane was observed. Therefore, the proposed
integration method and the fabricated vertical porous membrane are expected to be applicable
to biomicrodevices.

Author Contributions: H.U., K.Y., and T.S. conceived and designed the experiments; H.U. performed
the experiments and analyzed the data; H.U., K.Y., and T.S. discussed and interpreted the results; H.U. and T.S.
wrote the paper.

Acknowledgments: This work was partly supported by JSPS KAKENHI Grant Number 16J12039, JP17H03196,
JST PRESTO Grant Number JPMJPR15R3, and Center for Nano Lithography & Analysis, The University of Tokyo,
supported by MEXT, Japan.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Esch, M.B.; King, T.L.; Shuler, M.L. The role of body-on-a-chip devices in drug and toxicity studies. Annu. Rev.
Biomed. Eng. 2012, 13, 55–72. [CrossRef] [PubMed]

2. Esch, M.B.; Mahler, M.J.; Stokol, T.; Shuler, M.L. Body-on-a-chip simulation with GI tract and liver tissue
suggests that integrated nanoparticles have the potential to cause liver injury. Lab Chip. 2014, 14, 3081–3092.
[CrossRef] [PubMed]

3. Viravaidya, K.; Shuler, M.L. Incorporation of 3T3-L1 cells to mimic bioaccumulation in a microscale cell
culture analog device for toxicity studies. Biotech. Progr. 2004, 20, 590–597.

4. Sin, A.; Chin, K.C.; Jamil, M.F.; Kostov, Y.; Rao, G.; Shuler, M.L. The design and fabrication of three-chamber
microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotech. Progr. 2004,
20, 338–345.

5. Miller, P.G.; Shuler, M.L. Design and demonstration of a pumpless 14 compartment microphysiological
system. Biotechnol. Bioeng. 2016, 113, 2213–2227. [CrossRef] [PubMed]

6. Onoe, H.; Okitsu, T.; Itou, A.; Kato-Negishi, M.; Gojo, R.; Kiriya, D.; Sato, K.; Miura, S.; Iwanaga, S.;
Kuribayashi-Shigetomi, K.; et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions.
Nat. Mater. 2013, 12, 584–590.

7. Chung, S.; Sudo, R.; Mack, P.J.; Wan, C.; Vickerman, V.; Kamm, R.D. Cell migration into scaffolds under
co-culture conditions in a microfluidic platform. Lab Chip. 2009, 21, 269–275.

8. Osaki, T.; Sivathanu, V.; Kamm, R.D. Engineered 3D vascular and neuronal networks in a microfluidic
platform. Sci. Rep. 2018, 8, 5168.

9. Esch, M.B.; Ueno, H.; Applegatec, D.R.; Shuler, M.L. Modular, pumpless body-on-a-chip platform for
the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip. 2016, 16, 2719–2729. [CrossRef]

10. Satoh, T.; Sugiura, S.; Shin, K.; Onuki-Nagasaki, R.; Ishida, S.; Kikuchi, K.; Kakiki, M.; Kanamoria, T.
A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium
circulation platform. Lab Chip. 2018, 18, 115–125. [CrossRef]

11. Bertsch, A.; Renaud, P. Special Issue: 15 Years of SU-8 as MEMS Material. Micromachines 2015, 6, 790–792.
[CrossRef]

http://dx.doi.org/10.1146/annurev-bioeng-071910-124629
http://www.ncbi.nlm.nih.gov/pubmed/21513459
http://dx.doi.org/10.1039/C4LC00371C
http://www.ncbi.nlm.nih.gov/pubmed/24970651
http://dx.doi.org/10.1002/bit.25989
http://www.ncbi.nlm.nih.gov/pubmed/27070809
http://dx.doi.org/10.1039/C6LC00461J
http://dx.doi.org/10.1039/C7LC00952F
http://dx.doi.org/10.3390/mi6060790


Micromachines 2018, 9, 681 13 of 13

12. Zhou, Z.F.; Huang, Q.A. Comprehensive simulations for ultraviolet lithography process of thick SU-8
Photoresist. Micromachines 2018, 9, 341 (21 pages). [CrossRef]

13. Tuomikoski, S.; Franssila, S. Free-standing SU-8 microfluidic chips by adhesive bonding and release etching.
Sens. Actuator A 2005, 120, 408–415. [CrossRef]

14. Campo, A.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng.
2007, 17, 81–95. [CrossRef]

15. Inoue, M.; Okonogi, A.; Terao, K.; Takao, H.; Shimokawa, F.; Oohira, F.; Kotera, H.; Suzuki, T. Cell Culture
on MEMS Materials in Micro-Environment Limited by a Physical Condition. Micro Nano Lett. 2012, 7, 725–728.
[CrossRef]

16. Arteaga-Marrero, N.; Auzelyte, V.; Olsson, M.G.; Pallon, J. A SU-8 dish for cell irradiation. Nucl. Instrum.
Methods Phys. Res. B 2007, 263, 523–528. [CrossRef]

17. Nemani, K.V.; Moodie, K.L.; Brennick, J.B.; Su, A.; Gimi, B. In vitro and in vivo evaluation of SU-8
biocompatibility. Mat. Sci. Eng. C 2013, 333, 4453–4459. [CrossRef] [PubMed]

18. Esch, E.B.; Sung, J.H.; Yang, J.; Yu, C.; Yu, J.; March, J.C.; Shuler, M.L. On chip porous polymer
membranes for integration of gastrointestinal tract epithelium with microfluidic ‘body-on-a-chip’ devices.
Biomed. Microdevices 2012, 14, 895–906. [CrossRef] [PubMed]

19. Cho, S.W.; Kim, J.H.; Kang, D.W.; Lee, K.; Kim, C.K. Single- and multi-directional slanted plasma etching
of silicon under practical plasma processing conditions. ECS J. Solid State Sci. Technol. 2014, 3, 215–220.
[CrossRef]

20. Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting organ-level
lung functions on a chip. Science 2010, 328, 1662–1668. [CrossRef] [PubMed]

21. Kim, H.J.; Huh, D.; Hamiltona, G.; Ingber, D.E. Human gut-on-a-chip inhabited by microbial
flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 2012, 12, 2165–2174.

22. Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.L.; Hamilton, G.A.; Thorneloe, K.S.;
McAlexander, M.A.; Ingber, D.E. A human disease model of drug toxicity–induced pulmonary
edema in a lung-on-a-chip microdevice. Sci. Transl. Med. 2012, 4, 159.

23. Yoon, Y.K.; Park, J.H.; Allen, M.G. Multidirectional UV lithography for complex 3-D MEMS structures.
J. Microelectromech. Sys. 2006, 15, 1121–1130. [CrossRef]

24. Yeon, J.H.; Park, J.K. Cytotoxicity test based on electrochemical impedance measurement of HepG2 cultured
in microfabricated cell chip. Anal. Biochem. 2005, 341, 308–315.

25. Aritomi, K.; Ishitsuka, Y.; Tomishima, Y.; Shimizu, D.; Abe, N.; Shuto, T.; Irikura, M.; Kai, H.; Irie, T.
Evaluation of three-dimensional cultured HepG2 cells in a nano culture plate system: an in vitro
human model of acetaminophen hepatotoxicity. J. Pharmacol. Sci. 2014, 124, 218–229. [CrossRef]

26. Sato, H.; Kakinuma, T.; Go, J.S.; Shoji, S. In-channel 3-D micromesh structures using maskless multi-angle
exposures and their microfilter application. Sens. Actuator A 2004, 111, 87–92. [CrossRef]

27. Lee, J.B.; Choi, K.H.; Yoo, K. Innovative SU-8 lithography techniques and their applications.
Micromachines 2015, 6, 1–18. [CrossRef]

28. Suzuki, T.; Yamamoto, H.; Ohoka, M.; Okonogi, A.; Kabata, H.; Kanno, I.; Washizu, M.; Kotera, H.
High throughput cell electroporation array fabricated by single-mask inclined UV lithography exposure
and oxygen plasma etching. Transducers 2007, 9828569.

29. Namatsu, H. Supercritical drying for water-rinsed resist systems. Am. Vac. Soc. 2000, 18, 3308–3312.
30. Walther, F.; Davidovskaya, P.; Zürcher, S.; Kaiser, M.; Herberg, H.; Gigler, A.; Stark, R.W. Stability of

the hydrophilic behaviour of oxygen plasma activated SU-8. J. Micromech. Microengin. 2007, 17, 524–531.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/mi9070341
http://dx.doi.org/10.1016/j.sna.2005.01.012
http://dx.doi.org/10.1088/0960-1317/17/6/R01
http://dx.doi.org/10.1049/mnl.2012.0216
http://dx.doi.org/10.1016/j.nimb.2007.06.012
http://dx.doi.org/10.1016/j.msec.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23910365
http://dx.doi.org/10.1007/s10544-012-9669-0
http://www.ncbi.nlm.nih.gov/pubmed/22847474
http://dx.doi.org/10.1149/2.0091411jss
http://dx.doi.org/10.1126/science.1188302
http://www.ncbi.nlm.nih.gov/pubmed/20576885
http://dx.doi.org/10.1109/JMEMS.2006.879669
http://dx.doi.org/10.1254/jphs.13135FP
http://dx.doi.org/10.1016/j.sna.2003.10.009
http://dx.doi.org/10.3390/mi6010001
http://dx.doi.org/10.1088/0960-1317/17/3/015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	Principle of Vertical Porous Membrane Integration Method Using an Inclined Exposure Method and Inclined Oxygen Ashing 
	Inclined Backside Exposure 
	Double-Sided Inclined Oxygen Ashing 

	Results 
	Fabrication of Vertical Porous Membrane Using Inclined Exposure 
	Evaluation of the Inclined Oxygen Ashing after Inclined Exposure 

	Application for Biomicrofluidics 
	Method for Integration of Vertical Porous Membrane in Microchannel 
	Cell Culture on Vertical Porous Membranes 

	Discussion 
	Fabrication of Vertical Porous Membranes by Inclined Exposure 
	Ratio of Open Micropores Obtained by Inclined Oxygen Ashing 
	Robustness of Vertical Porous Membrane Fabricated by Inclined Oxygen Ashing 
	Cell Culture on Vertical Porous Membrane 

	Conclusions 
	References

