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Abstract: Visual odometry (VO) is a new navigation and positioning method that estimates the
ego-motion of vehicles from images. However, VO with unsatisfactory performance can fail severely
in hostile environment because of the less feature, fast angular motions, or illumination change.
Thus, enhancing the robustness of VO in hostile environment has become a popular research
topic. In this paper, a novel fault-tolerant visual-inertial odometry (VIO) navigation and positioning
method framework is presented. The micro electro mechanical systems inertial measurement unit
(MEMS-IMU) is used to aid the stereo-camera, for a robust pose estimation in hostile environment.
In the algorithm, the MEMS-IMU pre-integration is deployed to improve the motion estimation
accuracy and robustness in the cases of similar or few feature points. Besides, a dramatic change
detector and an adaptive observation noise factor are introduced, tolerating and decreasing the
estimation error that is caused by large angular motion or wrong matching. Experiments in hostile
environment showing that the presented method can achieve better position estimation when
compared with the traditional VO and VIO method.

Keywords: stereo visual-inertial odometry; fault tolerant; hostile environment; MEMS-IMU

1. Introduction

Visual navigation is an emerging technology that uses camera to capture images of the
surrounding environment and processes these images to estimate ego-motion, recognize path, and
make navigation decisions. The visual sensor is mature, low-cost and widely-used in robotics. Given
that visual sensor is a passive sensor and does not rely on any external equipment except ambient light,
one of the most important features of visual navigation is the autonomy. With the improvement of
computational capabilities, visual navigation can be applied to many important applications in various
fields, for instance, robot navigation [1], unmanned aerial vehicles [2], and virtual or augmented reality.

Visual odometry (VO) was first raised by Nister et al. [3] and it has become a widely-used pose
estimation method. Typical VO detects and extracts feature points from a series of images that were
captured by camera, then matches feature points and calculates relative pose to estimate the relative
ego-motion of camera. VO can be classified based on the number of cameras into monocular VO, stereo
(binocular) VO [4], and multi-camera VO [5]. The main difference is that stereo and multi-camera
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VO can get absolute scale information in application while monocular VO dose not, and therefore
requires a more complex initial process. Thus, the stereo VO is usually the preferable choice in
practical navigation

Micro electro mechanical systems inertial measurement unit (MEMS-IMU) is also a common
sensor in robots, unmanned aerial vehicles, and other moving carriers to estimate ego-motion [6,7].
It is mainly composed of accelerometers and gyroscopes, which are respectively used to obtain
the acceleration and angular velocity of the carrier. Its high frequency provides precious motion
information filling the interval gap of lower frequency associated vision sensors. Through using the
two integrals of the acceleration and angular velocity, the attitude of the carrier can be measured.
It also does not rely on any external information, can work in all conditions at any time, and has high
data update rate, short-term accuracy and stability.

In recent years, visual and inertial information are usually combined to estimate the six degrees
of freedom (6DOF) pose. When compared to VO, visual inertial odometry (VIO) [4,8–10] makes good
use of the visual sensors and the inertial sensors, thereby acquiring more precise and robust 6DOF
pose estimation. That also makes VIO play an essential role in autonomous navigation, especially
in GPS-denied environment. Besides, more and more mobile robots are navigating through VIO,
owing to the recent hardware improvements in mobile central processing units (CPUs) and graphics
processing units (GPUs) (e.g., NVIDIA Jetson TX2 (NVIDIA corporation, Santa Clara, CA, USA)).

The mainstream of existing VIO approaches can be classified into loose coupling and tight
coupling [2,5,9–11] by type of information fusion shown in Figure 1. When the system is loosely-coupled,
both inertial and visual information are seen as independent measurements. The process of visual pose
estimation, regarded as a black box, is only used to update a filter to restrain the inertial measurement unit
(IMU) covariance propagation. By contrast, tight coupling considers the interaction of all measurements
of sensors information before pose estimation, thereby achieving higher accuracy than loose coupling.
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Recently loosely-coupled stereo VIO systems are mostly based on Kalman filter and its derivatives.
Tardif, et al. [12] proposed an EKF-based stereo VIO deployed on a moving vehicle. It used inertial
information to predict the state and the stereo VO motion estimation as observations to get high
frequency positioning information. Nevertheless, all of the states forecasted by inertial information,
the covariance is sensitive to the IMU’s bias and drift. Liu, et al. [13] presented a stereo VIO that carried
out the orientation and position estimation with three filters. It fused the accelerometer and gyroscope
to estimate a drift-free pitch and roll angle then fused VO and IMU to estimate motion. Nevertheless,
its filtering architecture was complex and not in real-time. Schmid, et al. [14] proposed a real-time
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stereo VIO. It computed high quality depth images and estimated the ego-motion by key-frame based
VO and fused with the data of inertial information. However, it did not take the stereo VO’s failure
into account. All loosely-coupled stereo VIO systems share the disadvantage that the stereo VO’s and
IMU’s covariance were independent and cannot reflect the entire error.

Recently tightly-coupled stereo VIO systems mainly use a filtering-based [15] or optimization-based [16]
approach. Filtering-based methods propagated the mean and covariance in kalman-filtering framework,
together with feature points and IMU’s error. Sun, et al. [11] presented a filter-based stereo VIO system using
the multi-state constraint kalman filter (MSCKF) [15] applied on an unmanned aerial vehicle. The system
focused on lower computation costs. Ramezani, et al. [17] presented a stereo VIO system that was based
on MSCKF and applied on vehicle, focusing on highly precise positioning. However, approaches
above had high dimensional states vector and lack of robustness. The target of the optimization-based
approach target was to minimize an energy function with a non-linear optimization by gauss-newton
algorithm through frameworks, such as g2o [18] and ceres [19]. Usenko, et al. [4] presented a direct
stereo VIO system estimated motion by minimizing a combined photometric and inertial energy
function. It employed semi-dense depth maps instead of sparse feature points. Nevertheless, the
inertial stability easily influenced by visual error and fault-tolerant method is simple consideration.

Subject to visual limitation, visual navigation is easily influenced when facing large scene changes
that are caused by fast angular motion and low or dynamic light. To avoid positioning interruption, a
fatal failure in robot navigation, current research mainly focuses on changing the feature descriptor to
enhance the robustness of VO. Alismail, et al. [20] proposed new binary descriptors to achieve robust
and efficient visual odometry with applications to poorly lit subterranean environments. However, the
descriptors utilized information just from the images. When fast angular motion causes an image to be
blurred or the environment is dark, the VO is doomed to fail. That will result in serious consequences.

To achieve satisfactory performance of VO withstanding all the limitations mentioned above,
a fault-tolerant adaptive extended kalman filter (FTAEKF) framework integrated with a stereo-camera
and a MEMS-IMU is proposed in this paper. The use of an EKF or one of its variants has been favored
and extensively employed to fuse inertial and vision data, essentially to resolve pose estimation
problem. When compared to traditional loose and tight VIO framework, both robustness and accuracy
are under orders. Our main contributions are as follows:

• A stereo VIO with MEMS-IMU aided method is proposed in the framework. MEMS-IMU
pre-integration constraint from prediction model is used to constrain a range of candidate feature
points searching and matching. The constraint also set as to optimize the initial iterator pose to
avoid local optimum instead of adding MEMS-IMU measurements error joint optimization.

• An adaptive method is introduced to adjust measurement covariance according to motion
characteristic. Besides, a novel fault-tolerant mechanism is used to decide whether stereo VIO
pose estimation is reliable by comparing it with MEMS-IMU measurements.

An improved stereo VIO method based on ORB-SLAM2 [21] (a visual-only stereo SLAM system
demonstrated with its superior performance) is proposed in the framework. The framework can be
easily integrated with any other stereo VO method. Because the computation process of MEMS-IMU
pre-integration and initial iteration point prediction are mostly independent with the stereo VO.

The remainder of this paper is structured as follows: The definitions of coordinates and some
symbols are presented in Section 2.1. The stereo VIO system aided by MEMS-IMU is introduced in
Section 2.2. The FTAEKF is presented in Section 2.2.3. Experiment and evaluation of the proposed
method are shown in Section 3, followed by discussion in Section 4.

2. Materials and Methods

2.1. Coordinates and Notations

The four coordinates that were used in our framework are shown in Figure 2, The world frame W
is defined as ENU (east-north-up) by axes XW , YW , and ZW , with ZW opposite to gravity, YW points
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forward. The IMU frame, coincided with the body frame B also defined as ENU is attached to the
center of MEMS-IMU with ZB pointing upward and YB points forward. The camera frame C is set at
the coordinate of left camera with ZC forward and YC points downward. C is rigid relative pose with
B. The relative pose is calibrated in advance.
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The rotation matrix of framework is modeled by ZYX Euler angles. To get from w to b, rotates
about ZW , YW , and XW axes in turn, by the yaw angle ψ the pitch angle γ and the roll angle θ,

respectively. The transformation matrix T is T =

[
R t
0 1

]
, where R ∈ SO(3) denotes the rotation

matrix, and the rotation matrix Rc
w represents from w to c. t =

(
px, py, pz

)T denotes the translation
vector. Vectors in the camera, body and world frames are defined as (·)c, (·)b and (·)w, respectively.
The transformation matrix from w to b is Tb

w, b to c is Tc
b.

2.2. Framework of Fault-Tolerant with Stereo-Camera and MEMS-IMU

The pipeline of the proposed framework is illustrated in Figure 3. The aim of the proposed
framework is to get robust and precise motion estimation in a hostile environment. The loop closing
and full bundle adjustment in ORB-SLAM2 are not involved in this paper. Our contributions are
mainly on the dark red block and the red arrow.Micromachines 2018, 9, 626  5  of  20 
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traditional VO and dark yellow blocks represent MEMS-IMU measurements aided).
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The stereo-camera and MEMS-IMU are tightly-coupled based on FTAEKF. The pre-integration
of MEMS-IMU measurement confines the range of searching and matching feature points, and fault
tolerance. Different from the traditional VIO method, the pre-integration of MEMS-IMU measurements
is used to optimize the initial iterate point of pose estimation. It is also used to decide whether the
result of pose estimation is credible to detect fault. Besides, to reflect the accumulated drift error, the
observation covariance is adaptive according to motion characteristics. It combines the good properties
of both loosely-coupled and tightly-coupled approaches. In this framework, the independence of
stereo VO maximized. The framework has a good level of fault tolerance. It can function properly, even
under stereo VIO failure, and then recover the whole system. This is because the framework allows a
limited amount of independence and stereo VIO system avoids scale ambiguity in the monocular VO
system. The details are described below.

2.2.1. State Predict with MEMS-IMU Measurements

The framework of FTAEKF is based on an iterated EKF where the state prediction is driven by
IMU measurements. The system states x ∈ R16×1 of VIO consists of number of states:

x =
(

qw, pw, vw,βb
g,βb

a

)T
(1)

Namely, qw =
(
q0, q1, q2, q3

)T is the attitude in quaternions, reflecting the world frame (W) to

the body frame (B). pw = (pxw, pyw, pzw)T is the position and vw =
(

vw
x , vw

y , vw
z

)
is the velocity

expressed in the world frame, βb
g and βb

a are the biases of three-axis gyroscopes and three-axis
accelerometers, respectively. The measurements from gyroscope and accelerometer are denoted as ηb

wb
and ab

wb, respectively.

The prediction model vector
.
x = (

.
qw,

.
pw,

.
vw,

.
β

b
g,

.
β

b
a)

T
is defined as:

.
qw

= 1
2 Ω(η̂b

wb)q
w

.
pw

= vw

.
vw

= Cw
b

(
ab

wb −βb
a

)
+ gw

.
β

b
g = 0

.
β

b
a = 0

(2)

with Cw
b representing the rotation matrix from B to W, the instantaneous angular velocity of B relative

to W expressed in coordinate frame B η̂b
wb and the quaternion update matrix Ω(η̂b

wb) are defined as:
η̂b

wb = ηb
wb −βb

g,

Ω
(
η̂b

wb

)
=


0 −η̂b

wbx −η̂b
wby −η̂b

wbz
η̂b

wbx 0 −η̂b
wbz η̂b

wby
η̂b

wby η̂b
wbz 0 −η̂b

wbx
η̂b

wbz −η̂b
wby η̂b

wbx 0

 (3)

In proposed framework, the pre-integration of MEMS-IMU measurements is obtained through
the prediction model.

2.2.2. An Improved Stereo VIO Method Aided by MEMS-IMU

In this part, the pre-integration of MEMS-IMU measurements is used to aid the stereo VO
system. The stereo VIO system that was employed in this paper is based on ORB-SLAM2 with
good performance.
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Both original feature based VO and VIO use brute-force or bag of words (BOW) matchers to
match extracted feature points within reference frame and current frame These matchers take the
descriptor of one feature in current frame and are matched to all other features in reference frame using
hamming distance calculation. The closest one is returned. As a result, the pose estimation produced
error when false matching occurred frequently in a hostile environment due to the close hamming
distance of similar descriptor. In our approach, the MEMS-IMU measurements are pre-integrated to
aid stereo VIO through constraining matching and predicting initial iteration pose. The process of this
part shown in Figure 4.
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Figure 4. The process of improved stereo VIO method aided by MEMS-IMU. The inertial measurement
unit (IMU) measurements are pre-integrated to predict position of feature points.

Traditionally, the initial frame pose of stereo VO is configured as world frame. However, it hardly
reflects physical truth. As shown in Figure 4, VIO initialized coordinate with MEMS-IMU forward
as initial heading and aligns geographic coordinate system through gravity. The stereo VIO pose is
compensated by Tb1

w from the MEMES-IMU measurement.

Tb1
w =

[
Rb1

w tb1
w

0 1

]
, R ∈ SO(3), t ∈ R3×1 (4)

where Rb1
w is the rotation matrix and tb1

w are the translation matrix from w to b1 when VIO obtains the
first image. The time interval between the image and closest MEMS-IMU measurement can be ignored
due to high frequency of MEMS-IMU and low dynamic condition in beginning.

When the first stereo image is retrieved from camera, ORB feature points are extracted and
matched with left and right image to estimate the depth through epipolar and disparity constraints.
Then initial three-dimensional (3D) feature points in C are generated and projected based on
initial pose. When a new frame was obtained from the stereo-camera, the 3D feature points are
reconstructed then matched to the reference frame 3D feature points with ORB descriptors. In order
to avoid the false matching caused by similar descriptors in a hostile environment. We introduce
MEMS-IMU pre-integration constraint, which confined the searching and matching region to get more
correct matching.

As shown in Figure 5, a point Pi is observed by two consequent frames that obtain two feature
points f c1

Pi
, f c2

Pi
. The feature point in current frame can be project to last frame with MEMS-IMU
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pre-integration. The coordinates in the pixel coordinates of both feature points f c1
Pi

and f c2c1
Pi

are close
after reprojection. We can match within bounds to decrease the workload and possibility of error.
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In our approach, the MEMS-IMU pre-integration is obtained with the prediction model.
MEMS-IMU measurements between two consequent frames at discrete time k − m, k predict

MEMS-IMU pre-integration ∆ξ imu
k−m,k =

(
∆qw

k−m,k, ∆pw
k−m.k

)T
:

∆ξimu
k−m,k =

k

∑
i=k−m

[
1
2 Ω
(
η̂b

wb

)
qw

i
1
2 (v

w
i−1 + vw

i )
]T

∆t (5)

where vw
i denotes the velocity in w at time i, η̂b

wb denotes the instantaneous angular velocity of B and
qw

i denotes the quaternions from w to b at time i.
To reflect the motion of the camera, the pre-integration ∆ξimu

k−m,k needs to align with C:

T(∆ξcam
k−m,k) = Tc

bT(∆ξimu
k−m,k)T

c
b
−1

T(∆ξimu
k−m,k) =

[
Rb

k−m,k tb
k−m,k

0 1

]
, T(∆ξcam

k−m,k) =

[
Rc

k−m,k tc
k−m,k

0 1

]
(6)

where T(∆ξcam
k−m,k) denotes the transformation matrix from time k−m to k in c, Tc

b is the transformation
matrix from b to c. Rb

k−m,k is the quaternions ∆qw
k−m,k expressed in rotation matrix, tb

k−m,k = Cb
w∆pw

k−m.k
is the translation vector in B, where Cb

w is the rotation matrix from w to b.
After getting the coarse pose estimation of camera T̂(∆ξcam

k−m,k), we can predict the camera pose
by equation:

T̂(ξcam
k ) = T(∆ξcam

k−m,k)T
(
ξcam

k−m
)
=

[
R̂
(
ξcam

k
)

t̂
(
ξcam

k
)

0 1

]
(7)

For each 3D feature point of current frame, the matched feature points should near it. After
predicting the coarse pose estimation, we project each feature point of current frame into the initial
camera frame. The search for candidates only in a small range of each 3D feature points in local map.
The range depends on the bias and noise of the MEMS-IMU. We do BOW matching between each
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feature point and its candidates to get matched feature point. Due to the confinement of the region, the
error and the time consuming in searching and matching will reduce.

After getting the matched result, bundle adjustment optimization is performed to optimize the
camera pose by minimizing the reprojection error between the matched 3D feature points Fi ∈ R3 in
map and feature points fi ∈ R3 in current frame. The i ∈ χ is a set of matched points:

{R, t} = argmin
R,t

∑
i∈χ

ρ(
∥∥∥ f i

(.) − π(.)(RFi + t)
∥∥∥2

∑
) (8)

where the ρ is the robust Huber cost function and ∑ is the covariance matrix associated to the scale of
feature points, which is one when with stereo-camera. π(·) is the projection functions monocular πm,
rectified stereo πs are defined, as follows:

πm


 X

Y
Z


 =

 fx
X
Z

+ cx

fy
X
Z

+ cy

, πs


 X

Y
Z


 =


fx

X
Z

+ cx

fy
X
Z

+ cy

fx
X− b

Z
+ cx

 (9)

where ( fx, fy) is focal length, (cx, cy) is the principal point and b is the baseline, all is known in
advanced.

However, the bundle adjustment to minimize the reprojection error is nonlinear. It cannot always
get a global optimal point. As shown in Figure 6, VO falls into local optimum easily because the initial
iteration point is last frame pose.Micromachines 2018, 9, x 9 of 20 
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In our approach, the initial iteration pose is set as prediction of MEMS-IMU pre-integration
R = R̂

(
ξcam

k
)

and t = t̂
(
ξcam

k
)

to get close to global optimal point. Then, stereo VIO 6DOF pose
estimation is optimized in order to avoid local optimum.

2.2.3. Fault-Tolerant Adaptive Extended Kalman Filtering

In this part, the FTAEKF is introduced to tolerant wrong stereo VIO pose estimation limited by
the visual principle in a hostile environment.

1. Fault-tolerance with dramatic change detection

In some extreme cases, with fast motion in hostile environment, a large error of VIO
pose estimation occurs because of the limited number in matched feature points or similar
descriptor. The matcher matches feature points simply depending on the hamming distance.
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Therefore, a fault-tolerant method with MEMS-IMU measurements is introduced through dramatic
change detection.

One way to detect the sudden step change, by comparing the number of matched points with
threshold after eliminating exterior point in bundle adjustment, has been proposed before. However,
this is an indirect technique. In some scenario, the number of matched points is large enough, but they
mostly matched with wrong feature points and significant estimation error still occurs in this direction.
Sudden step change detecting in VIO mostly consider setting a transformation threshold between two
consequent frames. They all only detected faults without isolation lead to failure of the system.

In this paper, a new approach using the detection function to detect and isolate dramatic change
was proposed. As an accurate pose can be estimated from MEMS-IMU during a short period, the
framework considered the MEMS-IMU pre-integration T̂(∆ξcam

k−m,k) as a reference. It compares to final

relative VIO pose estimation T
(

∆ξcam
k−m,k

)
= T

(
ξcam

k
)
T
(

∆ξcam
k−m

)−1
between time k and k− 1 to detect

dramatic change. If the value of detection function fd ≥ 1, then the dramatic change detection is
deemed to occur. The detection function fd is defined as:

∆T
(

∆ξcam
k−m,k

)
= T

(
∆ξcam

k−m,k

)
T̂(∆ξcam

k−m,k)
−1 =

[
∆Rcam

k−m,k ∆tcam
k−m,k

0 1

]

fd =

√√√√(
∆tcam

k−m,k − timu
k−m,k

)T(
∆tcam

k−m,k − timu
k−m,k

)
Eεt2 ·

εψk−m,k
2 + εθk−m,k

2 + εγk−m,k
2

Eεψ
2 + Eεθ

2 + Eεγ
2

(10)

where the ∆T
(

∆ξcam
k−m,k

)
is the transformation difference estimation between pre-integration of

MEMS-IMU measurements and VIO. εψk−m,k, εθk−m,k, and εγk−m,k are defined as: εγk−m,k =

∆γimu
k−m,k
− ∆γcam

k−m,k
, εθk−m,k = ∆θimu

k−m,k
− ∆θcam

k−m,k
, and εψk−m,k = ∆ψimu

k−m,k
− ∆ψcam

k−m,k
. Where ∆γimu

k−m,k
, ∆θimu

k−m,k
,

and ∆ψimu
k−m,k

are the incremental relative attitude change estimated by MEMS-IMU measurements,
∆γcam

k−m,k
, ∆θcam

k−m,k
, and ∆ψcam

k−m,k
are the incremental relative attitude change estimated by VIO.

The threshold Eεt, Eεψ, Eεθ , and Eεγ are set up according to the drift of motion estimation by
prediction using MEMS-IMU during one period of slam procedure, which is from discrete time
k − m to k. As a more reliable pose can be estimated from MEMS-IMU during a short period of
time, the transformation difference estimation between MEMS-IMU prediction and stereo VIO system
estimation should be within this range.

In consideration of the drift of estimation by MEMS-IMU, the threshold Eεt, Eεψ, Eεθ , and Eεγ

change adaptively. As continuous change detected in hostile environment increases, Eεt, Eεψ, Eεθ , and
Eεγ are growing. Eεt, Eεψ, Eεθ , and Eεγ are to be reinitialized with the original value if no environmental
transition is detected.

2. Covariance adaptive filtering

Due to the change and accumulation of error in each process of pose estimation from VIO,
the observation covariance from VIO is set to dynamic dependent upon the distance and motion
characteristics to achieve better positioning accuracy. The observation covariance is adjusted to better
represent practical situations.

VIO is a dead-reckon algorithm in which the error of stereo VIO pose estimation is accumulated
by distance. A factor λd, related to the distance of stereo VIO dcam reflect the error accumulating
is introduced:

dcam =
k−1
∑

i=1

√
t
(

∆ξcam
i,i+1

)T
t
(

∆ξcam
i,i+1

)
λd = σdcam

(11)

where t
(

ξcam
i,i+1

)
is the camera translation vector between time k and k + 1 in C, σ is dependent on

characteristics of the stereo VIO system.
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Besides, the precision of stereo VIO pose estimation is also influenced obviously by motion
characteristics. The field of view changes fast and the same feature points are reduced speedily when
great angular change is made in a short time. MEMS-IMU measurements are more suitable and precise
for the estimation and VIO is no longer reliable. Thus, a factor λa is introduced to adapt the specialties
of MEMS-IMU and stereo VIO.

λa =
k

∑
i=k−n

√
η̂b

wb,i
Tη̂b

wb,i (12)

where η̂b
wb,i is η̂b

wb at time i, n is the size of the slide window.
When filtering, the error state vector used to correct the predicted state in filter is defined as follows:

δX =
(

δqw, δpw, δvw, δβb
g, δβb

a

)T
(13)

where, δX is the state vector composed by quaternions, position, velocity, and bias error.
With no dramatic change detecting in perceived environment, the predicted states are corrected

by measurements information obtained from stereo VIO pose estimation. As no drift pitch or roll angle
can be obtained through gravity correction, the observation model in proposed FTAEKF is as follows:

Zk = HkδXk+µk

µk =
[

λdεr
px λdεr

py λdεr
pz λaεr

ψ

]T

Zk =
(

x̃w
k
− xw

k
, ỹw

k
− yw

k
, z̃w

k
− zw

k
, ψ̃w

k
− ψ

w
k

)T

ψ
w
k = tan−1

 2
(

qw
1,k ∗ qw

2,k + qw
0,k ∗ qw

3,k

)
1− 2

(
qw

2,k ∗ qw
2,k + qw

3,k ∗ qw
3,k

)


Hk =

 03×1 03×1 03×1 03×1 I3×3 03×9
∂ψ

w
k

∂qw
o,k

∂ψ
w
k

∂qw
1,k

∂ψ
w
k

∂qw
2,k

∂ψ
w
k

∂qw
3,k

01×3 01×9



(14)

where Zk is the observation, x̃w
k

, ỹw
k

, z̃w
k

, and ψ̃w
k

are the observation position and yaw in the world
frame from the stereo VIO pose estimation, respectively, xw

k
,yw

k
, zw

k
, and ψ

w
k

are the predicted position
and yaw in the world frame from IMEMS-MU mechanization, respectively, Hk is the observation
matrix and µk is the observation noise, which is adaptive.

When dramatic change occurred, MEMS-IMU measurements pre-integration will be used as pose
estimation to isolate and tolerate fault. Since the pose estimated with MEMS-IMU during a short period
of time is with sufficient accuracy, the stereo VIO system is reinitialized based on the MEMS-IMU pose
in W at the closest time. The λa and λd is also reinitialized. That makes the framework with the ability
to navigate even when stereo VIO system failed.

After filtering, the new matched feature points are projected to initial c to update the local map.
The position of the same feature is represented using the average of position value.

When the dramatic change is detected, the local map points are cleared and the initial pose is set
to MEMS-IMU pose in w with the closest time.

3. Results

3.1. Experiment Setup

3.1.1. Equipment

The equipment that we employed was based on commercial off the shelf shown in Figure 7.
It consists of a ZED stereo camera, a Xsens MTI-G-710 MEMS-IMU, and a NVIDIA Jetson TX2.
The ZED stereo camera resolution is set to 1280 × 720, baseline is 12cm and the frame rate at 15 HZ.
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The Xsens MTI-G-710 can measure the acceleration and angular velocity in body frame running
at 200 HZ. The MEMS-IMU was mounted on left camera of ZED that was calibrated in advanced.
The processing platform is NVIDIA Jetson TX2 with dual-core NVIDIA Denver2 and quad-core ARM
Cortex-A57 running on Ubuntu 16.04. The Novatel OEM6 GPS receiver worked with GPS-RTK running
at 1HZ as outdoor reference. All of the sensors were connected with TX2 through USB cable and
the implementation is based on C++ with Robot Operating System (ROS) Kinetic. The sensors are
mounted on a tripod with three rollers.Micromachines 2018, 9, 626  12  of  20 
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Figure 7. An illustration of platform. It consisted of ZED camera, MTI MEMS-IMU, Novatel GPS and
Jetson TX2.

3.1.2. Experiment Environment Description

In order to evaluate the performance of the proposed method under a hostile environment, the
experiments were carried out in the corridor outside the laboratory and a tennis court in campus, as
shown in Figures 8 and 9. For the corridor, the wall of the corridor was sparse-feature. The make
part of descriptors were similar. Ambient lighting in the corridor is unsatisfactory in some places,
as it is bright near the window but is considerably darker elsewhere. The corridor plan is known
in advance with the floor that consisted of fixed size tiles. Each tile is a square with sides of 60 cm.
We pushed the tripod along the tile edge and obtained the ideal trajectory reference through a corridor
plan. Some artificial mark points located at door and corner have been set in advance to evaluate the
performance more comprehensively. It is regarded as the ideal path to evaluate the performance of the
proposed framework. The yaw angle of MTI that was fused with magnetic is regarded as yaw angle
reference. For the tennis court, the color of the ground was also simple and surrounded by similar
meshes. The outdoor distance of feature was far beyond indoor environment. The reference of pose
was obtained through GPS-RTK. Both environments can be considered as the hostile environment.

3.2. Experiments Results

We carried out a semi-physical simulation experiment to verify the performance of our proposed
framework. The data was collected with the equipment and processed in platform. The proposed
framework is compared against ORB-SLAM2, MSF-EKF [22], and VINS-Mono [23] in the experiments.
The MSF-EKF based on the modular-sensor fusion framework by the University of Zurich is widely
used to loosely couple inertial information and visual information. Moreover, the tightly-coupled
VINS-Mono is high-performance and robust by the Hong Kong University of Science and Technology.
Because the methods was multi-threaded and contained some random processing, the data took the
3σ bounds of results to eradicate any discrepancies.
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Figure 9. An illustration of the tennis court where experiment carried on.

3.2.1. Experiment I: In Corridor

In experiment I, we pushed the tripod along the tile edge in the corridor. The experiment intended
to assess the comprehensive performance of the proposed framework in an indoor hostile environment.

The red line is the ideal trajectory, as shown in Figure 10. The time at passing the mark points
was recorded. The estimation of motion and yaw angle from different methods shown in Figure 11a,b.
The position is projected onto X-Y plane. It was clear to see our proposed method achieved more
accurate pose estimation. In addition, the value of fault illustrated seven dramatic changes that were
detected by FTAKF in the experiment I in Figure 12a and the adaptive observation covariance is shown
in Figure 12b. Moreover, the value of mean error and root mean square error (RMSE) of yaw angle and
motion estimation from different methods, as shown in Figures 13 and 14.
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3.2.2. Experiment II: In tennis court

In experiment II, we pushed the tripod along the edge of the tennis court. The experiment
intended to evaluate the performance of the proposed framework in an outdoor hostile environment
under the RTK position and heading reference.

The red line is RTK trajectory as shown in Figure 15 with time synchronized through ROS.
The estimation of motion and yaw angle from different methods shown in Figure 15a,b. Our proposed
method achieved more accurate pose estimation. The value of fault illustrated six dramatic changes
was detected by FTAKF in the experiment II in Figure 16a and the adaptive observation covariance is
shown in Figure 16b. The value of mean error and RMSE of yaw angle and motion estimation from
different methods shown in Figures 17 and 18.
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3.3. Experimental Analysis

3.3.1. Accuracy Analysis

In the experiments, the accuracy of the proposed algorithm in the reconstructed trajectory is
calculated as the RMSE with mark points and RTK references in Tables 1 and 2. Moreover, the Euclidean
distance between the last position of the estimated camera trajectory and the expected end point were
calculated in Tables 3 and 4. Value marked with an asterisk (*) was obtained before failure.

Table 1. RMSE (m) of motion estimation in different methods. (Value marked with an asterisk (*) was
obtained before VO failure.)

Length (m) Proposed Error ORB-SLAM2 Error MSF-EKF Error VINS-Mono Error

Experiment I: 108.8 0.43(0.58 *) 0.94 * 16.57 (0.90 *) 1.80 *
Experiment II: 38 0.6(0.53 *) 0.75 * 3.94 (0.6 *) 0.88 (0.08 *)

Table 2. RMSE (◦) of yaw angle estimation in different methods. (Value marked with an asterisk (*)
was obtained before VO failure.)

Yaw Angle
Change (◦) Proposed Error ORB-SLAM2 Error MSF-EKF Error VINS-Mono Error

Experiment I: 180 4.52 (2.9 *) 3.13 * 21.84 (3.10 *) 3.0 *
Experiment II: 90 0.19 (0.38 *) 0.55 * 1.21 (0.44 *) 1.72 (0.56 *)

Table 3. Length accuracy (m).

Length (m) Proposed Error ORB-SLAM2 Error MSF-EKF Error VINS-Mono Error

Experiment I: 108.8 0.92, 0.8% 194.3, 179.9% 55.88, 51.4% 67.36, 67.4%
Experiment II: 38 1.89, 4.98% 4.22, 11.1% 13.3, 35.0% 32.0, 84.2%

Table 4. Yaw angle accuracy (◦).

Yaw Angle
Change (◦) Proposed Error ORB-SLAM2 Error MSF-EKF Error VINS-Mono Error

Experiment I: 180 1.8, 1% 176.3, 97.9% 68.5, 38.1% 62.3, 34.6%
Experiment II: 90 0.37, 0.4% 22.17, 25% 3.98, 4.04% 5.95, 6.61%

The accuracy for the experiments was depicted in above tables. The true length of different
trajectories is, respectively, 108.8 m and 38 m, and the changes of reference yaw angle are 180◦ and 90◦.
As shown in Figures 11 and 15, the stereo-camera and MEMS-IMU experienced different motions with
smooth motion, fast rotational, and translational motion of indoor and outdoor. As both mean error
and root mean square error of ORB-SLAM2, MSF-EKF, and VINS-Mono were larger than the proposed
method in hostile environment. It is clearly seen that the estimated results from the proposed method
in Experiment I and II were more accurate and robust than those from ORB-SLAM2, MSF-EKF, and
VINS-Mono in Figures 13, 14, 17 and 18. Pose estimation of both VO and VIO without fault tolerance
were failed or divergent, which may cause fatal problems in robot navigation.

3.3.2. Inertial Aided Matching and Fault Tolerance Analysis

Figures 11 and 15 shows the pose estimation of two experiments from four different methods.
ORB-SLAM2, MSF-EKF, and VINS-Mono produced large error in both position and yaw angle
estimation under hostile environments. During experiments, systems including ORB-SLAM2 and
VINS-Mono were in poor performance due to few feature or similar feature in hostile environment.

Moreover, ORB-SLAM2 failed because the number of feature points at corner lower than threshold.
The failure of ORB-SLAM2 also caused divergence of MSF-EKF without VO output as measurement.
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With the number of feature points decreasing, the part of cost function occupied by each feature points
was increasing. In addition, the influence of mismatch was increased, resulting in the divergence of a
system. VINS-Mono failed by detecting much large translation between two frames in experiment
I. For experiment II, the feature points in starting position of tennis court were too similar and far to
produce enough disparity between two consequent frames. This situation caused the error in direction
of x axis with ORB-SLAM2 and false initialization with VINS-Mono which tracking feature points
through optical flow method.

The pre-integration of measurements of MEMS-IMU could constrain the region of matching to
reduce incorrect candidate points that achieve better match result, as shown in Figure 19. Besides, the
dramatic changes was detected shown in Figures 12 and 16, were isolated in the proposed framework
that able to navigate properly in hostile environment. In addition, the adaptive noise of measurements
shown in Figures 12 and 16 make the proposed framework obtained more accurate pose estimation
than traditional loosely-coupled VIO, such as MSF-EKF.
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4. Conclusions

In this work, a novel fault-tolerant framework with stereo-camera and MEMS-IMU was
proposed to obtain robust and precise positioning information in a hostile environment. MEMS-IMU
measurements predict the camera motion and adaptive observation covariance noise are taken in the
framework. It makes stereo VO motion estimation more precise when meeting hostile environment.
A fault-tolerant mechanism is also introduced to detect and isolate the dramatic change in order to
achieve more robust positioning information.

When comparing to traditionally loosely-coupled VIO systems that are not considered to detect
the wrong measurements, our proposed method introduced an adaptive noise according to motion
characteristics that obtain more precise positional information. For the tightly-coupled VIO systems,
which introduced inertial error to obtain more robust and accurate positioning results, the relation
between inertial error and visual error is not considered, which leads to the influence of inertial
error estimation after the error of visual matching, resulting in the instability of the whole system.
Our proposed framework isolated visual error, which was detected by comparing with more reliable
inertial error, made the whole system more reliable and stable. The framework also maintains a certain
degree of independence between framework and stereo VO system that can be easily integrated with
other stereo VO system. By evaluating the results of experiments, the proposed VIO system has
achieved a satisfactory performance in state estimation in a hostile environment.
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In our future work, we hope to apply the inertial information to graph-pose optimization in order
to realize the function of loop detection and optimization in hostile environment. We also hope to
employ the method in more challenging environments.

Author Contributions: C.Y. and P.S. proposed the original idea and wrote this paper; W.Z. and P.L. performed the
experiments, analyzed the data; J.L. and K.H. participated in design of the experimental demonstration, revised
the paper and gave some valuable suggestions.

Funding: This research was funded by [Jiangsu provincial SixTalent Peaks] grant number [2015-XXRJ-005],
[Jiangsu Province Qing Lan Project], [National Natural Science Foundation of China] grant number [61703207],
[Jiangsu Provincial Natural Science Foundation of China] grant number [BK20170801], and [Aeronautical Science
Foundation of China] grant number [2017ZC52017].

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Liu, Z.; El-Sheimy, N.; Yu, C.; Qin, Y.; Liu, Z.; El-Sheimy, N.; Yu, C.; Qin, Y. Motion Constraints and Vanishing
Point Aided Land Vehicle Navigation. Micromachines 2018, 9, 249. [CrossRef] [PubMed]

2. Weiss, S.; Achtelik, M.W.; Lynen, S.; Chli, M.; Siegwart, R. Real-time onboard visual-inertial state estimation
and self-calibration of MAVs in unknown environments. In Proceedings of the IEEE International Conference
on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 957–964.

3. Nister, D.; Naroditsky, O.; Bergen, J. Visual odometry. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 27 June–2 July 2004; Volume 1,
pp. I-652–I-659.

4. Usenko, V.; Engel, J.; Stückler, J.; Cremers, D. Direct visual-inertial odometry with stereo cameras. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016;
pp. 1885–1892.

5. Vidal, A.R.; Rebecq, H.; Horstschaefer, T.; Scaramuzza, D. Ultimate SLAM? Combining Events, Images, and
IMU for Robust Visual SLAM in HDR and High-Speed Scenarios. IEEE Robot. Autom. Lett. 2018, 3, 994–1001.
[CrossRef]

6. Corrêa, D.; Santos, D.; Contini, L.; Balbinot, A. MEMS Accelerometers Sensors: An Application in Virtual
Reality. Sens. Transducers Tor. 2010, 120, 13–26.

7. Wang, J.; Zeng, Q.; Liu, J.; Meng, Q.; Chen, R.; Zeng, S.; Huang, H. Realization of Pedestrian Seamless
Positioning Based on the Multi-Sensor of the Smartphone. Navig. Position. Timing 2018, 1, 28–34. [CrossRef]

8. Tian, Y.; Chen, Z.; Lu, S.; Tan, J. Adaptive Absolute Ego-Motion Estimation Using Wearable Visual-Inertial
Sensors for Indoor Positioning. Micromachines 2018, 9, 113. [CrossRef] [PubMed]

9. Mur-Artal, R.; Tardos, J.D. Visual-Inertial Monocular SLAM with Map Reuse. IEEE Robot. Autom. Lett. 2017,
2, 796–803. [CrossRef]

10. He, Y.; Zhao, J.; Guo, Y.; He, W.; Yuan, K.; He, Y.; Zhao, J.; Guo, Y.; He, W.; Yuan, K. PL-VIO: Tightly-Coupled
Monocular Visual–Inertial Odometry Using Point and Line Features. Sensors 2018, 18, 1159. [CrossRef]
[PubMed]

11. Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust Stereo
Visual Inertial Odometry for Fast Autonomous Flight. IEEE Robot. Autom. Lett. 2018, 3, 965–972. [CrossRef]

12. Tardif, J.P.; George, M.; Laverne, M.; Kelly, A.; Stentz, A. A new approach to vision-aided inertial navigation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan,
18–22 October 2010; pp. 4161–4168.

13. Liu, Y.; Xiong, R.; Wang, Y.; Huang, H.; Xie, X.; Liu, X.; Zhang, G. Stereo Visual-Inertial Odometry With
Multiple Kalman Filters Ensemble. IEEE Trans. Ind. Electron. 2016, 63, 6205–6216. [CrossRef]
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