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Abstract: This paper describes the innovative design of a three-dimensional (3D) motion device based
on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement.
For example, the rapid contact and separation of the tool and the workpiece are realized by the
operation of the 3D motion device in the machining process. This paper mainly concerns the device
performance. A theoretical model for the static performance of the device was established using
the matrix-based compliance modeling (MCM) method, and the static characteristics of the device
were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the
finite element analysis method for device dynamics are used for prediction to obtain the natural
frequency of the device. Under no-load conditions, the dynamic response performance and linear
motion performance of the three directions were tested and analyzed with different input signals,
and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried
out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which
verifies that the vibration device can generate an ideal 3D vibration trajectory.

Keywords: flexible mechanism; three degrees of freedom; matrix-based compliance modeling;
piezoelectric actuator

1. Introduction

The flexible hinge motion platform has significant advantages such as high transmission efficiency,
non-backlash, high resolution and high motion accuracy. It has important applications in electron
microscopy, measurement and calibration, ultra-precision positioning platforms, micro force detection,
micromanipulators, robots and other fields [1,2]. Therefore, a large number of micro–nano motion
platforms based on flexible mechanisms have been designed in recent years [3–6]. Researchers
are trying to use different strategies to design more practical vibration devices in certain fields.
For example, ways to increase the size of the flexible hinge to increase the bandwidth of the
device are used in designing nanopositioning modules for high-throughput nanomanufacturing
applications [7]. The decoupled positioning platform with compound parallelogram flexures and a
compound bridge-type displacement amplifier is more suitable for the field of microscopic operation [8].
The design of the 3-legged prismatic-prismatic-spherical (3PPS) parallel-kinematic configuration makes
the working space of the high-payload flexible parallel robot reach a few millimeters and degrees, which
has shown application value in the field of ultraviolet nanometer lithography [9]. The lever-based
amplification is used to enhance the displacement of the mechanism of the parallel three degrees of
freedom (3-DOF) positioning platform. The large displacement and high repeat positioning accuracy
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mechanism is more suitable for the micro–nano operation field [10]. Through the analysis of the
influence of the quality and quantity of hinges on the performance of fast tool servo systems, it has
been found that the single-hinge fast tool servo structure is more suitable for precision machining
of the roll mold [11]. These areas require flexible devices with a wide range, high precision, high
resolution, high reliability, and multiple degrees of freedom [12,13].

The application of a flexible mechanism in ultra-precision positioning platforms, electron
microscopes and other precision instruments, requires that the motion device has a wide operational
range [14,15]. There are several types of displacement amplification mechanisms: the lever type,
the bridge type and the Scott-Russell mechanism. These basic amplifying mechanisms achieve
superior performance through different combinations in practical applications. The self-guided
displacement amplifying mechanism is obtained by combining a double composite guide rail and a
bridge amplifying mechanism and can improve the output precision and range of the mechanism [1].
The double-rod amplifying structure based on the lever principle exhibits superior effects over
the single-rod mechanism and improves the working range and natural frequency of the overall
mechanism [16]. A mechanism consisting of multiple amplifiers has become a common approach. Lin
and Zhang, respectively, designed a sub-millimeter working range of motion mechanisms. One motion
mechanism is composed of multiple bridge amplifier structures [17], and the other motion mechanism
is composed of a bridge amplifier and a lever compound amplifier [18]. The combination of two
Scott–Russell and a half-bridge mechanism for double-stage displacement amplification provides a
larger magnification ratio. The amplification ratios for the x and y directional motions can reach 5.2
and 5.4, respectively [19].

In addition, the flexible hinge mechanism requires the motion device to have high operational
accuracy in applications such as micro gripper, micro-electro-mechanical system MEMS assembly, cell
injection and other precision instruments. In general, most of high-precision positioning stages consist
of two parts; actuators and guiding mechanisms. There are also some devices that use position feedback
sensors to improve accuracy [20]. These devices can achieve an accuracy of approximately 30 nm using
intuitive environmental force feedback during low-speed interactions [21]. The closed-loop positioning
accuracy of the device can reach 600 nm, using a new type of repetitive compensation proportional
integral differential (PID) controller combined with the inverted Prandtl–Ishlinskii model [22].

In order to increase processing efficiency, mechanisms are often required to have a higher natural
frequency, based on the application of the flexible hinge mechanism, in the field of diamond turning
and polishing. The 2-DOF motion device reduces mass through a compact design and its natural
frequency reaches approximately 2900 Hz [23]. High-frequency motion devices also exhibit excellent
performance in vibration-assisted turning [24]. Qu et al. designed a 2-DOF motion device. In order
to have remote-center-of-motion (RCM) characteristics, the mass of the device is increased, and the
natural frequency of the device is also reduced to 280.3 Hz [25]. The three-dimensional vibrating
device for elliptical vibratory turning has a large motion range but its natural frequency is low [26].
When the motion device is designed, the input stiffness is usually determined due to the limitation
of piezoelectric performance. Therefore, a simple structure and a small number of moving members
are common choices for raising the natural frequency of the mechanism. This means that other
performance may be degraded. For example, the addition of amplifiers and decoupling components
increases the quality of the structure and causes the natural frequency to drop. In addition, as the
input frequency increases, the output displacement of the general mechanism will also decay. These
issues require a lot of research.

For some other indicators, such as decoupling, compact structure, high-stability and
multiple-degrees-of-freedom, some scholars have undertaken deep research. Zhou et al. established
a 2-DOF flexible mechanism, using the parallel kinematic constraint map method, to achieve totally
geometric decoupling and actuator isolation [27]. Guo et al. realized the coupling compensation of
the motion platform through the decoupling feedforward/feedback controller [28] and applied it to
micro/nano positioning control [29]. Cai et al. improved the stability and plane motion capability of
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the mechanism through the design of the “T-shaped” flexible hinge mechanism [30]. Lee et al. used
closed-loop feedback to deal with the decoupling problem, so that the operating bandwidth of the
device reached 100 Hz [3]. Li et al. invented a compact series piezoelectric drive platform through
a “Z-shaped” flexible hinge design [31]. In addition, Cai et al. designed a six-degree-of-freedom
precision positioning of the motion platform [32]. Chen et al. designed a large-range compliant remote
center of motion RCM stage with input/output decoupling [33].

In general, for motion platforms based on the flexible mechanism, a lot of research and exploration
has been done on the range of motion, motion accuracy and natural frequency. Meanwhile, various
motion platforms have been developed to suit different applications, but there are still some problems
that remain unsolved. For example, because of the limitation of the spatial structure, the output
stiffness problem of the output terminal has been given less consideration. In this case, some devices
may become inefficient when a motion platform is used for precision machining. The output reliability,
stability and operational accuracy of these devices are relatively decreased due to the complex cutting
force. In addition, most of the existing devices only achieve open-loop control; however, the actual
displacement detection and control at the output terminal are more difficult to accomplish. In this
paper, a new type of 3-DOF motion device that can realize closed loop control with large output
stiffness, and a self-guided characteristic of the output is designed. The main contents are as follows:
first, the static and dynamic analysis of the device is carried out based on the analysis of the mechanism
and characteristics of the device; second, the dynamic performance, axial linear motion performance
and motion trajectory detection of the device are tested.

2. Overall Design of the System

2.1. Summary

A 3-DOF motion device with x y and z three direction translations was designed in this study.
As shown in Figure 1a, the 3-DOF motion device has the characteristics of a simple control, large
output stiffness, and self-guided output. Meanwhile it also can realize closed loop control. The device
is mainly a series connected by the two-dimensional (2D) motion platform including x and y directions,
and the independent movement structure with z direction. The 2D motion platform is shown as
Figure 1b, and the independent movement structure is shown as Figure 1c.
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As shown in Figure 2, the 2D motion platform consists of a drive element, a force-removing
element (consisting of four force parts), and x and y output decoupling guide elements. The driving
element principle of the motion platform is shown in Figure 3. The principle of a double parallelogram
is applied to ensure that the driving block moves steadily along the y axis under the action of the
piezoelectric driving force, which can reduce the deflection error of the driving block caused by the
piezoelectric installation error.
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Figure 3. Principle of the driving element.

The force decomposition element of the three-dimensional (3D) motion device can separate
the force of driving element into x and y directions so as to realize the x and y movement of the
output platform by the different feeding strategies of the two driving blocks, block A and block B.
The x-direction motion principle of a 2D motion platform is shown in Figure 4. When the No. 1 and
No. 2 piezoelectric elements are extended or shortened at the same time at the same speed, the 2D
motion platform produces displacement in the x direction. For example, block A and block B are
respectively moved by distances y1 and y2. When y1 = y2, the output block of the 2D motion platform
generates a displacement in the x direction. In fact, the equivalent rod of the force-dividing block is
always inclined within the operating range of the device. When the piezoelectric element is extended,
the 2D motion output terminal is always subjected to the component force along the x-positive direction,
and it can only move upward along the x-direction. Owing to material rebound, when the piezoelectric
element is shortened, the 2D output terminal moves down along the x-negative direction.
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2.2. x and y Output Decoupling Guide Element

As shown in Figure 6, since the 2D motion platform is often subjected to the movements Mx and
My during vibration cutting or polishing, this requires a large torsional stiffness at the output terminal
of the 2D motion platform. In order to further enhance the device’s operational stability, reliability,
output accuracy, and so that the actual displacement in the x and y directions can be detected at any
time, a fully decoupled guidance structure for the 2D motion platform output terminal was designed.Micromachines 2018, 9, x FOR PEER REVIEW  6 of 34 
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The principle of the x-guidance element principle is shown in Figure 7. On the one hand, it can
reduce the influence of force or moment on the output terminal and improve the output precision and
output stiffness of the 2D motion platform, so as to improve the reliability of the device. On the other
hand, detecting the displacement value of the x-guidance structure can reflect the actual displacement
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of the x direction of the 2D motion platform output terminal in real time or the strain gauge can be
mounted on the beam flexible hinge to calculate its actual displacement in the x direction. Because the
beam flexure hinge will reduce the rigidity of the mechanism, a circular flexure hinge is adopted in
this paper.
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The principle of the y-guidance structure is shown in Figure 8. Similar to the x-guidance
structure function, it not only improves the y-direction output accuracy, but also improves output
force conditions. In addition, it can realize the displacement detection of the 2D motion platform
output terminal in the y direction. The detection method is similar to that of the x-direction. In order to
improve the force performance of the output terminal as much as possible, this design adopts a straight
round hinge. However, it should be explained that the power element mechanics midpoint of the
device is not exactly the same as the mechanical midpoint of the x, y output decoupling guide element
mechanics midpoint. This may result in slight deflection of the output block of the 2D mobile platform.Micromachines 2018, 9, x FOR PEER REVIEW  7 of 34 
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In this paper, the power part of the 3D motion device adopts the principle of serial-to-hybrid
mixing, which has the advantages of both series and parallel structures. The parallel structure avoids
the coupling of the piezoelectric actuator holder and the moving part, which further enhances the
natural frequency of the device. In addition, the 2D motion platform adopts a parallel structure.
The No. 1 and No. 2 piezoelectric actuators are arranged in a straight line, which is advantageous
for the structure and the force symmetry. The decoupling guide structure adopts the principle of a
parallelogram to ensure the parallel movement of the output terminal, which not only improves the
output stiffness, but also improves the running accuracy of the device. The decoupling element
characteristic decomposes the displacement of the output terminal into the x and y directions.
The automatic displacement decomposition inside the device provides an aid for the detection and
control of the output displacement of the device.
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3. Analysis of Mechanism Characteristics

3.1. Static Analysis

3.1.1. Calculation of Output Flexibility Using the MCM Method

(1) Output Flexibility in the x and y Directions

The matrix-based compliance modeling (MCM) method is given in the Supplementary
Materials [34]. The driving element and force-dividing element of the 2D platform provide impetus
for the output platform, and the x and y output decoupling guide element improves the rigidity of
the output platform. On the premise that the output center point of the power part is consistent with
the mechanics center of the x and y output decoupling guide element, in order to calculate the whole
output terminal flexibility, 2D motion platform is divided into two parts: the power part and the
decoupling detection part. The power part of x and y is shown in Figure 9. In Figure 9, the red marked
area has little influence on its static performance. Therefore, this part is considered to be rigid.Micromachines 2018, 9, x FOR PEER REVIEW  8 of 34 
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Figure 9. x and y power part.

Some symbols are defined for convenient description.
The CR

m is the flexibility matrix, which corresponds to the flexibility of the circular flexure hinge
with the output terminal point m. It can be obtained according to Supplementary Materials Equation
(S5). In this paper, the possible values of m include: A, C, A1, C1, A′1, C′1, A2, C2, A3, C3, A4, C4.

The CL
n is the flexibility matrix, which corresponds to the flexibility of the straight beam flexure

hinge with the output terminal point n. It can be obtained according to Supplementary Materials
Equation (S6). In this paper, the possible values of n include: B, D, B1, B2, D1, B′1, B3, B4.

The TV
N is a position matrix generated by moving the coordinate system with N as the coordinate

origin to the coordinate system with V as the origin. It can be obtained according to Supplementary
Materials Equations (S7)–(S9). In this paper, the possible values of V include: OK1, OK2, O1, O3, O4.
The possible values of N include: A, B, C, D, A1, B1, C1, D1, A′1, B′1, C′1, A2, B2, C2, A3, B3, C3, A4,
B4, C4, A′4, B′4, C′4, OK1, OK2.

For example, in Figure 10, the flexibility matrix CR
A1

of the straight circular hinge at point A1 can

be obtained by the Supplementary Materials Equation (S5). The position matrix TOK1
A1

from point A1 to
point OK1 can be obtained by the Supplementary Materials Equations (S7)–(S9). The flexibility of the

straight circular hinge at the point OK1 can be obtained by TOK1
A1
∗ CR

A1
∗ (TOK1

A1
)

T
.

In addition, if two hinges are connected in series, it can be expressed as Cm = Cm1 + Cm2. If two

hinges are connected in parallel, it can be expressed as Cm = (C−1
m1 + C−1

m2 )
−1

, where the flexibility of
the two hinges is Cm1 and Cm2 respectively, Cm is the total flexibility of the two flexible hinges.

A static analysis of the power portions of x and y is shown in Figure 10. The half-output flexibility
of the power part can be simplified as a parallel connection of two flexible rods with stiffness K1 and
then in series with the rod with stiffness 2 * K2. The K1 model can be expressed as rod A1B1C1 and
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rod A′1B′1C′1 in parallel and then in series with the rod D1. Where the stiffness of rod A1B1C1 can be
expressed as CA1 , CB1 and CC1 in series; the stiffness of rod A′1B′1C′1 can be expressed as CA′1

, CB′1
and

CC′1
in series. The K2 model can be expressed as CA1 , CB1 and CC1 in series. Therefore, the flexibility

matrix of K1 and K2 can be expressed as:
CK1 = ((TOK1

A1
∗ CR

A1
∗ (TOK1

A1
)

T
+ TOK1

B1
∗ CL

B1
∗ (TOK1

B1
)

T
+ TOK1

C1
∗ CR

C1
∗ (TO1

C1
)

T
)
−1

+(TOK1
A′1
∗ CR

A′1
∗ (TOK1

A′1
)

T
+ TOK1

B′1
∗ CL

B′1
∗ (TOK1

B′1
)

T
+ TOK1

C′1
∗ CR

C′1
∗ (TO1

C′1
)

T
)
−1

)−1 + TOK1
D1
∗ CL

D1
∗ (TO1

D1
)

T

CK2 = TZ2 ∗ (T
OK2
A2
∗ CR

A2
∗ (TOK2

A2
)

T
+ T

OK2
B2
∗ CL

B2
∗ (TOK2

B2
)

T
+ T

OK2
C2
∗ CR

C2
∗ (TOK2

C2
)

T
) ∗ TZ2

(1)

where TZ2 is the coordinate transformation matrix of 90◦ around z-axis.
The half-output flexibility of the power part of a 2D motion platform CDH can be expressed as:

CDH = TOK2
OK1
∗ (((CK1)

−1 + (TY ∗ CK1 ∗ (TY)
T)
−1

) ∗ (TOK2
OK1

)
T
+ 2 ∗ CK2 (2)

where TY is the coordinate transformation matrix of 180◦ around y-axis. The overall flexibility of the
power part of a 2D motion platform is symmetric about the x-axis. Therefore, CD can be expressed as:

CD = ((CDH)
−1 + (TX ∗ CDH ∗ (TX)

T)
−1

)
−1

(3)

where TX is the coordinate transformation matrix of 180◦ around the x-axis.
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In order to simplify the calculation, when the x-direction statics analysis is performed, it can
be considered that the y-direction hinge is a rigid body. When the deformation of the y-direction
hinge is not considered in the x-direction, the x-direction flexibility of the x and y output decoupling
guide element can be considered as two hinges connected in series as shown in Figure 11. Where the
flexibility of one of the hinges can be expressed as:

CX = ((C1X)
−1 + (TX ∗ C1X ∗ (TX)

T)
−1

)

C1X = ((TO4
A4
∗ CR

A4
∗ (TO4

A4
)

T
+ TO4

B4
∗ CL

B4
∗ (TO4

B4
)

T
+ TO4

C4
∗ CR

C4
∗ (TO4

C4
)

T
)
−1

+(TO4
A′4
∗ CR

A′4
∗ (TO4

A′4
)

T
+ TO4

B′4
∗ CL

B′4
∗ (TO4

B′4
)

T
+ TO4

C′4
∗ CR

C′4
∗ (TO4

C′4
)

T
)
−1

)−1

(4)

where TX is the coordinate transformation matrix of 180◦ around x-axis.
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Figure 11. Analysis of x-direction hinge.

Similarly, when the y-direction statics analysis is performed, it can be considered that the
x-direction hinge is a rigid body. When the deformation of the x-direction hinge is not considered in the
y-direction, the y-direction flexibility of x and y output decoupling guide element can be considered
as four hinges connected in series, as shown in Figure 12. The flexibility of one of the hinges can be
expressed as:

CY = ((TO3
A3
∗ CR

A3
∗ (TO3

A3
)

T
+ TO3

B3
∗ CR

B3
∗ (TO3

B3
)

T
+ TO3

C3
∗ CR

C3
∗ (TO3

C3
)

T
)
−1

+TY ∗ (TO3
A3
∗ CR

A3
∗ (TO3

A3
)

T
+ TO3

B3
∗ CR

B3
∗ (TO3

B3
)

T
+ TO3

C3
∗ CR

C3
∗ (TO3

C3
)

T
)
−1
∗ TY)

−1
(5)

where TY is the coordinate transformation matrix of 180◦ around the y-axis.Micromachines 2018, 9, x FOR PEER REVIEW  10 of 34 
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In summary, the output flexibility of the flexible hinge device in x and y directions can be expressed as: CWX =
(
(CD)

−1 + (2 ∗ CX)
−1
)−1

CWY = ((CD)
−1 + (4 ∗ CY)

−1)
−1

(6)

(2) Output flexibility in the z direction

In order to simplify the calculation, when the z-direction statics analysis is performed, it can be
considered that the x and y directions hinge is a rigid body. When the z-direction statics analysis is
performed, the influence of 2D motion platforms flexibility in the z direction is not considered, so only
the flexibility of the z-direction hinge is considered. Since the z-axis hinge is symmetric, only half of
the structure needs to be studied. The z-direction hinge can be considered as a series connection of
two circular flexure hinges and two beam flexure hinges. A static analysis of a half z-direction hinge is
shown in Figure 13. The output flexibility of the z-direction hinge can be expressed as: CZ = ((CO1)

−1 + (TZ ∗ CO1 ∗ (TZ)
T)
−1

)
−1

Co1 = TO1
A ∗ CR

A ∗ (T
O1
A )

T
+ TO1

B ∗ CL
B ∗ (T

O1
B )

T
+ TO1

C ∗ CR
C ∗ (T

O1
C )

T
+ TO1

D ∗ CL
D ∗ (T

O1
D )

T (7)

where Tz is the coordinate transformation matrix of 180◦ around z-axis.
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When the flexibility of the z-direction hinge mechanism is calculated, the influence of 2D motion
platform on the z-direction flexibility can be ignored. Therefore, the flexibility of the z-direction hinge
device can be expressed as:

Cwz = Cz (8)

3.1.2. Finite Element Analysis (FEA)

The structure parameters: t = 0.7 mm, r = 2 mm, h = 5 mm, b = 10 mm, w = 10 mm. As shown in
Figure 14, full constraints are applied to all faces in the model that are attached to the fixture. Solid
model 10 node 187 elements are used in the finite element model. The material is an aluminum alloy
with elasticity, linearity and isotropy. The elastic modulus is 70 MPa. Poisson’s ratio is 0.3. A force
of 100 N is applied in three directions, x y and z, respectively. The displacement nephograms for all
directions are shown in Figure 14. The output compliance of the MCM method analysis results and
FEA results are given in Table 1.
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Table 1. The comparison of output compliance.

Methods FX (N) δX (µm) Error (%) FY (N) δY (µm) Error (%) FZ (N) δZ (µm) Error (%)

FEA 100 84.87
3.612

100 133.17
1.156

100 151.86
8.126MCM 100 87.94 100 131.63 100 139.52

3.2. Dynamic Analysis

3.2.1. Theoretical Model

The FEA was performed prior to theoretical analysis, but is given later in this paper. According to
the FEA, since the first and second natural frequencies of the 3-DOF motion device occur in the plane
xoy, it is only necessary to analyze the natural frequency of device when the 2D motion platform has
input signal. Using the energy method to establish the dynamic model of the flexible hinge mechanism,
the natural frequency can be obtained according to the stiffness matrix K and quality matrix M. As
shown in Figure 15, the 3D motion device can be divided into six units of AD~GD. Where xD and yD
are the generalized displacements of the two drive motions respectively. Thus, the energy is generated
in each unit of the three-dimensional motion device. The energy of each unit was calculated to obtain
the total energy.
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As shown in Figure 16, unit AD can be divided into five parts of AD1~AD5. The kinetic energy of
the unit AD1 can be expressed as:

TAD1 =
1
2

mAD1

.
xD

2 (9)

where
.

xD is the speed of the part AD1, mAD1 is the mass of the part AD1.
mAD1 can be expressed as:

mAD1 = (LAD1 − 2R)wAD1 bρ + 3
[
2wAD1 R− πR2

]
bρ (10)

where ρ is the material density, b is the thickness of the 2D motion mechanism.
The kinetic energy of the unit AD2 can be expressed as:

TAD2 =
1
2

IAD2(

.
xD

LAD2

)
2

(11)

where IAD2 is the rotational inertia of the part AD2.
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IAD2 can be expressed as:

IAD2 = mAD2 [
1
3
(LAD2 − 2R)2 + (LAD2 − 2R) ]R + R2

]
(12)

where mAD2 is the mass of the part AD2.
mAD2 can be expressed as:

mAD2 = (LAD2 wAD2 − πR2)bρ (13)
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As shown in Figure 17, the BD11 point along x-axis and y-axis motion displacement of the local
coordinate system can be expressed as: {

x′ = x + y
2

y′ = x − y
2

(14)

Since the motion of the unit BD is extremely complicated, this paper only considers the
translational motion. Therefore, the kinetic energy of the unit BD1 can be expressed as:

TBD1 =
1
2

mBD1

[
λ1

( .
xD +

.
yD

2

)2

+

( .
xD −

.
yD

2

)2]
(15)

where mBD1 is the mass of the part BD1, λ1 is the rotation compensation coefficient.
mBD1 can be expressed as:

mBD1 = LBD1 wBD1 bρ +
[
2(2R + t)R− πR2

]
bρ

Micromachines 2018, 9, x FOR PEER REVIEW  14 of 34 

 

𝑚஺ವమ can be expressed as: 𝑚஺ವమ = (𝐿஺ವమ𝑤஺ವమ − 𝜋𝑅ଶ)𝑏𝜌 (13) 

 
Figure 16. Unit 𝐴஽ structure. 

As shown in Figure 17, the B஽ଵଵ point along x-axis and y-axis motion displacement of the local 
coordinate system can be expressed as: 

൞𝑥ᇱ = 𝑥 + 𝑦2𝑦ᇱ = 𝑥 − 𝑦2  (14) 

Since the motion of the unit 𝐵஽  is extremely complicated, this paper only considers the 
translational motion. Therefore, the kinetic energy of the unit 𝐵஽ଵ can be expressed as: 𝑇஻ವభ = 12 𝑚஻ವభ ቈ𝜆ଵ ൬𝑥஽ሶ + 𝑦஽ሶ2 ൰ଶ + ൬𝑥஽ሶ − 𝑦஽ሶ2 ൰ଶ቉ (15) 

where 𝑚஻ವభ is the mass of the part 𝐵஽ଵ, 𝜆ଵ is the rotation compensation coefficient. 𝑚஻ವభ can be expressed as: 𝑚஻ವభ = 𝐿஻ವభ𝑤஻ವభ𝑏𝜌 + [2(2𝑅 + 𝑡)𝑅 − 𝜋𝑅ଶ]𝑏𝜌  

 
Figure 17. Unit 𝐵஽ structure. 

As shown in Figure 15, the kinetic energy of the unit 𝐶஽ can be expressed as: 𝑇஼ವభ = 12 𝑚஼ವభ ቈ൬𝑥஽ሶ + 𝑦஽ሶ2 ൰ଶ + ൬𝑥஽ሶ − 𝑦஽ሶ2 ൰ଶ቉ (16) 

where 𝑚஼ವభ is the mass of the unit 𝐶஽ଵ. 
As shown in Figure 18, since the motion of the unit 𝐷஽ is also extremely complicated, this 

paper only considers the translational motion. Therefore, the kinetic energy of the unit 𝐷஽ଵ  can be 
expressed as: 

Figure 17. Unit BD structure.

As shown in Figure 15, the kinetic energy of the unit CD can be expressed as:

TCD1 =
1
2

mCD1

[( .
xD +

.
yD

2

)2

+

( .
xD −

.
yD

2

)2]
(16)
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where mCD1 is the mass of the unit CD1.
As shown in Figure 18, since the motion of the unit DD is also extremely complicated, this

paper only considers the translational motion. Therefore, the kinetic energy of the unit DD1 can be
expressed as:

TDD1 =
1
2

mDD1

[
λ2

( .
xD +

.
yD

2

)2

+

( .
xD −

.
yD

2

)2]
(17)

where mDD1 is the mass of the part DD1, λ2 is the rotation compensation coefficient.
mDD1 can be expressed as:

mDD1 = LDD1 wDD1 bρ +
[
2(2R + t)R− πR2

]
bρ (18)
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As shown in Figure 19, ED can be divided into five parts of ED1~ED5.
The kinetic energy of the unit ED1 can be expressed as:

TED1 =
1
2

mED1

.
yD

2 (19)

where
.

yD is the speed of the unit ED1, mED1 is the mass of the unit ED1.
mED1 can be expressed as:

mED1 = (LED1 − 2R)wED1 bρ + 3
[
2wED2 R− πR2

]
bρ (20)

The kinetic energy of the part ED2 can be expressed as:

TED2 =
1
2

IED2

( .
y

LED2

)2

(21)

where IED2 is the rotational inertia of the unit ED2.
IED2 can be expressed as:

IED2 = mED2 [
1
3
(LED2 − 2R)2 + (LED2 − 2R)]R + R2] (22)

where mED2 is the mass of the part ED2.
mED2 can be expressed as:

mED2 = (LED2 wED2 − πR2)bρ (23)
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As shown in Figure 20, FD can be divided into eight parts of FD1~FD8. The kinetic energy of the
part FD1 can be expressed as:

TFD1 =
1
2

mFD1

( .
xD −

.
yD

2

)2

+
1
2

IFD1

( .
xD +

.
yD

2LFD1

)2

(24)

where mFD1 is the mass of the part FD1, IFD1 is the rotational inertia of the unit FD1.
mFD1 can be expressed as:

mFD1 = (LFD1 wFD1 − πR2)bρ
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As shown in Figure 21, GD can be divided into ten parts of GD1~GD10. The kinetic energy of the
part GD1 can be expressed as:

TGD1 =
1
2

mGD1

( .
xD −

.
yD

2

)2

(25)

where mGD1 is the mass of the part GD1.
mGD1 can be expressed as:

mGD1 = LGD1 wGD1 bρ + LGD2 wGD1 bρ + 3
(

2wGD1 R− πR2
)

bρ (26)

The kinetic energy of the part GD2 can be expressed as:

TGD2 =
1
2

IGD2

( .
xD −

.
yD

2LGD3

)2

(27)

where IGD2 is the rotational inertia of the unit GD2.
IGD2 can be expressed as:

IGD2 = mGD2 [
1
3
(LGD3 − 2R

)2
+ (LGD3 − 2R)]R + R2] (28)
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mGD2 can be expressed as:
mGD2 = (LGD3 wGD2 − πR2)bρ (29)
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According to Equations (9)–(29), the total kinetic energy of the device can be expressed as

T = TAD1 + 4TAD2 + 2TBD1 + TCD1 + 2TDD1 + TED1 + 4TED2 + 8TFD1 + 2TGD1 + 8TGD2 (30)

Equation (30) can be described as:

T = 0.5M1
.

xD
2
+ 0.5M2

.
yD

2 (31)

According to Equation (31), the quality matrix is

M =

[
M1 0
0 M2

]
(32)

where M1 is the equivalent quality matrix of x, M2 is the equivalent quality matrix of y.
The stiffness matrices can be obtained according to the results of static investigation, and can be

expressed as:

K =

[
K3 0
0 K4

]
(33)

where K3 is the stiffness of the No. 1 piezoelectric input terminal, K4 is the stiffness of the No. 2
piezoelectric input terminal.

Then the first natural frequency and the second natural frequency can be calculated.

f =
1

2π

√
K
M

(34)

Using the energy method, the first natural frequency is 439.59 Hz and the second natural frequency
is 690.29 Hz.

3.2.2. Finite Element Analysis (FEA)

In order to verify the natural frequency calculated by the energy method, the FEA method was
used for modal analysis. The full constraint was applied to the four boundaries in the model. Solid
model 10 node 187 elements were used in finite element model. The material is aluminum alloy with
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elasticity, linearity and isotropy. The elastic modulus is 70 MPa. Poisson’s ratio is 0.3. The material
density is 2.78 g/cm3. Figure 22 gives the vibrational mode shapes from mode 1 to mode 4. The natural
frequencies of the first to fourth are 474.82 Hz, 656.98 Hz, 755.78 Hz and 800.61 Hz, respectively. For the
first and second natural frequencies, the relative deviations of FEA and energy method are 7.4196%
and 4.8255% respectively. This shows that the results of the FEA method are more or less consistent
with the results of the energy method.Micromachines 2018, 9, x FOR PEER REVIEW  18 of 34 
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4. Device Performance Test

4.1. Natural Frequency

In this paper, a non-resonant 3-DOF motion device is designed. In order to maintain the stability
of the device and avoid damage, its operating frequency should effectively avoid the device’s natural
frequency. In this paper, the natural frequency of the device was detected by the sweeping frequency
method. The test system is shown in Figure 23. FEA shows that the direction of vibration of the first
natural frequency is the y direction. A sine sweep signal (voltage range: 0.5–2 V, frequency range:
0–1000 Hz) is generated by a signal generator (Brand: Siglent Model: Sdg805, Shanghai, China.) and
applied to a No. 1 piezoelectric actuator (Brand: Physik Instrumente (PI) GmbH Model: P-820.20,
Karlsruhe, Germany.) of a 3D motion device via a power amplifier (Brand: Physik Instrumente (PI)
GmbH Model: E-663.00, Karlsruhe, Germany.). The capacitive sensor (Brand: Physik Instrumente
(PI) GmbH Model: D-100.00, Karlsruhe, Germany.) is used to measure the output response in each
direction, and the capacitance detection module (Brand: Physik Instrumente (PI) GmbH Model: PI
E509, Karlsruhe, Germany.) and the communication module (Brand: Physik Instrumente (PI) GmbH
Model: PI E516, Karlsruhe, Germany.) are used to achieve the output signal acquisition in each
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direction. The y-direction output response curve obtained by Fourier transform is shown in Figure 24.
For the resonance frequency curve, the highest point of the curve is the first natural frequency of the
motion device. Observing the response curve, the first natural frequency of the experiment is 414 Hz.
The natural frequencies of the energy method and the FEA are 439.59 Hz and 474.82 Hz, respectively.
The experimental natural frequency is slightly lower than the theoretical analysis. The main reason is
that the assembly of the device is non-rigid and the capacitive sensor is mounted at the output, which
improves the motion quality of the device.
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Figure 23. Natural frequency detection system. (1) signal generator; (2) power amplifier; (3)
three-dimensional (3D) motion device; (4) capacitance sensor; (5) capacitance detection channel.
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Figure 24. Amplitude-frequency curve of a 3-DOF motion device.

4.2. Dynamic Performance

In general, if the mechanism can adapt to the stair step signal, the mechanism can meet the
dynamic performance requirements of other signals. In order to simplify the experimental test, a
square wave signal is used instead of a stair step signal. Sinusoidal signal is the most basic input
signal of 3-DOF motion device and is widely used in engineering. However, the mechanism has a
return trip effect. In order to better detect the output response of the device, triangle wave and sine
wave are selected as test signals in this paper. The flexible mechanism performance test is shown
in Figures 25 and 26. In Figure 25, 1 , 2 , 3 are power amplifiers connected to the No. 1, No. 2
and No. 3 piezoelectric actuators, respectively; 4 , 5 , 6 are No. 1, No. 2 and No. 3 piezoelectric
actuators, respectively. The capacitive sensor installed in the x, y and z directions is shown in Figure 26.
In the experiment, the capacitance sensor moving plate is installed at the output terminal of the
three-dimensional motion device, and the fixed plate is installed on the fixed frame. When the signal
generator output signal is unchanged, the x, y, and z directions are tested to obtain a distance curve in
each direction. (The distance data measured by the experimental system begin with the same phase
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of the input signal.) The performance curves of the output terminal of the device are obtained by
comprehensive analysis.
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(1) x-direction

The square wave signals with the same frequency and phase were applied to the No. 1 and No. 2
piezoelectric actuators. Theoretically, square wave signals of the same period should be produced in
the x direction. The response curve of the output terminal in the x direction is shown in Figure 27a.
Observing the test curve for a half cycle, the response displacement is exponentially decayed. After
0.025 s, the output signal tends to be flat because the return response of the piezoelectric system and
mechanism is lagging. The triangular wave and sine wave signals of the same phase and the same
frequency were applied to the No. 1 piezoelectric actuator and No. 2 piezoelectric actuator, respectively.
The output curves of the system are shown in Figure 27b,c. The sinusoidal response of the system is
better, while the square wave and triangle wave response is poor.

(2) y-direction

The square wave, triangle wave, and sinusoidal signals with the same frequency and a phase
difference of 180◦ were applied to the No. 1 piezoelectric actuator and No. 2 piezoelectric actuator.
The response curve of the output terminal in the y direction is shown in Figure 28. The output response
curve in the y direction was observed and it was found that: (1) When the rectangular square wave
signal is used as the input signal, at 0.025 s, the output terminal responds to 90% of the theoretical
output response; (2) when the triangular wave signal is used as the input signal, the output signal
amplitude fluctuates around the theoretical output signal; (3) when the sine wave signal is used as the
input signal, the output signal is basically the same as the theoretical output signal.

(3) z-direction
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The square rectangular, triangular, and sinusoidal signals are applied to the No. 3 piezoelectric
actuator. The response curve of the output terminal in the z direction is shown in Figure 29. The
output response curve in the z direction was observed and found that: (1) when the rectangular square
wave signal is an input signal, at 0.027 s, the output terminal responds to 90% of the theoretical output
response; (2) when the triangular wave signal is an input signal, the output signal amplitude fluctuates
around the theoretical output signal; (3) when the sine wave signal is an input signal, the output signal
is more or less the same as the theoretical output signal.
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Figure 28. Response curve in y direction. (a) Square wave signal; (b) triangle wave signal; (c) sine
wave signal.
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4.3. Linear Motion Performance in Each Direction

Although the 3-DOF device can theoretically actualize independent movements in the x, y
and z directions, there may be a discrepancy between the actual displacement and the theoretical
displacement. In order to verify the linear motion ability, three input signals that theoretically produce
only x, y and z directions movements are applied to the device.
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The sinusoidal signals with the same frequency and phase were applied to the No. 1 and No. 2
piezoelectric actuators. Theoretically, the device only produces x-direction displacement. The output
displacement of the three directions, x, y and z, were detected, respectively. The relationship between
displacement and time in three directions is shown in Figure 30a. The following conclusions were
drawn: The amplitude of the x direction is much larger than the y and z directions, the y direction
response is sinusoidal, and the amplitude is significantly larger than the z direction response amplitude.

The sinusoidal signals with the same frequency and a phase difference of 180◦ were applied to
the No. 1 piezoelectric actuator and No. 2 piezoelectric actuator, respectively. Theoretically, the device
only produces y direction displacement. The output displacement of the three directions, x, y and z,
was detected respectively, as shown in Figure 30b. The sinusoidal signals were applied to the No. 3
piezoelectric actuator and the output displacements of the three directions, x y and z, were detected,
as shown in Figure 30c. The experimental curve shows that the device has large deviations from the
actual operation and theoretical operation in the x direction and the y direction. Figures 31–33 show
the projected trajectories of linear motion along the x, y and z axes.
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Figure 30. Time-amplitude diagram of linear motion performance test in each direction. (a) Driven in x
direction; (b) driven in y direction; (c) driven in z direction.
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Figure 31. Linear motion performance test in x direction. (a) Projection on the xoy plane; (b) projection
on the xoz plane.
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Figure 32. Linear motion performance test in y direction. (a) Projection on the xoy plane; (b) projection
on the yoz plane.

Micromachines 2018, 9, x FOR PEER REVIEW  24 of 34 

 

  
(a) (b) 

Figure 31. Linear motion performance test in x direction. (a) Projection on the xoy plane; (b) 
projection on the xoz plane. 

  
(a) (b) 

Figure 32. Linear motion performance test in y direction. (a) Projection on the xoy plane; (b) 
projection on the yoz plane. 

  
(a) (b) 

Figure 33. Linear motion performance test in z direction. (a) Projection on the xoz plane; (b) 
projection on the yoz plane. 

Table 2 provides some data from the linear motion performance test. The maximum linear 
motion deviations in the x, y and z directions were approximately 6.67%, 5.71%, and 3.03%, 
respectively. The reasons for this error are mainly because of the following aspects: (1) since the 
mechanical midpoint of the power component of the device is not exactly the same as the mechanical 

z(
um

)

55 55.2 55.4 55.6 55.8 56 56.2 56.4 56.6
y(um)

76.2

76.4

76.6

76.8

77

77.2

77.4

77.6

77.8

z(
um

)

Figure 33. Linear motion performance test in z direction. (a) Projection on the xoz plane; (b) projection
on the yoz plane.

Table 2 provides some data from the linear motion performance test. The maximum linear motion
deviations in the x, y and z directions were approximately 6.67%, 5.71%, and 3.03%, respectively. The
reasons for this error are mainly because of the following aspects: (1) since the mechanical midpoint
of the power component of the device is not exactly the same as the mechanical midpoint of the x, y
output decoupling guiding element, the output block is slightly deflected; (2) the installation error has
a great influence on the experimental results; (3) the inconsistent piezoelectric preload may cause the
linear motion performance to deteriorate in x and y directions.
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Table 2. Experimental data analysis of linear motion performance.

Project Maximum Displacement

x Direction (µm) y Direction (µm) z Direction (µm)

x direction input signal 1.2 0.08 0.03
y direction input signal 0.08 1.4 0.05
z direction input signal 0.01 0.01 1.65

4.4. 3D Vibration Trajectory

3D vibration device can realize parallel movement in the x, y and z directions. It is necessary that
the three directions of x y and z cooperate to realize the 3D movement of the output terminal against
actual application. In order to study the actual movement of the output terminal, different signals
are applied to the No. 1, No. 2 and No. 3 piezoelectric actuators, respectively. The motion trajectory
of the device in all directions is detected using a capacitive sensor. The actual running trajectory is
synthesized in a 3D space by detecting the displacement of x, y, z to the output during one cycle. The
three experimental schemes are shown in Figures 34–36 respectively, and the running trajectories are
shown in Figures 34d, 35d and 36d. In addition, the actual operational trajectory of the device is shown
in Figures 37 and 38, when more complex signals are used as inputs.
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5. Application Test

The scratching experiment system is shown in Figure 39 and the experimental tool is shown in
Figure 40. Since the output response of the device under no-load conditions is significantly different
from the output response of the load, this still needs to be tested. There are two reasons that account
for this. On the one hand, the piezoelectric actuators will have a smaller output displacement when the
output terminal is subjected to external loads compared to no-load. On the other hand, it is possible
to cause internal deformation without generating an output displacement in a complex mechanical
environment, if the design of the device is unreasonable. Therefore, two experiments are described in
the following section to observe the actual effect of the device under complex working conditions. The
flexible mechanism device was installed on the spindle. The y-feed of the machine tool and the 3D
vibrations jointly complete the scratching experiment. Table 3 gives the signal parameters applied to
the motion device. The signal in x and y directions is generated by the piezoelectric driving control
system. The signal in z direction is generated by the signal generator. When the three directions’
signals are amplified by the power amplifier and applied to the No. 1, No. 2 and No. 3 piezoelectric
actuators, respectively, flexible mechanism devices can produce 3D movement in space. Two groups of
scratch experiments were carried out. A workpiece (material: aluminum alloy, AISI6061) is fixed to the
machine tool with a clamp and the tool is fixed at the 3D motion device output terminal. The y-feed
rate of the machine table is 2 mm/min. The force measuring system (Brand: kistler Model: 9129AA,
Winterthur, Switzerland.) is installed on the bottom of the workpiece holder in order to detect the three
directions’ polishing force of the workpiece. The surface topography of the workpiece was observed
using a microscope (Brand: Olympus Model: BX-15, Tokyo, Japan.) after the scratch experiment.

Table 3. Experimental signal parameters.

Project Tool
Sinusoidal

Signal
Direction

Low
Voltage (V)

High
Voltage (V) Cycle (s)

Frequency
Difference between

x and y (s)

Experiment
No. 1

Green
rubber tool

x 0 8 0.006
0.001y 0 8 0.006

z 0 8 0.3

Experiment
No. 2

Diamond
tool

x 0 8 0.006
0.001y 0 8 0.006

z 0 8 1.2



Micromachines 2018, 9, 578 29 of 33

Micromachines 2018, 9, x FOR PEER REVIEW  30 of 34 

 

 

Figure 39. 3D vibration scratching experiment system (1) flexible mechanism device; (2) 
experimental tool; (3) workpiece holder; (4) workpiece. 

 
Figure 40. Experimental tool. 

The green rubber tool was used in Experiment No.1. When the sine voltage signal is applied to 
three directions of flexible mechanism device, the force curve of the workpiece is shown in Figure 41a 
and the workpiece surface obtained by the experiment is shown in Figure 42a. The diamond tool was 
used in Experiment No. 2. When a sinusoidal voltage signal of 2, 4, 6, and 8 V is applied to 
z-direction of flexible mechanism device respectively, the force curve of the workpiece is shown in 
Figure 41b. When an 8 V voltage signal was used as an input, the workpiece surface obtained by the 
experiment is as shown in Figure 42b. Based on Figure 41, it is concluded that z-direction vibration 
has the greatest influence on the force of the workpiece. The reason is that the polishing tool is 
perpendicular to the surface of the workpiece in the z direction, so the z-direction force changes very 
significantly; the x-direction force changes is second. While the y-direction is the actual tool feed 
direction, which is affected by the feed, its force change curve amplitude is small; the z-direction 
force increases as the amplitude of the voltage signal increases; Figure 42 shows the surface 
micro-morphology of the scratched workpiece and it was found that the workpiece surface has a 
clear, periodic microstructure. When the z-direction operating cycle of the 3D motion device is 
increased by four times, the number of microstructures is reduced to 1/4. This is an effective basis 
for verifying the practical performance of the device. 

Figure 39. 3D vibration scratching experiment system (1) flexible mechanism device; (2) experimental
tool; (3) workpiece holder; (4) workpiece.

Micromachines 2018, 9, x FOR PEER REVIEW  30 of 34 

 

 

Figure 39. 3D vibration scratching experiment system (1) flexible mechanism device; (2) 
experimental tool; (3) workpiece holder; (4) workpiece. 

 
Figure 40. Experimental tool. 

The green rubber tool was used in Experiment No.1. When the sine voltage signal is applied to 
three directions of flexible mechanism device, the force curve of the workpiece is shown in Figure 41a 
and the workpiece surface obtained by the experiment is shown in Figure 42a. The diamond tool was 
used in Experiment No. 2. When a sinusoidal voltage signal of 2, 4, 6, and 8 V is applied to 
z-direction of flexible mechanism device respectively, the force curve of the workpiece is shown in 
Figure 41b. When an 8 V voltage signal was used as an input, the workpiece surface obtained by the 
experiment is as shown in Figure 42b. Based on Figure 41, it is concluded that z-direction vibration 
has the greatest influence on the force of the workpiece. The reason is that the polishing tool is 
perpendicular to the surface of the workpiece in the z direction, so the z-direction force changes very 
significantly; the x-direction force changes is second. While the y-direction is the actual tool feed 
direction, which is affected by the feed, its force change curve amplitude is small; the z-direction 
force increases as the amplitude of the voltage signal increases; Figure 42 shows the surface 
micro-morphology of the scratched workpiece and it was found that the workpiece surface has a 
clear, periodic microstructure. When the z-direction operating cycle of the 3D motion device is 
increased by four times, the number of microstructures is reduced to 1/4. This is an effective basis 
for verifying the practical performance of the device. 

Figure 40. Experimental tool.

The green rubber tool was used in Experiment No.1. When the sine voltage signal is applied to
three directions of flexible mechanism device, the force curve of the workpiece is shown in Figure 41a
and the workpiece surface obtained by the experiment is shown in Figure 42a. The diamond tool was
used in Experiment No. 2. When a sinusoidal voltage signal of 2, 4, 6, and 8 V is applied to z-direction
of flexible mechanism device respectively, the force curve of the workpiece is shown in Figure 41b.
When an 8 V voltage signal was used as an input, the workpiece surface obtained by the experiment is
as shown in Figure 42b. Based on Figure 41, it is concluded that z-direction vibration has the greatest
influence on the force of the workpiece. The reason is that the polishing tool is perpendicular to the
surface of the workpiece in the z direction, so the z-direction force changes very significantly; the
x-direction force changes is second. While the y-direction is the actual tool feed direction, which
is affected by the feed, its force change curve amplitude is small; the z-direction force increases as
the amplitude of the voltage signal increases; Figure 42 shows the surface micro-morphology of the
scratched workpiece and it was found that the workpiece surface has a clear, periodic microstructure.
When the z-direction operating cycle of the 3D motion device is increased by four times, the number of
microstructures is reduced to 1/4. This is an effective basis for verifying the practical performance of
the device.
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6. Conclusions

In this paper, a 3-DOF motion device based on a piezoelectric actuated flexible mechanism
was designed, which has the characteristics of simple control, high output stiffness and self-guided
output. Theoretical analysis, FEA, performance testing and experiments were carried out. The main
conclusions are as follows:

1. The device is mainly series connected by a 2D motion platform including the x and y directions,
and the independent movement structure with z direction. The 3-DOF device adopts a circular
flexure hinge, in which the 2D motion platform consists of three parts: driving element,
force-dividing element (composed of four force-dividing blocks), x and y output decoupling
guide element. The driving element is designed using the principle of double parallelograms.
The function of the force-dividing element is to decompose the force into x and y directions; The x
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and y output decoupling guide element can improve the output stiffness, and running accuracy,
and detect the actual displacement in the x and y directions.

2. The statics and dynamics of the 3-DOF motion device were analyzed. Using the MCM method, the
output stiffness in the x, y and z directions are 1.137 N/µm, 0.760 N/µm and 0.717 N/µm. Using
the FEA method, the output stiffness in the x, y and z directions are 1.178 N/µm, 0.751 N/µm,
and 0.659 N/µm. Using energy method, the first natural frequency is 439.59 Hz and the second
natural frequency is 690.29 Hz. Using FEA method, the first natural frequency is 474.82 Hz and
the second natural frequency is 656.98 Hz. The first natural frequency of the experiment is 414 Hz.

3. The device was tested for dynamic performance, linear motion, and vibration trace during
no-load. Square wave, triangle wave and sine wave signals were applied in three directions
to test dynamic response performance. When the square wave is input, the x-direction return
response basically reaches the theoretical operating position at 0.025 s; the y direction and z
direction reach 90% of the theoretical operating position at 0.025 s and 0.027 s, respectively. When
the triangular wave signal is an input signal, the output signal amplitude fluctuates around
the theoretical output signal; when the sine wave signal is an input signal, the output signal
is basically the same as the theoretical output signal. When a signal that can only generate
unidirectional motion is applied, the maximum linear motion errors in the x, y and z directions
are approximately 6.67%, 5.71%, and 3.03%. Different signals were applied to the No. 1, No. 2 and
No. 3 piezoelectric actuators to carry out five sets of vibration track test experiments. These results
show that the device has excellent dynamic performance and can achieve 3D spatial trajectory.

4. A three-dimensional vibration scratch experiment was carried out using a 3D motion device.
When the vibration signal is only applied to the 3-DOF motion device, since the polishing tool
is perpendicular to the surface of the workpiece in the z direction, the z-direction exhibits a
significant periodic force change and coincides with the z-direction output signal cycle. The
period and shape of the force curve are similar when the table is feeding or stationary. The
workpiece surface scratched presents a pronounced periodic structure. These results proved the
3-DOF motion device has better reliability.
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