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Abstract: In order to investigate the effects of geometric imperfections on the static and dynamic
behavior of capacitive micomachined ultrasonic transducers (CMUTs), the governing equations
of motion of a circular microplate with initial defection have been derived using the von Kármán
plate theory while taking into account the mechanical and electrostatic nonlinearities. The partial
differential equations are discretized using the differential quadrature method (DQM) and the
resulting coupled nonlinear ordinary differential equations (ODEs) are solved using the harmonic
balance method (HBM) coupled with the asymptotic numerical method (ANM). It is shown that the
initial deflection has an impact on the static behavior of the CMUT by increasing its pull-in voltage
up to 45%. Moreover, the dynamic behavior is affected by the initial deflection, enabling an increase
in the resonance frequencies and the bistability domain and leading to a change of the frequency
response from softening to hardening. This model allows MEMS designers to predict the nonlinear
behavior of imperfect CMUT and tune its bifurcation topology in order to enhance its performances
in terms of bandwidth and generated acoustic power while driving the microplate up to 80% beyond
its critical amplitude.

Keywords: CMUT; nonlinear dynamics; geometric imperfection; von Kármán plate theory; differential
quadrature method

1. Introduction

Microresonators have been used in several applications such as mass sensing [1], micropumps [2],
gas sensors [3], gyroscopes [4] and accelerometers [5]. These microsystems are commonly fabricated
with an initial deflection due to the mechanical stress caused by the fabrication process.

One of the most famous micro-systems that have been developed is the capacitive micromachined
ultrasonic transducer (CMUT), which is a flexible microplate that can vibrate under an applied
voltage. CMUTs have been used as transducers by emitting ultrasonic waves, also as a sensors to
capture ultrasounds. Despite the excessive use of piezoelectric transducers in industrial applications,
the capacitive micro-machined ultrasonic transducers (CMUTs) are more advantageous than the
piezoelectric ones. First they can be fabricated using micromachining techniques [6–8] with tight
parameter specifications and with complex shapes (circular, square, hexagonal...) [9–11], which makes
them operate in different applications. Batch fabrication enables the micromachining of large
numbers of CMUTs at the same time with good uniformity. Another important feature of CMUTs is
their compatibility with integrated circuit (IC) technology. Compared to piezoelectric transducers,
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CMUTs have a larger bandwidth, which can result in good sensitivity (when the device is operating in
the receive mode), better transmission (in the case of transmitting mode) and low noise [12].

However, the microfabrication techniques reveal several imperfections such as stress gradients [13]
and initially curved shapes [14]. Even a small initial deflection, with respect to the dimensions of the
resonator, has a critical effect on its static and dynamic behavior. These effects have been studied on
several microresonators; for instance, the static response of a microbeam has been investigated by
Ouakad et al. [15,16]. In the case of the downward initial deflection, the increase of the initial deflection
leads to a decrease in the pull-in voltage due to the fact that the microbeam becomes closer to the
bottom electrode. The upward initial deflection results in a snap through behavior [17,18] where the
initial deflection increases the snap through voltage and decreases the pull-in voltage.

The initial imperfection also has a major effect on the resonance frequencies of a resonator.
An increase of the initial deflection leads to a divergence of the odd resonance frequencies also known
as frequency veering [19–22]. This phenomenon was reported in several studies such as the effect of
varying the ratio of the side lengths of a rectangular plate [23] and the effect of varying the sagging
levels on cables [24].

The initial deflection dose not only have an effect on the static behavior of microsystems but
also affects nonlinear dynamic behavior. Ruzziconi et al. [25,26] developed a nonlinear model for
a clamped microbeam obtained using Galerkin method. With only two degrees of freedom, the
numerical model is able to predict with satisfactory accuracy the nonlinear dynamic behavior of the
microbeam, since it correctly simulates both the primary and the 1/3 superharmonic resonances.
The dynamic pull-in and dynamic snap-through of an arch microbeam was also investigated by
Younis et al. [15] by exciting the microresonator with high DC and AC voltages around the fundamental
resonance frequency. The increase in the shallow arch has two effects on the nonlinear behavior of
the microbeam: first it reduces its vibration amplitude due to the increase of the distance between the
two electrodes; and second it reduces the hardening behavior and increases its softening behavior.
Experimental investigation was also conducted on the microstructure around the first and the
third resonance frequency [27,28]. For low DC and AC voltages, the microsystem has a softening
behavior at the first resonance frequency and a hardening behavior at the third resonance frequency.
The experimental tests showed that with high voltages, we can obtain dynamic snap-through cross-well
motions. Also, the microbeam can exhibit large oscillations of a continuous band of snap-through
motion between the first primary resonance regime and the super-harmonic resonance regime.
These characteristics of arches resonators were used in developing bandpass filters [29], low-powered
switches [30] and logic devices [31].

The effect of initial imperfection was also studied for the case of microplate. Saghir et al. [32,33]
derived the equation of motion of a rectangular microplate excited with an electrostatic force.
The governing equations, derived using the von Kármán plate theory, are transformed into a Reduced
Order Model (ROM) using the Galerkin discretization procedure. The static and the dynamic behavior
of the microsystem were studied experimentally and the obtained results were compared to the
numerical results obtained with the developed model. Near primary resonance, the microplate has a
hardening type behavior when the excitation force is low and the increase in the AC voltage increases
the gap between the two stable solutions. The dynamic behavior of the microresonator was also
investigated at ω/3 super-harmonic excitation. In this case, the increase in the AC voltage does not
only increase the vibration amplitude but also changes the nonlinear dynamic behavior from hardening
to softening.

Several studies have been conducted on the nonlinear behavior of rectangular plate with
imperfection at the macroscale. Celep et al. [34,35] investigated the effect of an initial imperfection on
the static and dynamic behavior of a rectangular plate subjected to four different boundary conditions.
Chena et al. [36] derived the nonlinear differential equation of the rectangular plate with initial
imperfection and under arbitrary initial stress. The governing equations are discretized using the
Galerkin procedure and the partial differential equations are transformed into a set of ordinary
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differential equations. The obtained equations were solved using the Runge-Kutta method to obtain
the linear and nonlinear vibration frequencies.

Medina et al. [37,38] developed a reduced order model which has been validated using finite
element analysis in order to study the axisymmetric snap-through of an initially curved circular
plate subjected to an electrostatic actuation. The analysis revealed that due to the nonlinearity of the
electrostatic force, the snap-through occurs at a lower displacement compared to the one induced by
mechanical loads. For the case of CMUTs, few studies have been conducted on nonlinear behavior.
Vogl et al. [39,40] used the von Kármán plate theory and the Galerkin method to determine the
nonlinear differential equations of a circular CMUT. These equations have been solved using the
method of multiple scales [41]. This analytical method is used to determine the nonlinear frequency
and force responses of the CMUT around the first resonance frequency. The microsystem can display a
softening or a hardening behavior depending on the applied DC voltage.

The nonlinear behavior of circular plates was also investigated at the macroscale by Touzé and
Thomas [42,43]. The circular plate, with free edge boundary condition, was forced with a frequency
around the asymmetric mode by taking into account the effects of damping and small geometric
imperfection. The nonlinear frequency response of the system can exhibit different nonlinear behavior,
softening or hardening, depending on the design parameters. From these solutions they showed
that traveling waves are generic when coupled-mode solutions arise. The analytical model has been
validated with respect to experimental results obtained by measuring the deflections of an antinode of
each preferential configuration. By estimating the input parameter of the system, the developed model
was able to predict the nonlinear phenomena of the plate.

The differential quadrature method is a numerical technique that has been used for discretization
of a mathematical problem. It was derived by Richard Bellman in the early 1970s [44]. This method has
been employed as an alternative technique for finite difference method and FEM. We can mention the
work of Najar et al. [45] in modeling microbeams. The static and dynamic behavior of the microbeam
were studied by discretizing the partial differential equation using DQM. This method is accurate and
efficient. With only nine grid points, the error in the pull-in voltage is about 0.2%. The Generalized
Differential Quadrature Finite Element Method (GDQFEM) was also used to solve the static and
dynamic behavior of plates with complex shapes [46].

In this paper, the nonlinear behavior of initially curved circular CMUTs is modeled. The partial
differential equations of the upper microplate of the CMUT are derived based on the von Kármán
plate theory, while including the initial curvature, the geometric and the electrostatic nonlinearities.
First, the differential quadrature method (DQM) is used to transform the governing equations into a
system of ordinary differential equations with respect to time. Then, the time derivatives are dropped
and the resulting coupled algebraic equations are solved in order to investigate the static behavior of
the CMUT with respect to the DC voltage and the initial deflection. The obtained results are validated
with respect to the experimental data. Moreover, the nonlinear frequency and force responses are
investigated by solving the nonlinear differential equations using the harmonic balance method (HBM)
coupled with the asymptotic numerical method (ANM). Finally, the effects of the actuation voltages
and the initial deflection on the dynamic behavior of the CMUT are numerically investigated.

2. Mathematical Model

In this section, we consider a circular microplate with a uniform cross-section h and a
homogeneous material with a density ρ and a Young’s modulus E, as shown in Figure 1. The vibrating
electrode is modeled as a perfectly clamped circular microplate with radius R excited with an electric
voltage V(t) = Vdc + Vac cos(ωt).

The bottom electrode, with radius Re, is placed below the microplate at a distance d. We suppose
that the microplate is subjected to an axisymetric initial deflection w0(r) defined as follows:

w0(r) = wmax

[
1−

( r
R

)2
+ 2
( r

R

)2
ln
( r

R

)]
(1)
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where wmax represent the initial deflection of the membrane at the center. We have chosen this
expression of the initial deflection because it satisfies the boundary conditions of a clamped circular
microplate and also it is a good approximation to the initial deflection determined experimentally [47].

Bottom electrode(Au) 

Substrate(Glass) 

Cavity  

Vibrating microplate(Si) 
𝑅 

𝑅𝑒  
𝑑 

ℎ 

Axisymmetric axis 

𝑟 𝑧 𝑤0(𝑟) 𝑤(𝑟, 𝑡) 

(a) (b)

Figure 1. (a) Exploded view of a Capacitive Micomachined Ultrasonic Transducer (CMUT). (b) A cross
section of a circular electrostatic thin microplate.

The microplate equations of motion are derived from the von Kármán plate theory. Luan and
Robbins [48] proved that, at the microscale, the continuum mechanics theory is still valid. We consider
the following hypothesis of the von Kármán plate theory [49]:

• The material of the plate is elastic, homogeneous, and isotropic.
• A straight line (filament), initially normal to the midplane, remains straight and normal to the

surface during the deformation.
• The stress normal to the midplane, σz, is small compared to the other stress components and may

be neglected in the stress-strain relations.

2.1. Problem Formulation

We follow the work of Nayfeh [50] to derive the equations of motion for an axisymmetric circular
plate. We denote u(r, t) and w(r, t) the displacement component of a point in the plate with respect to
the r, θ, z coordinate system. The displacement vector ~D is given by:

~D =

 u− zw,r

0
w

 (2)

where w,r is the derivative of w with respect to r. The von Kármán nonlinear strains for a plate in large
displacement are given by: 

εrr = e1 − zw,rr + ε0

εθθ = e2 − z w,r
r + ε0

εrθ = εzz = εzθ = εzr = 0
(3)

where w,rr is the second derivative of w with respect to r. ε0 represents the initial strain due to the
residual stress N0. e1 and e2 are the midplane strain components and are given as:

e1 = u,r +
1
2

w2
,r + w,rw0,r

e2 =
u
r

(4)

ε0 = N0
(1− ν)

Eh
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where ν is the Poisson’s ratio and w0,r is the first derivative of the initial deflection w0 with respect
to r. In order to obtain the equations of motion and the boundary conditions, we use the extended
Hamilton principle which can be written as:

t2∫
t1

(δT − δΠ + δWe + δWnc)dt = 0 (5)

where δWnc, δΠ, δT and δWe denote the variations of the nonconservative, kinetic, elastic and
electrostatic potential energies (Wnc, Π, T and We), expressed, respectively, as:

δΠ =
∫
z

∫
A

(σrrδεrr + σθθδεθθ) dAdz (6)

δT = −
∫
z

∫
A

ρ~̈Dδ~DdAdz (7)

The variation of the electrostatic energy for a parallel plate capacitor with an initial deflection w0

is defined as:

δWe =
∫
A

ε0V2 (t)
2 (d + w0 − w)

δwdA (8)

where A is the undeformed area of the reference plane. σ and ε are the Jaumann stresses and
strains, respectively. ε0 is the dielectric constant of the plate material and V(t) is the applied voltage.
The second time derivative and the spatial variation of the displacement vector can be written as:

~̈D =

 ü− zẅ,r

0
ẅ

 δ~D =

 δu− zδw,r

0
δw

 (9)

Substituting Equation (9) into Equation (7) and integrating over the thickness z ∈ [−h/2, h/2], yields:

δT = −
∫
A

(
ρh (üδu + ẅδw) +

ρh3

12
ẅr δw,r

)
dA (10)

Substituting Equation (3) into Equation (6), yields

δΠ =
∫
z

∫
A

(
σrr (δu,r + δw,r (w,r + w0,r)− zδw,rr) + σθθ

(
δu
r
− z

δw,r

r

))
dAdz (11)

Integrating over the thickness z ∈ [−h/2, h/2], we obtain

δΠ =
∫
A

(
Nrr (δu,r + δw,r (w,r + w0,r))−Mrrδw,rr + Nθθ

δu
r
−Mθθ

δw,r

r

)
dA (12)

where Mθθ and Mrr are the plate moments. Nθθ and Nrr are the plate stress resultants:

{Nrr, Nθθ} =
∫
z

{σrr, σθθ}dz (13)

{Mrr, Mθθ} =
∫
z

z {σrr, σθθ}dz (14)
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We perform partial integration for the following terms:

∫
A

Nrrδu,rdA = 2π

− ∫
r

(Nrr + rNrr,r)δudr + [rNrrδu]R0

 (15a)

∫
A

(
Nrr (w,r + w0,r)− Mθθ

r

)
δw,rdA = 2π(−

∫
r
(Nrr (w,r + w0,r)

+rNrr,r (w,r + w0,r) + rNrr (w,rr + w0,rr)−Mθθ,r)δwdr + [(rNrr (w,r + w0,r)−Mθθ) δw]R0 )
(15b)

−
∫
A

Mrrδw,rrdA = 2π(−
∫
A

(2Mrr,r + rMrr,rr)δwdr− [rMrrδw,r]
R
0 + [(Mrr + rMrr,r) δw]R0 ) (15c)

where w0,rr is the second derivative of the initial deflection w0 with respect to r. Substituting (15) into
(12), we obtain:

δΠ = 2π

(
−
∫
r

((
Nrr (w,r + w0,r) + rNrr,r (w,r + w0,r) + rNrr (w,rr + w0,rr)

−Mθθ,r + 2Mrr,r + rMrr,rr
)
δw + (Nrr + rNrr,r − Nθθ) δu

)
dr + [rNrrffiu]R0

+ [(rNrr (w,r + w0,r)−Mθθ) δw]R0 − [rMrrδw,r]
R
0 + [(Mrr + rMrr,r) δw]R0

) (16)

Substituting (16), (10) and (8) into (5) and setting each of the coefficients of δu and δw equal to
zero, we obtain

Nrr (w,r + w0,r) + rNrr,r (w,r + w0,r) + rNrr (w,rr + w0,rr)

−Mθθ,r + 2Mrr,r + rMrr,rr + rρhẅ− r ε0V2(t)
2(d+w0−w)

= 0
(17)

Nrr + rNrr,r − Nθθ + rρhü = 0 (18)

where Nrr,r Mθθ,r and Mrr,r are the first derivatives of Nrr, Mθθ and Mrr with respect to r. Mrr,rr is the
second derivative of Mrr with respect to r. The corresponding boundary conditions at r = 0 and r = R
are defined as:

rNrr = 0 or δu = 0

rNrrw,r −Mθθ + Mrr + rMrr,r = 0 or δw = 0 (19)

rMrr = 0 or δw,r = 0

2.2. Dimensional Equations of Motion

For thin plates, we adopt the plane stress assumption. The stress-strain relations for an linear
elastic material can be stated as [49]:

σrr

σθθ

σrθ

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2




εrr

εθθ

εrθ

 (20)

Therefore

σrr =
E

1− ν2 (εrr + νεθθ)

σθθ =
E

1− ν2 (εθθ + νεrr) (21)

σrθ = Gεrθ
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where G = E
2(1+ν)

is the shear modulus. Substituting Equation (21) into Equations (13) and (14) and
performing the integration yields

Nrr =
Eh

1− ν2

(
u,r +

1
2

w2
,r + w,rw0,r + ε0 + ν

(u
r
+ ε0

))
Nθθ =

Eh
1− ν2

(
u
r
+ ε0 + ν

(
u,r +

1
2

w2
,r + w,rw0,r + ε0

))
Mrr = −

Eh3

12 (1− ν2)

(
w,rr + ν

w,r

r

)
Mθθ = − Eh3

12 (1− ν2)

(w,r

r
+ νw,rr

)
(22)

By substituting Equations (22) into the Equations of motion (17) and (18), neglecting the inplane
and rotatory inertia terms (since they have negligible effect on the transverse motion because the
transverse natural frequencies are negligible to the inplane natural frequency [49]) and adding the
damping force, the governing equations can be written as:

ρh2

D ẅ + h2

D fd +∇4w = N0
D

(
1
r (w,r + w0,r) + (w,rr + w0,rr)

)
+ ε0V2(t)

2D(d−w+w0)
2

+ 12
h2

[
1
r u,r (w,r + w0,r) + u,rr (w,r + w0,r) + u,r (w,rr + w0,rr) +

1
2r (w,r)

2 (w,r + w0,r)

+w,r (w,r + w0,r)
(

1
r w0,r + w0,rr

)
+ 1

2 (w,r)
2 (w,rr + w0,rr) + w,rw0,r (w,rr + w0,rr)

+w,rr(w,r + w0,r)
2 + ν

r (u,r (w,r + w0,r) + u (w,rr + w0,rr))

]
(23)

u,rr +
1
r

u,r −
u
r2 = −1− ν

2r
(w,r)

2 − w,rw,rr (24)

This system of differential equations takes into consideration the effects of both the initial
deflection and the residual stress. The last term between two brackets in Equation (23) represents
the mid-plane stretching effects which are caused by the large displacement of the microplate.
The axisymmetric boundary conditions are defined with a horizontal tangent at r = 0 and a lateral
displacement equal to zero u = 0. For the clamped boundary condition (r = R), the in-plane and
the out-of-plane displacements u and w are equal to zero. Therefore the boundary conditions of the
clamped circular microplate are:

At r = 0 : w,r = 0 u = 0

At r = R : w,r = w = 0 u = 0 (25)

where ∇4 is the bi-harmonic operator expressed as ∇4 =
(

∂2

∂r2 +
1
r

∂
∂r

)2
, D = Eh3

12(1−ν2)
is the plate

flexural rigidity and fd = cẇ is the viscous damping force. The electric forcing term in Equation (23) is
a parallel-plate approximation to the capacitance where the fringing field effect is ignored for a small
aspect ratio d� R of the capacitor [51].

2.3. Nondimensional Equations of Motion

In order to reduce the complexity of the physical parameters, we rewrite Equations (23) and (24)
in terms of nondimensional variables, which are defined as follow:
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r̃ = Rr; ũ = du; w̃ = dw

c̃ =
(Dρh)1/2

R2 c; γ =
12Rd

h2 ; β =
d
R

(26)

Ñ0 =
D
R2 N0; t̃ = Tt = R2

(
ρh
D

)1/2
t; αe =

ε0R4

2Dd3

Substituting these definitions into (23) and (24) and dropping the tilde (∼) in the result, we get:

ẅ + cẇ +∇4w = N0

(
1
r
(w,r + w0,r) + (w,rr + w0,rr)

)
+ αe

V2 (t)

(1− w + w0)
2 + γΓ̂ (w, u, w0) (27)

u,rr +
1
r

u,r −
u
r2 = −1− ν

2r

(
(w,r)

2 + 2w,rw0,r

)
− w,rr (w,r + w0,r)− w,rw0,rr (28)

where Γ is defined as:

Γ̂ (w, u, w0) = 1
r u,r (w,r + w0,r) + u,rr (w,r + w0,r) + u,r (w,rr + w0,rr)

+β

(
1
2r (w,r)

2 (w,r + w0,r) + w,rr(w,r + w0,r)
2 + w,r (w,r + w0,r)

(
1
r w0,r + w0,rr

)
+ 1

2 (w,r)
2 (w,rr + w0,rr) + w,rw0,r (w,rr + w0,rr)

)
+ ν

r (u,r (w,r + w0,r) + u (w,rr + w0,rr))

(29)

where w̃0 = d w0 and the tilde (∼) represents the dimensional quantities. For convenience, we rewrite
the boundary conditions in its nondimensional form:

At r = 0 : w,r = 0 u = 0

At r = 1 : w,r = w = 0 u = 0
(30)

3. Discretization

3.1. Differential Quadrature Method

In order to solve the equation of motion of the system, we reduce the PDEs into a set of ODEs.
One of the methods that has been used in the literature is the differential quadratic method. The aim
of this method is to discretize the space domain into a grid of sampling points and approximating
the derivative with respect to r as a weighted sum of the function at the grid points. To this end,
the derivatives can be written as:[

∂kw
∂rk

]
r=ri

=
n

∑
j=1

A(k)
ij wj

[
∂ku
∂rk

]
r=ri

=
n

∑
j=1

A(k)
ij uj (31)

where ri are the grid points defined by Chebyshev-Gauss-Lobatto [52]:

ri =
1
2

(
1− cos

(
(i− 1)
(n− 1)

π

))
(32)

ui, wi are the in-plane and out-of-plane displacements of plate at the grid point r = ri. A(k)
ij are the

DQM weighting coefficients of the kth order derivative which are given by [53–55]:



Micromachines 2018, 9, 575 9 of 24

A(1)
ij =

n
∏

v=1;v 6=i
(ri − rv)(

ri − rj
) n

∏
v=1;v 6=j

(
rj − rv

) i, j = 1, 2, · · · , n i 6= j

A(k)
ij = k

A(k−1)
ii A(1)

ij −
A(k−1)

ij

(ri − rj)

 i, j = 1, 2, · · · , n i 6= j

A(k)
ii = −

n

∑
v=1;v 6=i

A(k)
iv i = 1, 2, · · · , n

(33)

where A(k)
ij are the respective weighting coefficients that depend only on the sampling points.

The advantage of using this configuration is that it can converge only with a few number of grid
points. Also, it reduces the computational time as a result of the properties of the weighting matrix[

A(k)
]

[56,57].

3.2. Discretized Equations of Motion

If we apply the DQM to the equation of motion (27) and (28), we obtain:

ẅi + cẇi +∇4wi = N0

(
1
ri

(
n
∑

j=1
A(1)

ij wj + wi
0,r

)
+

(
n
∑

j=1
A(2)

ij wj + wi
0,rr

))
+αe

V2(t)

(1−wi+wi
0)

2 + γΓ̂i
(
wj, uj, wi

0
)

; i = 2, · · · , n− 2
(34)

n
∑

j=1
A(2)

ij uj +
1
ri

n
∑

j=1
A(1)

ij uj − ui
r2

i
= −β

(
1−ν
2ri

( n
∑

j=1
A(1)

ij wj

)2

+ 2wi
0,r

n
∑

j=1
A(1)

ij wj


+

n
∑

j=1
A(2)

ij wj

(
n
∑

j=1
A(1)

ij wj + wi
0,r

)
+ wi

0,rr

n
∑

j=1
A(1)

ij wj

)
; i = 2, · · · , n− 1

(35)

where Γ̂i is the discretization of Γ̂.

Γ̂i

(
wj, uj, wi

0

)
=

1
ri

n

∑
j=1

A(1)
ij uj

(
n

∑
j=1

A(1)
ij wj + wi

0,r

)

+
n

∑
j=1

A(2)
ij uj

(
n

∑
j=1

A(1)
ij wj + wi

0,r

)
+

n

∑
j=1

A(1)
ij uj

(
n

∑
j=1

A(2)
ij wj + wi

0,rr

)

+
ν

ri

(
n

∑
j=1

A(1)
ij uj

(
n

∑
j=1

A(1)
ij wj + wi

0,r

)
+ ui

(
n

∑
j=1

A(2)
ij wj + wi

0,rr

))

+ β

(
1

2ri

(
n

∑
j=1

A(1)
ij wj

)2( n

∑
j=1

A(1)
ij wj + wi

0,r

)
+

n

∑
j=1

A(2)
ij wj

(
n

∑
j=1

A(1)
ij wj + wi

0,r

)2

+
n

∑
j=1

A(1)
ij wj

(
n

∑
j=1

A(1)
ij wj + wi

0,r

)(
1
ri

wi
0,r + wi

0,rr

)

+
1
2

(
n

∑
j=1

A(1)
ij wj

)2( n

∑
j=1

A(2)
ij wj + wi

0,rr

)
+ wi

0,r

n

∑
j=1

A(1)
ij wj

(
n

∑
j=1

A(2)
ij wj + wi

0,rr

))

(36)
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and the boundary conditions (30) can be rewritten as:

At r = 0 :
n

∑
j=1

A(1)
1j wj = 0 u1 = 0

At r = 1 :
n

∑
j=1

A(1)
nj wj = wn = 0 un = 0

(37)

where wi
0, wi

0,rr and wi
0,rr are respectively the initial displacement and its associated first and second

derivatives with respect to r at the ith grid points.

4. Static Response

In order to investigate the static behavior of the microplate actuated by a DC voltage, we drop the
derivative with respect to time and let wi(t) and ui(t) be time independent. Therefore the equations of
motion can be written as:

EQst
w(i) : ∇4wst

i = N0

(
1
ri

(
n

∑
j=1

A(1)
ij wst

j + wi
0,r

)
+

(
n

∑
j=1

A(2)
ij wst

j + wi
0,rr

))

+ αe
V2 (t)(

1− wst
i + wi

0
)2 + γΓ̂i

(
wst

j , ust
j , wi

0

)
; i = 2, · · · , n− 2

(38)

EQst
u (i) :

n

∑
j=1

A(2)
ij ust

j +
1
ri

n

∑
j=1

A(1)
ij ust

j −
ust

i
r2

i
= −β

(
1− ν

2ri

((
n

∑
j=1

A(1)
ij wst

j

)2

+ 2wi
0,r

n

∑
j=1

A(1)
ij wst

j

)

+
n

∑
j=1

A(2)
ij wst

j

(
n

∑
j=1

A(1)
ij wst

j + wi
0,r

)
+ wi

0,rr

n

∑
j=1

A(1)
ij wst

j

)
; i = 2, · · · , n− 1

(39)

where wst
i = wst(ri) and ust

i = ust(ri) are the static displacements of the microplate at the ith grid point.

Implementation of the Arclength Method

In this section, we solve the system of Equations (38) and (39) using the arclength continuation
method as defined in the Appendix A, where:

X(s) =
{

wst
1 (s), wst

2 (s), · · · , wst
n (s), ust

1 (s), ust
2 (s), · · · , ust

n (s)
}

and α(s) = Vdc(s) (40)

and

F(X(s), α(s)) =



n
∑

j=1
A(1)

1j wj(s) = 0

EQst
w(i) i = 2, · · · , n− 2

n
∑

j=1
A(1)

nj wj(s) = wn(s) = 0

u1(s) = 0
EQst

u (k) k = 2, · · · , n− 1
un(s) = 0

(41)

At this stage, it is crucial to check the convergence of the DQM solution. In Figure 2, we plot
the total displacement of the microplate center (r = 0) with respect to Vdc voltage for different grid
numbers n. While assuming that the residual stress N0 is negligible, the physical parameters used
in the simulation are presented in Table 1. The stars marked in this graph (∗) denote the bifurcation
points where the solution changes from stable to unstable and it is called pull-in point. At these points,
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the slope of the curve becomes infinite. To determine the bifurcation points, we solve the following
equation:

∂wi(s)
∂Vdc(s)

=
∂wi(s)

∂s
∂s

∂Vdc(s)
= ∞ ⇒ ∂Vdc(s)

∂s
= 0 (42)

At pull-in (s = spi), the pull-in voltage and amplitude are defined as (Vdc(spi) , wi(spi)). We can
clearly see that the solution converges as we increase the number of grid points n. The advantage of
using the DQM is that the solution converges with a few number of points, compared to the finite
element method FEM [58].
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Figure 2. Displacement of the microplate center for different grid points n.

Table 1. Physical parameters of the CMUT.

Symbol Quantity Dimension

E Young’s modulus 149 [GPa]
ρ Density 2330 [kg/m3]
ν Poisson’s ratio 0.27
R Radius of the microplate 86 [µm]

Rele Radius of the electrode 54 [µm]
h Thickness of the microplate 2.3 [µm]
d Gap distance 0.75 [µm]

w0 Initial deflection 161 [nm]

In our case, the radius of the electrode is smaller than the radius of the membrane. Therefore,
the electrostatic force is defined as a Heaviside function:

fe = αe
V2 (t)

(1− wi)
2 f where f =

{
1 ri ≤ Re

R
0 ri >

Re
R

(43)
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The problem with using this type of function is that it requires an important number of points to
converge because it is not a continuous function. To increase the convergence of the DQM we use two
different approximations of the Heaviside function: the first one is using a smooth logistic function
defined as:

fe = αe
V2 (t)

(1− wi)
2 f where f =

1
2
+

1
2

tanh
(

k
(

ri −
Re

R

))
(44)

k is the steepness of the curve (k = 30). The second one is by approximating the Heaviside function as
the derivative of a ramp function defined as:

f =
∂

∂r

{
− Re

R + r r ≤ Re
R

0 r > Re
R

=
n

∑
j=1

A(1)
ij

{
− Re

R + rj rj ≤ Re
R

0 rj >
Re
R

(45)

In Figure 3 we compare the Heaviside function with its approximation. The logistic function is a
good approximation of the Heaviside function except near the discontinuity point (r = Re

R ) where the
transition is much smoother. However, for the second approximation, using the derivative of the ramp
function, the solution is oscillatory especially near the singular point (r = Re

R ). This effect has been
reported earlier by Eftekhari [59] and Jung [60] in the case of the Dirac function.

Approximation using derivative Heaviside function Logistic function

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

r

f

Figure 3. Heaviside function and its approximation.

In Figure 4, we compare the pull-in voltages between the Heaviside function and its approximation
for different number of grid points n. For small number of points n ≤ 12, the Heaviside function and
the logistic function have the same amplitude and by increasing the number of points the logistic
function converges much faster than the Heaviside function. For the second approximation, where we
used the derivative of the ramp function, the solution amplitude converges to the same solution as
the logistic function. Comparing the three curves, we can conclude that the approximation using the
derivative of the ramp function leads to a fast convergence with high accuracy compared to the other
functions. For n = 10, the static solution of the 3rd approximation converges and the error between
the pull-in amplitude for n = 10 and n = 50 is less than 0.2%.



Micromachines 2018, 9, 575 13 of 24

Number of grid points

0 10 20 30 40 50

P
u
ll-

in
 v

o
lt
a
g
e
 [
V

]

74

76

78

80

82

84

86

88

90

92

94

Heaviside function

Logistic function

Approximation using derivative

Figure 4. Pull-in voltage of the microplate using the Heaviside function and its approximation with
respect to the number of grid points n.

In order to validate the accuracy of the proposed model, we plot the total displacement of the
plate at its center with respect to Vdc and we compare it to the results presented in [47]. As it is shown in
Figure 5, we obtain an excellent agreement between the experimental and the numerical results. For the
numerical simulation we used DQM with only n = 10 points since 10 points are sufficient to ensure the
convergence of the numerical solution. Actually, the static displacement increases monotonously and
it is characterized by a vertical slope at the pull-in voltage equal to 81 V and for which the microplate
touches the bottom electrode and collapses. Around this excitation level, the plate displacement
becomes very sensitive to voltage variations. Clearly, the microplate has no snap-through motion
since its static profile shows only one stable mode of operation [18,61,62]. This is because the initial
deflection is small compared to the radial dimension of the microplate (wmax << R) and the residual
stress is negligible. For the lower branch solution, the two analytical models based on DQM and
Galerkin method, converge with a few degrees of freedom. However, the use of an even number of
modes in the ROM leads to the divergence of the upper branch solution [45].
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Figure 5. Comparison of the static displacement between the experimental results [47], the reduced
order model with three modes and our model with n = 10 grid points.

Then, we investigate theoretically the effect of the initial deflection on the pull-in voltage of
circular microplates. Figure 6a displays the variation of the static displacement with respect to the
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applied DC load for microplates with different initial deflections. The stars (∗) marked in this graph
denote the bifurcation points where the solution becomes unstable and goes to pull-in, which increases
with respect to the initial deflection. The pull-in voltage increases up to 45% and this is due to the
fact that the effective gap between the two electrodes is larger than the expected one d = 750 nm,
so that a larger electrostatic force is required to reach the pull-in. In order to determine the effective
gap distance, we identify the equivalent electrostatic force in the case of initially curved microplates,
by integrating over z ∈ [0, Re]. We obtain the following expression [47]:

d2
e f f ≈

1
Re

Re∫
0

(d + w0(r))
2dr (46)

The square of the effective gap distance is approximated as the mean of the square of the total
gap distance. In Figure 6b, we compare the pull-in voltage of the circular CMUT calculated using the
presented model and approximated using the effective gap distance de f f . The proposed approximation
has a good agreement with the numerical model especially at small deflections. In our case, the maximum
error between the two curves in the interval [−300 nm, 300 nm] is about 5%. Therefore, the effective gap
distance is a good approximation to determine the pull-in voltage of a CMUT with initial deflection.
However, this approximation is only valid when the initial deflection is small (less than 40% of the
gap distance).
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Figure 6. (a) The effect of the initial deflection w0 on the static response of the microplate.
(b) Comparison of the pull-in voltage between the proposed and the approximated model.
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5. Eigenfrequency Analysis

The initial deflection does not only affect the static response of the microplate, but also it modifies
its resonance frequencies. The linear undamped eigenvalue problem of a clamped circular plate
excited with a DC voltage is obtained by linearizing (34) and (35) around the static solution. Therefore,
we define the total deflection {wi(t), ui(t)} as the sum of the static amplitude {wst

i , ust
i } and dynamic

component {wdy
i (t), udy

i (t)}. Thus, we write:

w(r = ri, t) = wi(t) = wst
i + wdy

i (t) = wst
i + φiejωt

u(r = ri, t) = ui(t) = ust
i + udy

i (t) = ust
i + ψiejωt (47)

where {φi, ψi} are the mode shapes of w and u at r = ri. Substituting (47) into Equations (34) and (35),
we obtain:

ẅdy
i + cẇdy

i +∇4
(

wst
i + wdy

i

)
= N0

(
1
ri

(
n

∑
j=1

A(1)
ij

(
wst

j + wdy
j

)
+ wi

0,r

)

+

(
n

∑
j=1

A(2)
ij

(
wst

j + wdy
j

)
+ wi

0,rr

))
+ αe

V2 (t)(
1−

(
wst

j + wdy
j

)
+ wi

0

)2

+ γΓ̂i

(
wst

j + wdy
j , ust

j + udy
j , wi

0

)
; i = 2, · · · , n− 2

(48)

n

∑
j=1

A(2)
ij

(
ust

j + udy
j

)
+

1
ri

n

∑
j=1

A(1)
ij

(
ust

j + udy
j

)
−

(
ust

i + udy
i

)
r2

i
=

− β

(
1− ν

2ri

( n

∑
j=1

A(1)
ij

(
wst

j + wdy
j

))2

+ 2wi
0,r

n

∑
j=1

A(1)
ij

(
wst

j + wdy
j

)
+

n

∑
j=1

A(2)
ij

(
wst

j + wdy
j

)( n

∑
j=1

A(1)
ij

(
wst

j + wdy
j

)
+ wi

0,r

)
+ wi

0,rr

n

∑
j=1

A(1)
ij

(
wst

j + wdy
j

))
;

i = 2, · · · , n− 1

(49)

The electrostatic force for a circular microplate with initial deflection wmax can be expanded into
Taylor series around the static solution:

αe
V2(t)(

1−
(

wst
i +wdy

i

)
+wi

0

)2 = αe (Vdc + Vac cos(ωt))
[

1
(1−wst

i +wi
0)

2 +
2

(1−wst
i +wi

0)
3 wdy

i

]
(50)

For n grid points, the total number of equations is equal to 2n. At the boundary nodes, we use the
boundary Equation (37) to determine the boundary displacement {w1, wn−1, wn, u1, un−1} as function
of wi and uj where i = 2, · · · , (n− 2) and j = 2, · · · , (n− 1). This simplification reduces the total
number of equations to 2n− 5.

The resonance frequencies of the structure and the mode shapes are determined by solving the
eigenvalue problem of the system of Equation (48), which can be written as:

MŸ(t) + CẎ(t) + KY(t) + KNL(Y(t), Ẏ(t)) = 0 (51)

where M, C and K are the mass, damping and stiffness matrices; KNL(Y(t), Ẏ(t)) is the vector with
nonlinear parameters and Y(t) is the vector of unknowns defined as:

Y(t) =
{

wd
2, · · · , wd

n−2, ud
2, · · · , ud

n−1

}
(52)
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By dropping the nonlinear and damping terms and by replacing wdy
i (t) = φ

dy
i ejwt and

udy
i (t) = ψ

dy
i ejwt, the linear natural frequencies are determined using the following characteristic equation.

det(K−ω2M) = 0 (53)

As we can notice in Equation (48), the nondimensional eigenfrequencies depend mainly on the
axial force N0, the DC voltage Vdc, the static displacement wst

i and the initial deflection w0.
As shown in Figure 7, the resonance frequencies decrease as we increase the DC voltage. At the

pull in voltage the first resonance frequency drops to zero due to the increase of the electrostatic
force. Also, we show the influence of the initial deflection on the first two resonance frequencies.
As displayed in Figure 6b, the pull in voltage increases as we increase the initial deflection. At a
constant DC voltage, the initial deflection shifts the resonance frequency of the microplate. This is due
to the increase of the gap distance which reduces the electrostatic force, i.e., an important actuation
voltage is needed to bend the microplate.
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Figure 7. The effect of initial deflection on (a) the first and (b) the second resonance frequency of the microplate.

6. Nonlinear Dynamic Analysis

For n grid points, the total number of differential equations to solve is equal to 2n− 5, which is
increases the computational time. To reduce the number of equations, we write the radial displacement
ui as a function of wi using Equation (35). Therefore, Equation (34) can be transformed into:
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[
Ẍ + CẊ + DX + DsqXsq + DcbXcb

]
× (gd + X)2 = αeV2(t) (54)

where
X = {wi}i=2,··· ,n−2 Ẋ = {ẇi}i=2,··· ,n−2 Ẍ = {ẅi}i=2,··· ,n−2

Xsq =
{

wiwj
}

i,j=2,··· ,n−2
i≤j

Xcb =
{

wiwjwk
}

i,j,k=2,··· ,n−2
i≤j≤k

gd =
{

1− wi
0

}
i=2,··· ,n−2

(55)

Equation (54) is solved using DQM coupled with the HBM and the ANM, as it is defined in [63,64].
Doing so, one can plot the nonlinear frequency and force responses of the CMUT under
primary resonance.

6.1. Frequency Response

The frequency response of the microplate is obtained by solving Equation (54) at different
excitation frequencies. In order to examine the convergence of the DQM with respect to the number of
grid points we simulate the frequency response of a CMUT actuated with a DC voltage Vdc = 50 V
and an AC voltage Vac = 1 V for a quality factor Q = 100. In Figure 8, we present the effect of the
number of the grid points on the frequency response of the CMUT around its first resonance frequency.
The use of a low number of points (n = 6) leads to a shift in the resonance frequency and an error
in the response of the microplate. By increasing n, the nonlinear response of the CMUT converges,
and the use of 10 grid points is sufficient to describe the nonlinear dynamic response of the device.
The maximum error between the two curves for n = 10 and n = 17 is less than 1%.
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Figure 8. Convergence of the dynamic solution of the microplate actuated with Vdc = 50 V and
Vac = 1 V in the case of a quality factor Q = 100.

In order to investigate the effects of the actuation voltages, we plot in Figure 9 the frequency
response of the CMUT actuated with Vac = 1 V and for several DC voltages. For a low DC voltage
(Vdc = 20 V), the vibration amplitude of the microplate is low and the system exhibits a linear behavior.
By increasing the DC voltage, the out-of plane displacement w(r, t) increases and the curve bends
to the left and displays a softening behavior due to the increase in the electrostatic nonlinearities.
Moreover, the resonance frequency decreases due to the negative stiffness term which is proportional
to V2

dc and inversely proportional to the cube of the gap distance as it is shown in Equation (50).
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Figure 9. Effects of changing the DC voltage on the frequency responses of the microplate for a
Vac = 1 V and with a quality factor Q = 100.

Unlike the effect of Vdc on the CMUT frequency response, Figure 10 shows that the variation
of the AC voltage has a significant impact on the excitation amplitude and a negligible one on the
negative electrostatic stiffness. Actually, increasing Vac leads to an increase in the vibration amplitude
and enlarges the bistability domain without any remarkable frequency shift. This phenomenon is
displayed in Figure 10a,b for the case of low and high DC voltage.

In Figure 10a, the CMUT is actuated with a DC voltage Vdc = 20 V. In this case, the increase of the
AC voltage from Vac = 3 V up to Vac = 4 V leads to an increase in the hardening effect on the nonlinear
behavior of the CMUT, while vibrating slightly below the critical amplitude [65–68]. This is due to
the fact that the geometric nonlinearities dominate the microplate dynamics. By increasing more the
AC voltage up to (Vac = 5 V), the CMUT exhibits a mixed behavior [69] due to the increase of the
electrostatic force [70], which increases the CMUT vibration up to 80% beyond the critical amplitude.

Remarkably, for Vdc = 50 V (Figure 10b), the increase of the AC voltage leads to a softening
behavior beyond the critical amplitude, due to the dominance of the electrostatic nonlinearities over
the geometric nonlinearities.

The proposed model enables the capture of the main dynamical phenomena of the CMUT in the
frequency domain, which describes the competition between mechanical and electrostatic nonlinearities.

In Figure 11, we present the effect of the initial deflection on the frequency response of a microplate
actuated with the same AC and DC voltage (Vdc = 20 V and Vac = 4 V. While a flat microplate has
a softening behavior, an increase in the initial deflection leads to a change in the CMUT behavior
from softening to hardening. The initial deflection increases the gap distance between the two
electrodes, which decreases the electrostatic force. In this case, the geometric nonlinearity becomes
larger compared to the electrostatic nonlinearity. Consequently, the frequency response curve bends to
the right and exhibits a hardening behavior.
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Figure 10. Effects of the AC voltage on the frequency responses of the microplate for: (a) a weak DC
voltage (Vdc = 20 V; Q = 100). (b) a high DC voltage (Vdc = 50 V; Q = 100).
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Figure 11. The effect of the initial deflection on the frequency response for the case of microplate
excited with Vdc = 15 V and Vac = 0.25 V.

6.2. Force Response Analysis

For a better understanding of the effect of the excitation amplitude, we display in Figure 12 the
force response curves of a circular CMUT with different initial deflections. The force response curves
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are constructed by varying the excitation voltage Vac while the excitation frequency ω and the bias
voltage Vdc are set to constant values. For a null AC voltage, the vibration amplitude is equal to
zero, because in this case the CMUT is excited only with a DC voltage. For a low Vac, the solution
amplitude has one possible solution. By raising the AC voltage, the vibration amplitude increases and
the dynamic solution becomes nonlinear and displays bistability.

In Figure 12, we display the effect of an initial deflection on the force response curve in the case of
a softening behavior. It is shown that as the initial deflection increases, the bifurcation point is shifted
to the right, which enlarges the bistability domain. This is due to the increase in the effective gap
distance, which means that a higher AC voltage is needed to reach the bifurcation point.

V
ac

 [V]

0 5 10 15 20

v
e
lo

c
it
y
 [
m

/s
]

0

1

2

3

4

5

6

7
w

0
=100 nm

w
0
=50 nm

w
0
=0 nm

w
0
=-50 nm

w
0
=-100 nm

Figure 12. The effect of initial deflection on force response curve, at fixed frequency f = 1 MHz and
for Vdc = 40 V and Q = 500.

7. Conclusions

In this paper, the mathematical model of a circular CMUT has been derived while taking into
account the effects of an axisymmetric initial deflection and the main sources of nonlinearities.
The partial differential equations have been spatially discretized using the DQM. The resulting
equations are then transformed into coupled ODEs. For the CMUT static behavior, we presented the
good agreement between the experimental results and the numerical solutions, which proves that DQM,
with only 10 grid points, is an efficient tool to study the static response of such a device. We showed
that a positive initial imperfection increases the pull-in voltage of the CMUT. Also, we presented an
approximation of the effective gap distance that can be used with a flat plate model to predict the
pull-in voltage.

The numerical model has been also used to investigate the effect of the initial deflection on the
resonance frequencies of a CMUT at several DC voltages. For the nonlinear frequency responses,
the ODEs have been solved using the HBM coupled with the ANM. It has been shown that the CMUT
can exhibit a hardening, a softening or a mixed behavior depending on the forcing parameter Vdc.
Also, we have highlighted that the initial deflection can change the frequency response of the CMUT
from softening to hardening, by increasing the effective gap distance, which decreases the electrostatic
nonlinearities. Finally, we have shown that the initial deflection shifts the bifurcation points to the
right while enlarging the bistability domain.

Future work will include the investigation of the effects of the squeezed air film and the fluidic
medium on the nonlinear response of the microplate.
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Appendix A

The continuation method is used to determine how the solution of a system varies with respect to
a certain parameter. We consider the following algebraic system:

F(X, α) = 0 (A1)

where α is the continuation parameter and X is the unknown parameter X ∈ Rn. The algebraic
system (A1) can have many branches for the same parameter α. Therefore, the continuation method is
used to follow the path of a solution branch at an initial parameter α0. The determination of all the
initial solution X0 can be done using a homotophy algorithms [71–73].

In order to solve this algebraic system (A1) we use the arclength continuation technique to
determine how the solution changes with respect to α. The idea of this method is to avoid varying
the parameter α by parametrizing the variables X and α via a new variable s, X = X(s) and α = α(s).
The system of equations becomes:

F(X(s), α(s)) = 0 (A2)

To solve the system of equations we add an additional equation specified by Euclidean arclength
normalization [74].

XTX + α2 = 1 (A3)

where the initial conditions for (A2) and (A3) are given by

X = X0 and α = α0 at s = 0 (A4)

Compared to the sequential continuation method, the arclength method is more automatic in
determining the solution branches because this method follows the branches of the solution which
makes it possible to determine the branches in the case of the turning point.
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