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Abstract: The recent development of the Internet of Things (IoT) in healthcare and indoor air quality
monitoring expands the market for miniaturized gas sensors. Metal oxide gas sensors based on
microhotplates fabricated with micro-electro-mechanical system (MEMS) technology dominate the
market due to their balance in performance and cost. Integrating sensors with signal conditioning
circuits on a single chip can significantly reduce the noise and package size. However, the fabrication
process of MEMS sensors must be compatible with the complementary metal oxide semiconductor
(CMOS) circuits, which imposes restrictions on the materials and design. In this paper, the sensing
mechanism, design and operation of these sensors are reviewed, with focuses on the approaches
towards performance improvement and CMOS compatibility.

Keywords: gas sensor; metal oxide (MOX) sensor; micro-electro-mechanical system (MEMS);
microhotplate

1. Introduction

Gas sensors have been widely applied in various fields, such as agriculture [1], automotive [2],
industrial, indoor air quality monitoring [3] and environmental monitoring [4,5]. Recently,
the prevalence of the Internet of Things (IoT) stimulates the development of sensors with small sizes
(<10 mm× 10 mm× 10 mm) [6]. In addition, miniaturization of the gas sensors drives the development
of electronic noses (E-nose) in various fields, such as food quality control [7,8], disease diagnosis [9,10]
and indoor air contaminants classification [11]. Micro-electro-mechanical systems (MEMS) technology
is crucial to design and fabricate miniaturized gas sensors with excellent performance such as low
power consumption (<100 mW), high sensitivity and fast response/recovery [12]. Additional benefits
come from the low cost of the sensor from batch fabrication and the potential to integrate them with
signal conditioning circuits.

The gas sensors can be categorized into four types according to Janata [13]: (1) mass sensors;
(2) optical sensors; (3) thermal sensors; and (4) electrochemical sensors. A comparison of these four
types of sensors is summarized in Table 1, and their relative sizes and power consumptions are shown
in Figure 1.
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Table 1. Comparison of the four types of gas sensors.

Sensing Principle Advantages Disadvantages

Mass High sensitivity, good reliability,
fast response

Piezoelectric substrates
are temperature dependent

Optical High sensitivity, stability over
a long lifetime, good selectivity

Difficulty in miniaturization,
high cost, high power consumption

Metal oxide (MOX) Low cost, long lifetime, fast response Relatively poor selectivity, drift in performance,
sensitive to background gas

Thermal (Catalytic) Low cost, fast response Detection of flammable gas only, catalyst poisoning,
selectivity depends on sensitizersMicromachines 2018, 9, x FOR PEER REVIEW  3 of 24 

 

 
Figure 1. Comparison of the size and power consumption of the four types of gas sensors. 

Table 1. Specifications of commercial metal oxide (MOX) gas sensor products. 

Company ams AG 
Bosch 

Sensortec 
Figaro Sensirion 

Product No. iAQ-core P CCS811 AS-MLV-P2 BME680 TGS8100 SGPC2 
Dimension (mm) 15.24 × 17.78 2.7 × 4.0 × 1.1 9.1 × 9.1 × 4.5 3.0 × 3.0 × 0.93 3.2 × 2.5 × 0.99 2.45 × 2.45 × 0.9 

Target Gas CO2, TVOC CO2, TVOC VOC TVOC H2, C2H5OH TVOC 
Power 

consumption/Current 
9 mW 1.2–46 mW 34 mW 

<0.1 mA in 
sleep mode 

15 mW 
1 mA in low 
power mode 

Supply Voltage (V) 3.3 1.8–3.6 2.7 1.2–3.6 1.8 1.62–1.98 
Package SMD LGA - LGA Ceramic DFN 
Interface I2C I2C Analog I2C and SPI - I2C 

The demand for continuous miniaturization and power consumption reduction drive the research of 
MOX gas sensors towards direct integration of the MEMS sensing structure with the integrated circuits for 
signal conditioning circuits [23]. This integration is conventionally realized with the multi-chip approach in 
which the sensor and circuits are designed and fabricated on separate chips. Multi-chip integration enables 
independent optimization of the MEMS sensor and CMOS circuits. It also provides more flexibility in the 
design and fabrication, so that less development time is required. However, extra cost is incurred by the 
complex packaging and wire bonds. The parasitic element of interconnections gives rise to additional noise. 
A more advanced way for CMOS-MEMS integration is the monolithic approach, where the sensor and 
circuits are designed and fabricated on a single substrate. The monolithic integration enhances the 
performance of the sensor by reducing its size, power consumption and noise [24]. The high development 
cost and long development cycle can be offset by reduced packaging cost for large-volume manufacturing. 
The challenge of the monolithic approach is the limitation of materials available for the CMOS processes 
[25], which will be discussed in detail in this review.  

Different aspects of the CMOS-MEMS integration technology have been reviewed by many 
researchers. For example, Qu focused on the fabrication technologies [26], Li et al. focused on 
electrochemical biosensors [27], Fischer et al. focused on the integration approaches of MEMS and 
integrated circuits (IC) and Hierlemann et al. reviewed the fabrication techniques of all the four types of 
chemical sensors [28]. This review specifically focuses on the recent development in metal oxide CMOS-
MEMS gas sensors based on a monolithic approach. The sensing mechanism of metal oxide will be 
introduced first to define the parameters used to evaluate the performance of the sensor and understand 
the necessity of the microhotplate in the sensor. The design concerns of the microhotplate are then 
discussed, with an emphasis on selecting CMOS compatible materials and achieving lower power 
consumption. Next, the characteristics and synthesis methods of sensing material are briefly discussed. Last, 
the challenges for integration of the circuit and the sensor are explored. 

Figure 1. Comparison of the size and power consumption of the four types of gas sensors.

The mass sensors measure the frequency shift of the acoustic wave when foreign particles or
molecules are absorbed onto the surface of an oscillating structure. Gravimetric sensors, such as
quartz crystal microbalances (QCM), surface acoustic wave (SAW) sensors, surface transverse wave
(STW) sensors and shear-horizontal acoustic plate mode (SH-APM) sensors, use quartz crystals with
different cuts as the oscillating structure. They are extremely sensitive, with resolutions down to
nanogram level. The frequency shift was observed to have an approximately linear relation with the
concentration of the gas by Öztürk et al.; additionally, the sensitivity of their QCM sensor can reach a
few hertz per ppm [14]. However, the acoustic wave properties heavily depend on the temperature,
which gives rise to environment requirements for their applications. Moreover, quartz is not compatible
with complementary metal oxide semiconductor (CMOS) processes, and thus, monolithic integration
remains challenging.

Thermal sensors detect the gas by the temperature-induced resistance change when combustion
reactions take place in catalytic materials. The sensors are low cost and reliable in dusty environments;
hence, they are widely used in industrial applications. However, catalytic based reactions restrict the
applications of these sensors to flammable gases such as hydrogen, methane, propane and butane.
Moreover, catalytic poisoning may deteriorate the long-term stability of the sensors.

Optical sensors recognize the gas by absorption of light with certain frequencies. These frequencies
are closely related to the oscillation of molecules; the spectrum suggests that the bonds exist in the
molecules. Optical sensors are highly selective and have much higher cost than the other three types
because of the complex interferometer mechanisms and the light source. The interferometer and light
source also impose challenges on their miniaturization and system integration. Therefore, the high
cost and power consumption limit their on-site applications, and most optical sensors still remain as
laboratory apparatus [15].

Electrochemical sensors are based on the change in electrical properties when target gas diffuses
and reacts with the sensing material. Electrochemical sensors are relatively easy to be miniaturized
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and manufactured with microfabrication technologies. Successful miniaturizations include field effect
transistor (FET) gas sensors and metal oxide semiconductor (MOX). FET sensors are based on the
change of the threshold voltage when gas molecules reach the gate material. It is fully compatible with
CMOS processes and has a sub-milliwatt level power consumption. However, metal gate materials,
such as palladium and platinum, are only sensitive to hydrogen. Recently, many works have been
done on the gate design to improve the performance of the FET sensors by applying nanomaterials,
such as carbon nanotubes [16] and graphene [17], or by a thin charge inversion layer [18]. MOX gas
sensors measure the conductance change of the metal oxide layer and play a dominant role in both
research studies and commercial products because they have the most balanced overall performance
and low fabrication cost.

Companies such as ams AG [19], Bosch Sensortec [20], Figaro [21] and Sensirion [22] have
developed successful commercial MEMS MOX gas sensors for indoor air quality management to detect
volatile organic compounds (VOCs). The specifications of some of their products are listed in Table 2.
The size of the system depends not only on the hotplate, but also on the package and supporting
components. Packaging technology is beyond the scope of this review.

Table 2. Specifications of commercial metal oxide (MOX) gas sensor products.

Company ams AG Bosch Sensortec Figaro Sensirion

Product No. iAQ-core P CCS811 AS-MLV-P2 BME680 TGS8100 SGPC2

Dimension (mm) 15.24 × 17.78 2.7 × 4.0 × 1.1 9.1 × 9.1 × 4.5 3.0 × 3.0 × 0.93 3.2 × 2.5 × 0.99 2.45 × 2.45 × 0.9

Target Gas CO2, TVOC CO2, TVOC VOC TVOC H2, C2H5OH TVOC

Power
consumption/Current 9 mW 1.2–46 mW 34 mW <0.1 mA in sleep

mode 15 mW 1 mA in low
power mode

Supply Voltage (V) 3.3 1.8–3.6 2.7 1.2–3.6 1.8 1.62–1.98

Package SMD LGA - LGA Ceramic DFN

Interface I2C I2C Analog I2C and SPI - I2C

The demand for continuous miniaturization and power consumption reduction drive the research
of MOX gas sensors towards direct integration of the MEMS sensing structure with the integrated
circuits for signal conditioning circuits [23]. This integration is conventionally realized with the
multi-chip approach in which the sensor and circuits are designed and fabricated on separate chips.
Multi-chip integration enables independent optimization of the MEMS sensor and CMOS circuits.
It also provides more flexibility in the design and fabrication, so that less development time is required.
However, extra cost is incurred by the complex packaging and wire bonds. The parasitic element of
interconnections gives rise to additional noise. A more advanced way for CMOS-MEMS integration
is the monolithic approach, where the sensor and circuits are designed and fabricated on a single
substrate. The monolithic integration enhances the performance of the sensor by reducing its size,
power consumption and noise [24]. The high development cost and long development cycle can be
offset by reduced packaging cost for large-volume manufacturing. The challenge of the monolithic
approach is the limitation of materials available for the CMOS processes [25], which will be discussed
in detail in this review.

Different aspects of the CMOS-MEMS integration technology have been reviewed by many
researchers. For example, Qu focused on the fabrication technologies [26], Li et al. focused on
electrochemical biosensors [27], Fischer et al. focused on the integration approaches of MEMS and
integrated circuits (IC) and Hierlemann et al. reviewed the fabrication techniques of all the four types
of chemical sensors [28]. This review specifically focuses on the recent development in metal oxide
CMOS-MEMS gas sensors based on a monolithic approach. The sensing mechanism of metal oxide
will be introduced first to define the parameters used to evaluate the performance of the sensor and
understand the necessity of the microhotplate in the sensor. The design concerns of the microhotplate
are then discussed, with an emphasis on selecting CMOS compatible materials and achieving lower
power consumption. Next, the characteristics and synthesis methods of sensing material are briefly
discussed. Last, the challenges for integration of the circuit and the sensor are explored.
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2. Sensing Mechanism

The reaction between the target gas and the metal oxide film is composed of the reaction of
the target gas with metal oxide molecules, as well as the preabsorbed oxygen species. The sensing
process consists of three steps: diffusion of the target gas molecules onto the surface of the metal oxide,
adsorption of the gas molecules into the metal oxide and reaction between the gas and metal oxide.

In the case of n-type semiconductor metal oxides, the sensing mechanism can be explained by
the double Schottky barrier model [29]. The interaction between the metal oxide and the oxygen
molecules in air or other oxygen-containing environment generates different oxygen species, such as
O2(α1), O−2 (α2), O−(β) and O2−(γ) (Equations (1)–(3)):

O2 + e− 
 O−2 (1)

O−2 + e− 
 2O− (2)

O− + e− 
 O2− (3)

The released electrons are trapped in the conduction band, forming depletion layers on the
surface of the grains. The double Schottky barrier and upward bending of the conduction band at
the grain boundaries lead to an increase in the resistance of metal oxide film. When a reducing agent,
such as hydrogen, carbon monoxide or ethanol, is brought into contact with the metal oxide film,
the resistance drops because of the neutralization of the oxygen species and mitigation of potential
barriers. Conversely, an oxidizing agent, such as NO2, competes with the oxygen species for the
electrons and further increases the resistance of the film.

The response of the sensor is defined by the ratio of the resistance of the sensing material before
and after exposure to the target gas (Equations (4) and (5)) [29], where Ra and Rg are the resistance of
the thin film before and after exposure to the target gas, respectively. Sometimes, the net change in
resistance replaces the numerator.

S =
Ra

Rg
, for n− type semiconductor (4)

S =
Rg

Ra
, for p− type semiconductor (5)

The reaction rate between the chemical species and metal oxide film governs the response of
the gas sensor. The α and β species dominate the temperature below and above 300 ◦C, respectively,
while the γ type starts to appear from 550 ◦C onwards [30]. The reactive species are relatively unstable
if the temperature is further increased and the dissolved oxygen atoms compete with the target gas
for available active sites. In addition, a further increase in the temperature causes desorption of
absorbed gas, causing the sensor response to be further reduced. Therefore, the response of a gas
sensor versus the temperature behaves like a bell-shaped curve, with the maximum response obtained
at the optimum operating temperature. This optimum temperature varies with respect to the types
of metal oxides and the target gas. Therefore, gas sensors usually contain a heating element and an
external or internal temperature system to ensure the optimal performance of the sensor.

The response has to be closely related to the centration of gas for effective detection. At a fixed
temperature, the sensor response increases with respect to the concentration of the gas due to an
increase in carrier concentration and mobility, which can empirically be represented by the power law
(Equation (6)) [31]:

S = Ag·Pg
m (6)

where Ag and m are constants and Pg is the partial pressure of the gas, which is proportional to the
concentration of the gas. The value of m depends on the concentration of oxygen species when the
metal oxide is exposed to air and is specific to each pair of target gas and metal oxide. The value of m
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can be approximated by theoretical approaches. Recently, Hua et al. proposed reduced receptor and
transducer functions to calculate the value of m [32]. Figure 2a,b show a typical response of WO3 gas
sensor to NO2 [33]. The effects of concentration on the response of the sensor can be clearly observed.
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respect to NO2 in dry and humid air (b) response of the laboratory sensor as a function of NO2

concentration (from [33]).

Additionally, the sensor response has a strong dependency on the grain size of the metal oxide
crystal. Xu et al. [34] found that the resistance of the SnO2 gas sensor in response to reducing gas would
decrease sharply when the grain size fell under two times of the width of the depletion layer, since
electron transport was suppressed due to fully depleted grain. Rothschild and Komen showed from a
numerical simulation that the sensitivity is proportional to the inverse of the grain size [35]. Yamazoe
and Shimanoe proposed the volume and regional depletion concept to formulate the response for
small crystals and crystals with planar, spherical and cylindrical shapes [36].

3. MEMS Microhotplate

3.1. Device Layers and Design Considerations

The device structures of a traditional metal oxide gas sensor and a MEMS-based metal oxide gas
sensor are shown in Figure 3a,b, respectively. A metal oxide semiconductor gas sensor usually consists
of three main components: the microhotplate for temperature elevation, the sensitive material for gas
detection and the electrodes for signal transmission. The microhotplate includes a substrate layer,
an insulation layer, a heater layer and a passivation layer. The detailed layers are listed as follows:

• The substrate.
• The bottom silicon oxide/nitride layer, which insulates the heating element from the substrate.
• The heating element layer and an adhesion layer, if necessary. Sometimes, temperature sensing

elements, such as resistance temperature detectors (RTD), are also fabricated on this layer
to monitor the temperature of the microhotplate and provide a reference in the temperature
control loop.

• The top silicon nitride/oxide layer, which serves as the insulation between the heater and the
sensing material or electrode and passivation layer to prevent catalytic interaction between the
target gas and the heater material [37].

• The electrode layer.
• The sensing material layer.
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Figure 3. Schematics of (a) a traditional metal oxide gas sensor and (b) a microhotplate metal oxide
gas sensor.

The performance of a sensor is usually evaluated by its 4S, i.e., sensitivity, speed, stability and
selectivity. In gas sensor applications, the sensitivity is expressed by the response and detection range.
The speed is evaluated by the response and recovery time, which is defined as the time taken to achieve
90% of the change in the resistance. In addition to the 4S, the power consumption of the sensor needs
to be minimized due to the voltage and current limit for miniaturized sensors. Extensive studies have
been conducted to improve the design of each component for the optimized performance; these will
be reviewed accordingly in this section.

The function of the microhotplate is to raise the temperature of the sensitive material to its
optimum operating temperature and it is the main source of power consumption in the gas sensor.
Bhattacharyya [38] and Spruit [39] have given excellent reviews on the design of microhotplates,
concerning the power consumption, temperature homogeneity and mechanical stability.

3.2. Microhotplate

3.2.1. Substrate

Silicon is the mainstream substrate material for micro gas sensors due to its capability with
IC fabrication processes and the potential for CMOS integration as a monolithic system for in-situ
sensing and processing. Non-silicon materials, such as ceramics (alumina, zirconia), borosilicate
glass [40], silicon carbide [41] and plastic [42], are also explored for applications in harsh conditions.
These sensors are beyond the scope of this review due to the technological limitations to integrate
them with the traditional CMOS circuits at the current stage. The substrate material of all sensors
discussed in the following sections of this review is silicon.

3.2.2. Microhotplate Configurations to Reduce Power Consumption

The majority of the power consumed by the microhotplate is converted into thermal energy and
dissipated into the surroundings. Therefore, it is essential to suppress the heat loss from the various
heat transfer processes, i.e., the conduction from the sensing area to the substrate, the conduction from
sensing area to the air, the convection from the sensing area to air and the radiation to the environment.
The amount of heat transfer can be obtained from the Equations (7)–(9) [43]:

Qcond = −kAcond∇T (7)

Qconv = hAconv(T s − Ta) (8)

Qrad = εAradσ(T
4
s − T4

b) (9)

where k is the thermal conductivity of the film material; h is the coefficient of convection of air; ε
is the emissivity of the microhotplate; σ is the Stefan-Boltzmann constant; Acond, Aconv and Arad
are the areas of the surfaces where each heat transfer process takes place; ∇T is the temperature
gradient within the solid; Ts is the surface temperature; Ta is the ambient temperature; and Tb is the
temperature of the surrounding material, such as the substrate or the package. From Equations (7)–(9),
the power consumption can only be reduced by reducing the operating temperature or the area
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of heat loss. Reduction in the operating temperature can be achieved by depositing metal oxide
films with nanostructures, whose response can be compensated by the surface area to volume
ratio. Nanostructures and their synthesis method will be discussed in Section 3.4. The latter relies
on removing as much material between the heat source and sink as possible and corresponds to
the approaches of temperature isolation. Therefore, given the same sensing material, the power
consumption can only be minimized by area reduction.

Conduction and convection are the main heat loss mechanisms. Although some studies treated
conduction as the primary mechanism [44–46], it is suppressed in microhotplates because of the
thin features. Heat loss through convection is comparable and may contribute to up to 60%
of the total heat loss in some cases [47,48]. The area in Equation (7) refers to the contact area
between the high-temperature zone and the rest of the microhotplate; hence, power consumption
can be reduced by geometry optimization. Closed membrane, suspended membrane and bridge
(Figure 4a–c, respectively) are the main configurations adopted in previous studies. The substrate
right underneath the sensing region is etched away in all three configurations, eliminating the largest
contact area. Air acts as heat insulation material due to its much lower thermal conductivity than
silicon (0.018 Wm−1 K−1 compared to 145 Wm−1 K−1 for silicon).
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At the expense of reduced power consumption, the mechanical structure of the microhotplate
becomes more fragile due to less supporting materials; thus, the configuration must be designed
according to the applications. Closed membranes are preferred for commercialized products or on-site
applications since the sensors need to withstand vibrations. In research on the other hand, suspended
membranes are more popular, since it is able to push the power consumption performance to a
limit. In addition, its low thermal inertia contributes to fast response and recovery time and enables
reliable temperature modulation. The suspended membrane can either be released from the front
side (Figure 5a) or the back side (Figure 5b). Front-side etching requires additional protection of the
structure layer or sacrificial layer to create the cavity. Therefore, back-side etching is more common
for the sake of simplicity of the processes. Efforts are made to improve the mechanical stability of the
suspended structure. Iwata et al. [49] has proposed to reinforce the bridges with the thick polymer layer
SU-8 due to its extremely low thermal conductivity (0.2 Wm−1K−1) compared to silicon, as well as its
compatibility with micromachining processes. However, the reinforced layer increases the fabrication
complexity, which is why it has not been adopted in other studies so far. The bridge configuration is
an extreme case of the suspended membrane. It further reduces the area for conduction by leaving
only two bridges to suspend the hotplate. However, it suffers more from the mechanical instability,
as well as the smaller sensing area due to the shrunk hotplate; hence, it is not widely applicable in
research works and commercial products.
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Both of the areas in Equations (8) and (9) refer to contact area between the microhotplate and air.
This area is usually predetermined by the overall size of the device; hence, not much improvement can
be made during the design. The convection heat loss to the air can be obtained by fluid simulations [50].
This is ignored in most studies because it only takes up a negligible percentage. Radiation loss soars
with the fourth power of the temperature in Kelvin. Pike and Gardner claimed that convection
contributes to less than 10% of the total heat loss for applications below 500, according to their lumped
element model [51]. Mele et al. claimed from the same model that the radiative loss needs to be taken
into account when the temperature reached 600 ◦C, and is more significant than conductive loss for
temperatures above 1000 ◦C.

A Finite Element Method (FEM) electro-thermal simulation is commonly implemented during
the microhotplate design process for optimization of the temperature distribution and power
consumption. A large variety of commercially available software such as ANSYS [49,52–56], COMSOL
Multiphysics [57–63], ConventorWare [64,65], ISE TCAD [66–68] and MEMCAD [69] has been used.
Figure 6 shows the temperature distribution of a suspended membrane microhotplate without a gas
sensitive layer for a target temperature of 700 ◦C [54]. Note that only a quarter of the device was used,
as the geometry and symmetry boundary conditions were applied to improve the efficiency of the
simulation. In addition to the temperature distribution and uniformity, numerical simulation can also
provide critical information for structure design such as the vertical displacement and the maximum
stress. However, accurate results are difficult to obtain due to limited access to the properties of thin
films and simplifications made in these simulations. The thermal conductivities of the oxide, nitride
and metal layers are often directly extracted from open literature. However, the real values vary
between different foundries, depending on the conditions of the deposition processes. In addition
to the structure layer, introducing the sensing layer makes the thermal analysis of the microhotplate
more complicated. The anisotropy of the nanostructures makes its properties hard to be characterized.
Moreover, this layer cannot be simply ignored, because the high thermal conductivity of the metal
oxide contributes to the temperature uniformity [70]. Therefore, an on-site measurement of thermal
conductivity is required; however, no group has done it so far to the best of the author’s knowledge.

The temperature profile of the optimized geometry has to be validated by the measurements of
an infrared radiation (IR) camera or IR pyrometer. The relationship between the power consumption
and the temperature of the hotplate can be obtained by the thermal image together with the measured
voltage and current.

The microhotplate is a sandwiched structure formed by the insulation layer, the heater layer
and the passivation layer to support the sensing material. Concerns in high-temperature stability
determine the material and processes of the sandwiched layers. Residual stress and mismatch in
thermal expansion coefficient induce a vertical displacement of the microhotplate at high temperatures
and may lead to delamination [48]. Large displacement or weak adhesion might lead to structural
failure. Rao et al. reported that the plasma-enhanced chemical vapor deposition (PECVD) nitride
layer would peel off easily at a temperature above 691 ◦C, and thus, the low pressure chemical vapor
deposition (LPCVD) nitride layer was adopted instead in their molybdenum hotplate [71]. Low-stress
nitride (SixNy) or oxide/nitride/oxide (ONO) layer [63,72–74] is preferred for their low residual stress
and good adhesion to metal. Except for nitride and oxide, silicon carbide is also explored as the



Micromachines 2018, 9, 557 9 of 24

alternative passivation material by Saxena et al. [75]. A reduced thickness of the material is required to
achieve similar thermal behavior, however, the nitride layer is still preferred because of the low cost
and simplicity of the CMOS processes.
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3.2.3. Heater Material

The heating element material has to be stable at high temperature and is preferred to have a linear
relationship (Equation (10)) between its resistance and temperature within the operation range:

R = R0 (1+ α(T − T0)) (10)

where T0 is the baseline temperature, R0 is the resistance at the baseline temperature, α is the
temperature coefficient of resistance T is the operating temperature and R is the resistance at the
operating temperature. The linear behavior assisted the measurement and control of temperature and
simplified the signal processing steps. The temperature measurement was either performed by the
heater itself or a thermometer on the same plane.

Chemical and mechanical stability at high temperatures were the main concerns for heater
material selection. Platinum heaters are the most extensively studied material due to its high thermal
conductivity and stability up to 600 ◦C, which is above the optimum operating temperature of
most metal oxides. A layer of titanium or tantalum with tens of nanometers thickness is usually
sandwiched between the platinum and insulation layer for better adhesion. For operations above
500 ◦C, titanium is not recommended, because it will diffuse into the platinum layer and form
precipitates on the grain boundaries [76], whereas tantalum shows better behavior due to its function
as a diffusion barrier [77,78]. Ceramic adhesion films have also been investigated. Ababneh et al.
reported that titanium dioxide adhesion layer would not diffuse into platinum for temperatures up to
800 ◦C [76]. Halder et al. obtained stable performance of electrodes on a platinized substrate at 1000 ◦C,
with aluminum oxide as the adhesion layer, due to an increase in grain size [79]. Although TiO2 and
Al2O3 show much better adhesion performance, their applications are restricted by the feasibility of
integration into the CMOS process due to their high-temperature deposition conditions. In addition to
single layer adhesion films, a Cr/CrN/Pt/CrN/Cr multilayer approach was demonstrated by Chang
and Hsihe [80], which shows improved adhesion and structural stability up to 480 ◦C. However,
the multilayer approach has not been widely applied, because it introduces extra depositing and
etching steps to the fabrication processes.

Doped polysilicon is another widely adopted heater material with linear resistance-temperature
relations. It is a fully CMOS-compatible material and the adhesion problem no long exists. However,
polysilicon is only suitable for operating temperatures below 500 ◦C, beyond which the recrystallization
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of polysilicon will cause drift in resistance [81]. Special packaging techniques, such as inert gas sealing,
are required to alleviate this problem [82], which are not preferred for commercialization due to its
higher cost.

For microhotplates operating above the stability point of platinum and polysilicon,
molybdenum [47,71] and tungsten [50,83,84] heaters were studied for applications in harsh conditions.
Other than these two metals, Creemer et al. investigated microhotplates based on CMOS compatible
titanium nitride (TiN) heater and operating temperature can reach up to 700 ◦C but the high stress of
TiN decrease the yield of the device [48]. The materials above are relatively high cost and mainly used
in applications above 300 ◦C. More affordable materials, such as nickel, serve as better alternatives
for operating temperature below 300 ◦C [55]. Table 3 summarizes the maximum temperature and
CMOS compatibility of the various heater materials. Doped polysilicon and tungsten are preferred for
monolithic CMOS-MEMS devices due to their compatibility with the processes and their temperature
range can cover most operating temperature of the metal oxides.

Table 3. Comparison of maximum temperature and complementary metal oxide semiconductor
(CMOS) compatibility among various heater materials.

Heater Material Maximum Temperature (◦C) CMOS Compatibility Reference

Pt 600 No [85]
Doped polysilicon 500 Yes [81]

Ni 300 No [55]
Mo 800 No [71]
W 700 Yes [86]

TiN 700 Yes [48]

3.2.4. Heater Geometry to Improve Temperature Uniformity

Both electro- and thermo-migration of the material could cause the degradation of the heater [87].
The former cannot be avoided due to the high operating temperature while the latter depends
on the local temperature gradient. Therefore, maintaining the temperature uniformity across the
microhotplate is the key to ensure the stable performance of the sensor over its lifetime.

Temperature uniformity can be improved by attaching a layer of material with high thermal
conductivity to the microhotplate. The high thermal conductivity material can either be a silicon
island [69] left after back side etching or a metal heat spreader plate [49,88] deposited above the
heating element (Figure 7).
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Figure 7. Silicon island and metal heat spreader application on a microhotplate.

Alternatively, optimization of heater geometry with simulation and validation experiments
has a significant impact on the temperature uniformity across the microhotplate. Meander, double
spiral and drive-wheel are the main geometries reported (Figure 8). Meander shape is, thus far,
the most extensively studied one due to its simple geometry. Lee et al. reported that hotspots
formation at the center of the meander heater may lead to large temperature variations across the
plate [67]. Their numerical simulations and experiments showed remarkably improved temperature
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uniformity of the drive-wheel type compared to other designs, such as the ultra-low resistance and the
honeycomb design.
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Except for the sandwiched structure of the microheater, insulation and electrode layers, the heater
and electrode can be fabricated on the same plane provided the same material is used (Figure 9a,b).
This co-planar design reduces the number of lithography, patterning and etching steps required
during the fabrication process. The coplanar heater can also eliminate the parasite capacitance formed
between the heater and the sensing layer in sandwiched design [89]. Hwang et al. claimed that
coplanar configuration is also advantageous for effective and rapid diffusion.
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(from [90]).

Besides heater electrode deposited on a planar surface, a microhotplate with three-dimensional
heater deposited on a three-dimensional V-shape groove was developed for a catalytic type gas
sensor [91]. The heating elements lied on a concave surface to obtain a larger active area. However,
no metal oxide gas sensor has been developed on the three-dimensional heater thus far, possibly due
to the non-uniform temperature distribution across the active area.

3.3. Electrode

The electrode transmits the resistance of the metal oxide film to the signal conditioning circuit
during operation: its material is required to have high electrical conductivity, high-temperature
stability, good adhesion to the passivation layer and low contact resistance [37]. In addition,
the backside/frontside etching to release the membrane is performed after the deposition of the
electrode material. Therefore, the electrode material should be inert to the etchant; otherwise,
a protection layer is required before the etching process. Most of the electrodes for the MEMS gas
sensors are noble metals with an adhesion layer such as Au/Ti, Au/Cr or Pt/Ti. The performance of
the electrode will drift after long time operation. Capone et al. observed the degradation of Au/Ti
electrodes due to diffusion after the continuous operation at 300 ◦C and 600 ◦C. They suggested
applying artificial neural network for signal processing to reduce the drift [92]. Noble metal electrodes
are believed to have catalytic effects to improve the response of the sensor [93]; however, this point has
not been proven yet. In CMOS-MEMS gas sensors, the gold or platinum electrodes are deposited in a
post-CMOS process, because they are not CMOS compatible. Sometimes, aluminum is adopted for a
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full CMOS-compatible process. However, this faces a long-term stability issue under high-temperature
operation. The electrode material is deposited in an interdigitated shape so that the large resistance of
the metal oxide layer is measurable at low voltage and power consumption. A comprehensive review
of the electrode material for both micro gas sensors and traditional gas sensors is given in [94].

3.4. Sensing Material

Eranna has reviewed various types of bulk metal oxide materials and their gas sensing
applications [95]. Both n-type (WO3, SnO2, ZnO, TiO2, V2O5) and p-type (NiO, CuO, Co3O4,)
metal oxide semiconductors have been investigated extensively as the sensing materials. However,
the n-types takes up more than 90% of the work [96], since the mobility of charge carriers of n-type
oxide semiconductors are higher than that of the p-types [30]. Table 4 summarizes the performance of
some microhotplate MOX gas sensors.

As the gas sensing reactions occur through gas adsorption, charge transfer and desorption on
the surface of the sensing materials, the sensing response is highly dependent on the amount of
available surface active sites. In this regard, zero-dimensional nanoparticles with abundant active sites,
due to increased specific surface area, are highly desirable for promoting improved gas adsorption
and prompting more target gas molecules to participate in the oxidation and reduction reactions.
Uniform distribution of nanoparticles with minimum agglomeration is essential to ensure good
gas-sensing reactions for this type of material. One-dimensional (1D) nanostructured materials, such
as nanowire [84,90,97], nanofiber [89], nanotube [98], nanobelts [99] and nanorods [100] are extensively
studied for their high aspect ratio with increased surface-to-volume ratio, giving rise to better stabilities
and superior gas-sensing sensitivity with fast response and recovery time. For these 1D nanostructured
materials, a smaller grain size/diameter and longer length are, in general, more beneficial for
improved gas sensing performance due to the availability of more active sites as the size shrinks
and the improved electron transport along the axial direction. Other than these, a lot of research
interests have been devoted to two-dimensional (2D) nanostructures for their unique morphologies.
These 2D nanostructures, including nanosheets [101] and nanoplates [102], are usually coupled with
porous nanostructures and network-like structures to better facilitate the penetration/adsorption of
gas molecules into the sensing material, leading to an enhanced sensing response. More recently,
three-dimensional (3D) hierarchical nanostructures are receiving increasing attention. These 3D
nanostructures with flower-like, leaf-like and spindle-like morphologies are assembled from the
low dimensional nanomaterials, including 0D nanoparticles, 1D nanorods and 2D nanosheets [103].
They are deemed to give rise to better sensing performance due to their large surface area, abundant
active sites and fast interfacial transport than the low dimensional nanomaterials. Despite of the
promising sensing performance, the challenges of inhomogeneity and poor reproducibility have to
be addressed for more useful applications of these nanostructures. Noble metals are doped into the
metal oxides as chemical or electronic sensitizers to improve the sensitivity, response/recovery time
and selectivity of the gas sensor through the chemical or electronic sensitization mechanism [30].
In chemical sensitization, the noble metal assists the adsorption of the target gas by lowering the
activation energy. The activated gas is then spilled over the surface of the grain. Most noble metal
dopants fall into the electronic sensitization category. The metal particles and their oxidation states act
as electrodes attracting the electrons, decreasing the free electrons in the conduction band and creating
a depletion region [104]. The electrons return to the grain after exposure to reducing air. This leads to
an increase in the resistance and the sensor response (Ra/Rg).

The concentration of noble metal has to be carefully controlled to avoid coagulation. A high
percentage of doping may suppress the functionality of the sensor, since agglomeration may decrease
the total area of the catalyst surface. Adding catalytic layer results in loss of sensitivity over a long
period due to fouling or coking of catalytic metal when exposed to certain gas or vapors. Additionally,
the stability of the sensor is affected by the degradation of the dopant metal. The high-temperature
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degradation of metal oxide materials is not limited by electromigration, but rather by outdiffusion and
evaporation of dopants from bulk materials [105].

The metal oxide sensing layer is deposited via a post-processing process after the fabrication of
the CMOS circuits and the MEMS microhotplate. Guo et al. have given a comprehensive review of the
synthesis methods of metal oxide nanostructures [106]. The sensing material can be synthesized via
chemical vapor deposition (CVD), physical vapor deposition (PVD), sol-gel, sintering, spray pyrolysis,
spin casting, drop coating, screen printing and ink-jet printing. Among these approaches, CVD, PVD
and sol gel are usually employed for thin-film deposition and are compatible with CMOS processes,
while the others are more for thick-film with nanostructures. In general, sputtering is preferred over
evaporation for its compatibility with a wider choice of materials, better step coverage and enhanced
adhesion to the substrate. Surface functionalization or adding binders could further promote the
surface adhesion between the sensing materials and substrates [95]. Alternative CMOS compatible
ways have been explored. Annanouch et al. grew WO3/Cu2O nanoneedles directly on a MEMS
hotplate by a single step aerosol-assisted CVD process [107]. The metal oxide nanostructure can
also be grown with the internal microheater, whose grain size can be controlled by varying the
temperature [108].

3.5. Fabrication Processes

Monolithic gas sensors were fabricated by a CMOS-first approach. The microhotplate materials
are deposited and released after the CMOS circuits have been deposited into the wafer. The typical
fabrication processes of a suspended membrane microhotplate with a metal heating element are listed
as follows and shown in Figure 10:

1. Thermally grown/deposition of the insulation layer.
2. Lift-off/sputtering, patterning and etching of the heater material.
3. Deposition of the passivation layer; patterning and etching for electrical contact.
4. Lift-off/sputtering, patterning and etching of electrode material.
5. Patterning the oxide/nitride layer to define the geometry of the membrane and bridge.
6. Backside/frontside etching to release the suspended membrane.
7. Deposition of the metal oxide layer.
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Figure 10. Fabrication processes of a suspended membrane microhotplate with backside etching.

Both dry etching and wet etching have been used in the membrane step. Tetramethylammonium
hydroxide (TMAH) or potassium hydroxide (KOH) can be used as the wet etchant, with the former
preferred due to full compatibility with CMOS processes. Dry etching processes, such as deep reactive
ion etching (DRIE), is, in general, more preferred because the vertical sidewall makes the footprint of
the sensor smaller.

Despite the traditional layer-by-layer deposition approach, the silicon on insulator (SOI) CMOS
technique was adopted to achieve simple fabrication, the high operating temperature of MOSFETs
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(400~600 ◦C), effective isolation and reduction in leakage current [50,66,88,109]. Either traditional metal
heaters [53] or MOSFET heaters [66] can be used for temperature elevation. An example of SOI CMOS
microhotplate is shown in Figure 11. The buried oxide layer acts as the etch stop layer during the
membrane release step. Additionally, it insulates the heater from the silicon substrate. This technique
makes monolithic integration of sensing and signals conditioning units of the system possible.

Micromachines 2018, 9, x FOR PEER REVIEW  14 of 24 

 

 
Figure 11. Monolithic gas sensor fabricated with silicon on insulator (SOI) CMOS technology (from [50]). 

4. Modes of Operation 

The performance of the sensors listed in Table 4 is characterized under the isothermal condition, 
whereby the temperature and the applied voltage across the heating element remain constant throughout 
the operation. Low thermal inertia and fast thermal response allow the reduction of power consumption for 
micromachined gas sensors by pulse mode temperature modulation. In this mode, a square wave voltage 
is applied across the heater so that the heater is switched on and off. At the expense of reduced power 
consumption, the interval between two consecutive samplings is longer due to the low response in the low 
voltage region. For example, the iAQ-core P air quality sensor drops from 66 mW to 9 mW by applying 
temperature modulation, and the sampling time increases from 1 s to 11 s. Therefore, pulse mode 
temperature modulation is only suitable for situations when frequent data acquisition is not required. 
Courbat et al. achieved sub-milliwatt power consumption on their SnO2/3% Pd CO sensor [110]. 
Enhancement in the response of the ZnO-nanowire sensor was observed by Shao et al., when it was 
operating in pulsed mode [84]. They attributed this enhancement to the presence of high-temperature 
oxygen species during the low-temperature period.  

Figure 11. Monolithic gas sensor fabricated with silicon on insulator (SOI) CMOS technology (from [50]).

4. Modes of Operation

The performance of the sensors listed in Table 4 is characterized under the isothermal condition,
whereby the temperature and the applied voltage across the heating element remain constant
throughout the operation. Low thermal inertia and fast thermal response allow the reduction of
power consumption for micromachined gas sensors by pulse mode temperature modulation. In this
mode, a square wave voltage is applied across the heater so that the heater is switched on and off.
At the expense of reduced power consumption, the interval between two consecutive samplings is
longer due to the low response in the low voltage region. For example, the iAQ-core P air quality sensor
drops from 66 mW to 9 mW by applying temperature modulation, and the sampling time increases
from 1 s to 11 s. Therefore, pulse mode temperature modulation is only suitable for situations when
frequent data acquisition is not required. Courbat et al. achieved sub-milliwatt power consumption on
their SnO2/3% Pd CO sensor [110]. Enhancement in the response of the ZnO-nanowire sensor was
observed by Shao et al., when it was operating in pulsed mode [84]. They attributed this enhancement
to the presence of high-temperature oxygen species during the low-temperature period.
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Table 4. Performance of miniaturized metal oxide semiconductor gas sensor devices.

Metal
Oxide/Sensitizer Target Gas Metal Oxide

Morphology Deposition Process Heater
Material/Geometry

Optimal
Temperature (◦C)

Power Consumption
(mW) Response Response/Recovery

Time (s)
Detection

Limit (ppb) Reference

CuO H2S Thick film Drop-cast paste W/Drive wheel 350 65 @ 600 ◦C Rg/Ra = 1.03–1.28
(2–10 ppm) 16.9/49.4 - [111]

In2O3 CH3CH2OH Thin film Ink jet printing Pt/Drive wheel - 24 Ra/Rg = 2.13
(1 ppm) - 50 [112]

In2O3/Au CH3CH2OH Nanofibers Electro-spinning + paste Pt/Meander
(Coplanar) 140 222.5 Ra/Rg = 13.8

(500 ppm) 12/14 - [89]

SnO2 CH3CH2OH Thin film
(various grain sizes)

Chemical vapor deposition
(CVD) with metal seed layer Polysilicon/Meander 400 - Ra/Rg = 2.1~3.1

(90 ppm) - - [113,114]

SnO2 CH3CH2OH Nanopore array Hydro-thermal Pt/Meander 350 30 Ra/Rg = 1.06
(20 ppb) 1/- 20 [115]

SnO2 CH3CH2OH Nanowire Hydro-thermal Pt/Meander
(Coplanar) 500 40 Ra/Rg = 26.2

(100 ppm) 1–2/2.5–3.5 - [90]

SnO2 CH3CH2OH Thin film E-beam evaporation Pt/Meander 400 9 Ra/Rg = 6.5
(300 ppm) - - [73]

SnO2

NH3,
CH3CH2OH,
(CH2OH)2

Nano-particle - Pt/Meander - - Ra/Rg = 6
(100 ppm (CH2OH)2) <60/<60 <1000 [116]

SnO2/Pt, Pd, Au CH3CH2OH
CO, H2, CH4

Thin film Sputtering Pt/Meander 300 23 mW
(annealing @ 950 ◦C)

Ra/Rg = 2
(100 ppm

CH3CH2OH)
20–50/10–70 - [74]

SnO2/Pd CH3CH2OH Hollow
submicrosphere Hydro-thermal Pt/- 300 45 Ra/Rg = ~20

(100 ppm) 1.5/18 - [117]

SnO2/Pd H2 Nanofiber EHD inkjet printing W/Meander 185 9.86 Ra/Rg = 8
(2000 ppm) 23/151 - [118]

SnO2/Pt C6H5CH3
HCHO Thin film RF sputtering Pt/Meander 300–440 31.5 (HCHO)

45 (C6H5CH3)

Ra/Rg = 3.5–4
(HCHO)

3–4 (C6H5CH3)
- - [119]

SnO2/Au CH4
CO Thin film Ion-beam sputtering Pt/Meander 100 (CO)

250 (CH4)
20 (CO)

80 (CH4) - - - [72]

SnO2/Sb CH3OH Porous microsphere LbL deposition + latex removal Doped
polysilicon/Meander 400 - Ra/Rg = 40.3

(1 ppm) - 50 [120]

SnO2-CuO H2S Nanofiber Electro-spinning Pt/Meander 200 - Ra/Rg = 23
(1 ppm) 23/15 <10 [121]

TiO2 CO Thin film Sputtering Mo/Double spiral 500 104
(@ 800 ◦C)

Ra/Rg= 6.25
(50 ppm) 0.019/0.034 1000 [71]

TiO2 CH3OH Mesoporous film Hydro-thermal Polysilicon/Meander 425 - Ra/Rg = 7
(50 ppm) 4/30 - [122]

TiO2/PdO H2
Thin film

(180 + 3 nm) RF sputtering Pt/Meander 200 48 - <10/- [63]

WO3 NO2 Porous Drop-casting W/Drive wheel 300 65 @ 600 ◦C Rg/Ra = 5.25
(100 ppb 50% RH air) 40/205 10 [33]
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Table 4. Cont.

Metal
Oxide/Sensitizer Target Gas Metal Oxide

Morphology Deposition Process Heater
Material/Geometry

Optimal
Temperature (◦C)

Power Consumption
(mW) Response Response/Recovery

Time (s)
Detection

Limit (ppb) Reference

WO3/Au-Pt H2S Thin film
(500 nm) Sputtering Pt/Meander 220 - Ra/Rg = 6.5

(1 ppm) 2/30 - [123]

WO3/Cu2O H2S Nanoneedle Aerosol-assisted CVD
POCl3-doped

polysilicon/Double
spiral

390 - Ra/Rg = 27.5
(5 ppm) 2/- <300 [107]

ZnO H2S Nanowire Hydro-thermal Pt/Drive wheel 300 - Ra/Rg = 1.78
(200 ppb) - 5 [124]

ZnO CH3CH2OH Nanowire Hydro-thermal N-doped
polysilicon/- 400 33 Ra/Rg = 1.6

(809 ppm) 200/~600 - [97]

ZnO NH3 Nanowire Hydro-thermo +
Dielectrophoretic W/Drive wheel 350 55 @ 400 ◦C Ra/Rg = 4.2

(200 ppm) 228/1290 - [84]

ZnO/Pd-Ag CH4 Nano-crystalline Sol-gel spin coating Ni/Meander 250 120 Ra/Rg = 7.7
(1000 ppm) 8.3/34.8 - [55]

ZnO-CuO (CH3)2CO Nanoflakes RF sputtering + thermal
oxidation

Ni/Double meander
(cavity filled) 300 100 @ 259 ◦C Ra/Rg = 0.46

(10 ppm) 22/26 - [98]
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5. CMOS-MEMS Monolithic Gas Sensor

Although most microhotplates mentioned above are fabricated with CMOS compatible processes,
few of them has actual CMOS circuits integrated for temperature control and signal conditioning.
The main challenge for CMOS integration is that the operating temperature of the metal oxides
(typically 250 to 400 ◦C) is usually higher than the maximum operating temperature of IC (<300 ◦C).
Therefore, thermal isolation is crucial for monolithic gas sensor design. Suspended membrane geometry
is preferred because of their excellent heat isolation performance. Less than 3 ◦C temperature difference
between the circuit and ambient can be achieved by this geometry when the hotplate works at
400 ◦C [125].

The signal conditioning circuit consists of the temperature control circuit, the resistance readout
circuit and the serial bus interface for external communication. In the temperature control circuit, the
heater is driven by the MOSFET switches [108] (Figure 12a) with the signal from digital-to-analog
converters (DACs). The temperature is controlled by switching the heater on and off alternatively
for different time intervals determined by the controller. The controller is of proportional type or
proportional-integral-derivative (PID) type to reduce the steady-state error in the temperature control.
The actual temperature becomes an input in the feedback loop and is compared with the target
temperature. Temperature measurement is done by the on-chip thermometers and the result needs to
pass through amplifiers and analog-to-digital converters (ADCs) before processing. The resistance
measurement circuit also contains amplifiers and ADCs. In addition, it needs to deal with the large
range of the resistance of the metal oxide film from KΩ to MΩ. The resistance signal has to be
further processed so that it can be transferred within the allowable number of bits of the converters.
The resistance can either be processed by a logarithmic converter [125] (Figure 12b,c) or measured
with a biased current [126] (Figure 12d). The recognition of the type of the gas is done by external
processors, such as microcontrollers or personal computers. Inter-integrated circuit (I2C) serial protocol
is commonly adopted for external communication in both commercialized sensors and the research
works because it can reduce the number of pins required.

Micromachines 2018, 9, x FOR PEER REVIEW  17 of 24 

 

5. CMOS-MEMS Monolithic Gas Sensor 

Although most microhotplates mentioned above are fabricated with CMOS compatible 
processes, few of them has actual CMOS circuits integrated for temperature control and signal 
conditioning. The main challenge for CMOS integration is that the operating temperature of the metal 
oxides (typically 250 to 400 °C) is usually higher than the maximum operating temperature of IC 
(<300 °C). Therefore, thermal isolation is crucial for monolithic gas sensor design. Suspended membrane 
geometry is preferred because of their excellent heat isolation performance. Less than 3 °C temperature 
difference between the circuit and ambient can be achieved by this geometry when the hotplate works 
at 400 °C [125]. 

The signal conditioning circuit consists of the temperature control circuit, the resistance readout 
circuit and the serial bus interface for external communication. In the temperature control circuit, the 
heater is driven by the MOSFET switches [108] (Figure 12a) with the signal from digital-to-analog 
converters (DACs). The temperature is controlled by switching the heater on and off alternatively for 
different time intervals determined by the controller. The controller is of proportional type or 
proportional-integral-derivative (PID) type to reduce the steady-state error in the temperature 
control. The actual temperature becomes an input in the feedback loop and is compared with the 
target temperature. Temperature measurement is done by the on-chip thermometers and the result 
needs to pass through amplifiers and analog-to-digital converters (ADCs) before processing. The 
resistance measurement circuit also contains amplifiers and ADCs. In addition, it needs to deal with 
the large range of the resistance of the metal oxide film from KΩ to MΩ. The resistance signal has to 
be further processed so that it can be transferred within the allowable number of bits of the 
converters. The resistance can either be processed by a logarithmic converter [125] (Figure 12b,c) or 
measured with a biased current [126] (Figure 12d). The recognition of the type of the gas is done by 
external processors, such as microcontrollers or personal computers. Inter-integrated circuit (I2C) 
serial protocol is commonly adopted for external communication in both commercialized sensors and 
the research works because it can reduce the number of pins required.  

 
Figure 12. Monolithic CMOS-micro-electro-mechanical systems (MEMS) gas sensors: (a) 
microhotplate array for carbon monoxide detection (from [108]) (b) microhotplate gas sensor with 
proportional-integral-derivative (PID) controllers (from [125]), (c) microhotplate gas sensor with 
mixed-signal architecture (from [125]), (d) microhotplate gas sensor using biased current 
measurement (from [126]). 

Figure 12. Monolithic CMOS-micro-electro-mechanical systems (MEMS) gas sensors: (a) microhotplate
array for carbon monoxide detection (from [108]) (b) microhotplate gas sensor with
proportional-integral-derivative (PID) controllers (from [125]), (c) microhotplate gas sensor
with mixed-signal architecture (from [125]), (d) microhotplate gas sensor using biased current
measurement (from [126]).
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6. Future Trends and Challenges

It can be observed from Table 2 that most of current commercialized metal oxide gas sensors aim
for indoor air quality control and measure the resistance change caused by the adsorption of total
volatile organic compounds (TVOC), where the effect of each kind of gas is not distinguished from
the others. Recently, learning algorithms such as artificial neural networks have been applied for
classification of the volatile organic compounds from the signals generated by e-nose sensor arrays [11].
Moreover, identification of gas has been explored as a technique to diagnose disease [10] and food
quality [127]. CMOS-MEMS monolithic gas sensors have great potential for these applications because
of its ability to control the operational states of microhotplates coated with different sensing materials.
However, the current challenges remain in developing CMOS-compatible approaches to deposit
various sensing materials on the microhotplates. Commercial products require uniform performance,
and thus, the discrepancies in morphology and thickness should be minimized.

7. Conclusions

The excellent performance of the MEMS metal oxide semiconductor gas sensor makes it dominant
in industrial applications and research projects. As the main structure of a gas sensor to operate
the sensing material at an elevated temperature, the microhotplate is fabricated into a membrane or
bridge for the sake of thermal isolation to achieve low power consumption. Doped polysilicon and
tungsten are recommended as the heater material for operating temperatures below 500 ◦C and 700 ◦C,
respectively, because of their stability in the temperature range and excellent compatibility with the
CMOS process. The temperature uniformity can be improved by optimizing the heater geometry
through electro-thermal simulations and validation experiments. Besides the power consumption and
stability, other performance parameters such as sensitivity, response/recovery time and selectivity are
determined by the sensing material deposited with a post processing approach. Recent research in
nanostructured materials shows their enhanced gas sensing performance due to the increase in surface
area to volume ratio. CMOS-compatible nanomaterial deposition techniques are still being explored.

Monolithic CMOS-MEMS integration has advantages in size, noise level and power consumption
compared to the multi-chip integration. However, temperature constraint of the CMOS circuit must
always be kept in mind when designing the MEMS process. The CMOS circuits enable precise control
of the on/off state of the microhotplates, which is suitable for sensor arrays with different sensing
materials on each unit. In addition, the monolithic integration of the MEMS sensor and CMOS circuit
make it possible to develop systems in a package (SiP) or system on a chip (SoC) gas sensing in the
future. With a microcontroller unit encapsulated in the same package as the sensor, temperature
modulation and signal processing become more efficient because of the reduction in noise during
signal transmission.
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