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Abstract: This paper presents fabrication and packaging of a capacitive micromachined ultrasonic
transducer (CMUT) using anodically bondable low temperature co-fired ceramic (LTCC). Anodic
bonding of LTCC with Au vias-silicon on insulator (SOI) has been used to fabricate CMUTs with
different membrane radii, 24 µm, 25 µm, 36 µm, 40 µm and 60 µm. Bottom electrodes were directly
patterned on remained vias after wet etching of LTCC vias. CMUT cavities and Au bumps were
micromachined on the Si part of the SOI wafer. This high conductive Si was also used as top electrode.
Electrical connections between the top and bottom of the CMUT were achieved by Au-Au bonding of
wet etched LTCC vias and bumps during anodic bonding. Three key parameters, infrared images,
complex admittance plots, and static membrane displacement, were used to evaluate bonding success.
CMUTs with a membrane thickness of 2.6 µm were fabricated for experimental analyses. A novel
CMUT-IC packaging process has been described following the fabrication process. This process
enables indirect packaging of the CMUT and integrated circuit (IC) using a lateral side via of LTCC.
Lateral side vias were obtained by micromachining of fabricated CMUTs and used to drive CMUTs
elements. Connection electrodes are patterned on LTCC side via and a catheter was assembled at
the backside of the CMUT. The IC was mounted on the bonding pad on the catheter by a flip-chip
bonding process. Bonding performance was evaluated by measurement of bond resistance between
pads on the IC and catheter. This study demonstrates that the LTCC and LTCC side vias scheme
can be a potential approach for high density CMUT array fabrication and indirect integration of
CMUT-IC for miniature size packaging, which eliminates problems related with direct integration.

Keywords: capacitive micromachined ultrasonic transducers (CMUT); low temperature co-fired
ceramic (LTCC); LTCC side via; indirect packaging

1. Introduction

The capacitive micromachined ultrasonic transducer (CMUT) is an advanced ultrasonic
transducers technology and is based on a micro electro mechanical systems (MEMS). The simple
structure of CMUT consists of a micromachined membrane suspended over a cavity, a fixed bottom
electrode, and a top electrode [1,2]. It has attracted scientists and researchers in this field in recent
years. There are several studies related to numerical and analytical methods of CMUT in addition to
fabrication [3–9]. First generation CMUTs were fabricated using the surface micromachining/sacrificial
layer releasing method [10]. This method includes several depositions and etching steps. Cavities
under the membrane are obtained by selective etching of the sacrificial layer through etching holes that
are patterned on the membrane and this reduces, however, the active area of membrane (fill factor).
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The membrane is deposited over the sacrificial layer and an additional deposition step is required
to seal cavities. Each of the deposition steps induces stress on the membrane [11–16]. Thus, precise
control over membrane thickness is very critical because it determines the mechanical properties of
the membrane (low internal stress, mechanical loss etc.). Moreover, the other common problem of
sacrificial layer releasing for cavity formation is stiction which occurs after selective etching of the
sacrificial layer. Capillary forces on the membrane during drying of water in the cavity push the
membrane to the bottom substrate and break if the membrane is not sufficiently thick [17].

Wafer bonding was introduced as an alternative to surface micromachining and provides
simplicity, flexibility, and superior control over fabrication processes and material selections [17].
In wafer bonding, a single silicon crystal is used as a membrane and vacuum sealed cavities are
achieved without opening etch holes on the membrane, both of which directly translate into a high
performance device with high fill factor [18]. Fusion bonding and anodic bonding are mostly preferred
wafer bonding methods for 1D/2D CMUT fabrication among other bonding techniques due to the
advantages of bond strength, reliability, and hermiticity [19–24]. However, high bonding temperature,
and the flat and clean bonding surface requirement are limitations of fusion bonding [25]. Anodic
bonding, on the other hand, is a promising candidate for CMUTs fabrication and packaging (electronic
integration) due to low temperature process compatibility. A CMUT uses all the benefits of advanced
MEMS technology; however, it still needs improvements to show comparable performance to its
piezoelectric counterpart in terms of sensitivity and output pressure. Due to small capacitance, CMUTs
are sensitive to parasitic capacitance and have a low SNR (signal to noise ratio) value [26–28]. Low
output pressure is other concern with CMUT performance. For ultrasound imaging and therapeutic
applications, high SNR and output pressure are the main requirements as well as high dynamic
range and low cross coupling between transducer elements [29–32]. To do this, the active area of the
vibrating membrane would be increased and parasitic effects should be minimized. Direct integration
of CMUT and front-end electronics (3D integration) is highly desirable to increase SNR and output
pressure, but also reduction of parasitic effects. Thus, through-wafer interconnects are needed and
electrical contact pads have to be located at the backside of the CMUT for 3D packaging and to provide
communication between CMUT elements and the IC chip. Several materials and methods have been
under investigation to show CMUT packaging with electronics. Earlier through-wafer interconnects
efforts were widely through silicon via (TSV) [33]. The TSV process begins with vias opening on
silicon substrate by deep reactive ion etching (DRIE) and then thermal oxidation of substrate for
insulation. The next step is filling vias with a conductive material such as polysilicon which serves
as conductor between the front side (CMUT) and backside (bonding pad) of the wafer. These TSV
processes induce stress on the silicon substrate and require an additional polishing step to achieve a
bondable surface for fusion bonding [34]. Alternatively, the through trench isolation approach has
been announced to eliminate drawbacks related with the TSV method [35]. For example, a process
has recently been reported for the fabrication of a CMUT array with isolation trenches using anodic
bonding [36]. This study proposed a simple interconnects formation without through-wafer via. To
date, the majority of works have focused on through-silicon vias (TSV), however, parasitic capacitance
is an issue for such architecture. Using dielectric material in the form of through-glass vias (TGV)
rather than Si can eliminate these undesired effects and low surface roughness is not needed for
bonding [37,38]. Via formation and metallization of glass are not an easy and simple task although
promising results of CMUT fabrication using Through Glass via (TGV) have been shown [39]. An
alternative material called anodically bondable low temperature co-fired ceramic (LTCC) has been
developed, which has been widely used for die level or wafer level MEMS packaging over past
years. A narrower via pitch fabrication is easier than when using a glass substrate, and also LTCC
allows freedom in via design [40–43]. Recently, SOI-LTCC anodic bonding has been announced for
CMUT fabrication [24,44,45]. In these studies, CMUTs were built directly on open tool and customized
LTCC substrate. Fabricated devices were electromechanically characterized for resonance frequency
in air and immersion medium. Initial results showed that LTCC is one of the potential candidates
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for CMUT fabrication and hybrid integration with electronics. Moreover, LTCC has via and vertical
interconnects which enables lateral side via architecture (indirect packaging) for electronic integration
with IC. This is highly desirable for small size CMUT packaging, for example, tube shaped packaging
of CMUT to visualize the narrower part of the vessel (intravascular imaging). In other words, lateral
side and backside integration of CMUT with electronics are possible with LTCC substrate [46]. All
aforementioned advantages of LTCC might provide high-density CMUT array fabrication and 3D
packaging for different applications.

In this study, a custom designed LTCC wafer was used for CMUT fabrication and packaging.
Bottom electrodes were directly built on LTCC via and high conductive silicon was used as top
electrode and cavity formation. Anodic bonding of LTCC-SOI substrate was the final step of the
fabrication process. A novel packaging process was introduced by using lateral side vias of LTCC
that were achieved by micromachining of fabricated CMUT device. This packaging process refers to
indirect integration of CMUT and IC using an intermediate material (catheter). Hexagonal shaped
CMUTs with lateral side via were assembled with a catheter. ICs were mounted on the catheter
following patterning of connection and contact pads using flip-chip bonding. Flip-chip bonding
performances were evaluated and compared with similar studies in literature. Finally, the pros and
cons of fabrication and packaging of LTCC based CMUTs were evaluated and discussed.

2. Materials and Methods

2.1. Fabrication

LTCC is a substrate made of a mixture of ceramic powder known as green sheet and a glass powder.
Via fabrication is based on the following steps: (1) punching of green sheet for via hole formation, (2)
screen printing of vias and interconnects (lateral wiring), and (3) stacking and firing of green sheet,
respectively [42,43], as illustrated in Figure 1-(I). LTCC used in this study consists of vias with a diameter
of 60 µm. However, LTCC has a 30 µm fabrication error. Lateral wiring (interconnects) and vias are made
of conductive materials (Au) and provide electrical connections between the top and bottom of the LTCC
substrate. LTCC and SOI substrates with a size of 2 cm × 2 cm were used for CMUT fabrication. The CMUT
fabrication process was briefly summarized in Figure 1-(II). Table 1 shows CMUT fabrication parameters.
In this micromachining process, the SOI wafer was firstly cleaned with Piranha solution (H2SO4:H2O2

= 2:1) to remove organics and contaminants. A thin layer of Au/Cr (20/30 nm) was sputtered on both
sides of the LTCC wafer as a mask layer for wet etchant, and positive photoresist (PMER P-LA900, Tokyo
Ohka Kogyo Co., Ltd., Kanagawa, Japan) with a thickness of 8 µm was spin coated for the lithography
process. LTCC substrate was then exposed to wet etchant (HF:H2SO4 = 85:15) to obtained porous LTCC
via. For 30 s etching time, etching depth and diameter of LTCC via were 10 µm and 150 µm, respectively.
Bottom electrodes made of Au/Pt/Cr (70/30/20 nm) were patterned on the remaining LTCC via by a
lift-off process after removal of resist and metals. Positive photoresist of 2 µm thick (OFPR-800 LB 200
cP, Tokyo Ohka Kogyo Co.,Ltd, Kanagawa, Japan) was used for photolithography and the lift-off process
of the bottom electrode formation (Figure 2a). In the view of the SOI substrate, 0.4 µm circular shape
cavities were micromachined on the high conductive Si part of SOI by reactive ion etching (RIE) with SF6
gas and Si used as a top electrode. Cr/Au metal bump with a thickness of 1.2 µm were sputtered on Si
substrate for bonding with wet etched LTCC via during anodic bonding (Figure 2b). Anodic bonding
of LTCC-SOI substrates was completed under a high vacuum condition at 380 ◦C. We repeated anodic
bonding 27 times, resulting in 243 single CMUTs die. Because 2 cm × 2 cm LTCC includes nine different via
designs comprising a linear and circular array. Au-Au bonding of wet etched LTCC vias and bumps forms
an electrical connection between the top and bottom of the bonded sample [40,41]. The undesired part of
bonded LTCC-SOI substrates (handling layer-300 µm in thickness) was then removed by deep reactive
ion etching (DRIE) following by contact pads formation at the backside of LTCC (Figure 2c). Fabricated
CMUTs were characterized in air and immersion medium. More details about LTCC-SOI bonding process
flow have been given in our previous studies [44].
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Figure 1. (I) Low temperature co-fired ceramic (LTCC) fabrication: (a) Via hole opening by punching; 
(b) Filling hole and interconnects patterning; (c) Layering and firing. (II) Capacitive micromachined 
ultrasonic transducer (CMUT) fabrication process: (a) Porous via formation by LTCC wet etching; 
(b)Bottom electrode deposition; (c) Cavity etching and Au-bump deposition; (d) Anodic bonding and 
(e) Contact pad patterning and handling layer removing. 

Table 1. The physical parameters of fabricated CMUT devices. 

Parameters Value 
Membrane diameter (µm) 48, 50, 72, 80, 120 
Membrane thickness (µm) 2.6 

Cavity depth (µm) 0.4 
Electrode thickness (nm) 120 

Number of elements 25, 34, 54 

 
Figure 2. Preparation of LTCC and Si substrate for anodic bonding (Top view). (a) Bottom electrodes 
on dual ring LTCC with a number of 25 inners and 30 outer via; (b) Bumps and cavities on Si and (c) 
IR view of device patterns of CMUT after handling layer removing. 

Figure 1. (I) Low temperature co-fired ceramic (LTCC) fabrication: (a) Via hole opening by punching;
(b) Filling hole and interconnects patterning; (c) Layering and firing. (II) Capacitive micromachined
ultrasonic transducer (CMUT) fabrication process: (a) Porous via formation by LTCC wet etching;
(b)Bottom electrode deposition; (c) Cavity etching and Au-bump deposition; (d) Anodic bonding and
(e) Contact pad patterning and handling layer removing.

Table 1. The physical parameters of fabricated CMUT devices.

Parameters Value

Membrane diameter (µm) 48, 50, 72, 80, 120
Membrane thickness (µm) 2.6

Cavity depth (µm) 0.4
Electrode thickness (nm) 120

Number of elements 25, 34, 54
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view of device patterns of CMUT after handling layer removing.
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2.2. Packaging

Packaging process flow of indirect CMUT-IC packaging is described in this section of paper.
This novel packaging process uses the lateral side via of LTCC rather than the backside of substrate
for packaging. Initial results and more details have been found in our previous research in [45,46].
According to [46], indirect connection of CMUT with lateral side via and IC circuits was proposed
through patterned electrodes on the LTCC side via and catheter. The catheter is made of a biocompatible
solid polyimide substrate with a size of 3 mm × 3 mm × 20 mm. This process consists of four different
steps: (1) machining of fabricated CMUT and catheter, (2) assembly of CMUT and catheter, (3) electrode
and contact pad patterning on both substrate, and (4) IC mounting on catheter by flip-chip bonding.
Lateral side vias were obtained by cutting the CMUT device in hexagonal (Φ: 2.4 mm) and rectangular
shapes (Φ: 3 mm) using the dicing machine as illustrated in Figure 3a. Diamond blades 1 mm and
0.1 mm thick were used for micromachining of the fabricated CMUT and catheter, respectively. The
micromachined catheter has three different regions: first planar surface (length: 3 mm), taper (length:
2 mm), and second planar surface (length: 10 mm). The taper was formed with a 0.05 mm dicing pitch
although the other part of the catheter was diced with a 0.1 mm dicing pitch. The taper depth was
the sum of IC chip thickness and contact pads thickness of both flip-chip bonded samples (IC and
catheter). The assembly process follows micromachining and is the mounting of the catheter to the
backside of the CMUT using epoxy adhesive. Alignment of the catheter and CMUT was achieved with
a set of sample holders and a fixer. They were fabricated with a 3D printer (Agilista-3000, Keyence Co.,
Osaka, Japan).
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The first sample holder was designed and fabricated for CMUT and the other was the catheter.
Holder and fixer have alignment holes and pins for assembly process. Samples were put inside the
holders and high temperature resistance adhesive (EPO-TEK® 353ND, Epoxy Technology Inc., Billerica,
MA, USA) was then used for assembly. Alignment of samples was achieved with alignment holes
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and pins and samples were strictly put together by pushing the fixer at 100 ◦C curing temperature
for around 1 h. Three different coating methods were used for connection electrodes, wiring pads,
and bonding pads patterning on side via and catheter after assembly: spray coating, dip coating,
and spin coating as shown in Figure 3b. The Nonplanar exposure system which consists of a UV
spot laser and a computer-controlled multiaxial stage used resist patterning for spray coating and dip
coating [47,48]. However, the spin coating method was preferred to electrode patterning using a planar
exposure system. Lithography process results of three coating methods showed that spin coating and
the planar exposure system were the best fitted methods for electrode and contact pad patterning on
assembled samples. Therefore, electrodes and contact pads were patterned by spin coating and planer
exposure system using a contact mask aligner (Ma8, Suss MicroTec KK, Kanagawa, Japan). Electrodes
and contact pads deposition were achieved using the following steps: 1.2 µm thick Cr/Au electrodes
and alignment marks were firstly patterned on assembly by a lift-off process using positive photoresist
(OFPR- 800 LB 200 cP, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, Japan). These electrodes provide a
connection between LTCC side via and IC bonding pads that are on the catheter. Wiring pads and
bonding pads were then electroplated after patterning of positive photoresist (PMER P-LA900, Ohka
Kogyo Co., Ltd., Kanagawa, Japan). Wiring pads were designed and deposited for measurement of
the resistance between the flip-chip bonding pads. The widths of the bonding pads and connection
electrodes have widths of 70 µm and 20 µm and pitches of 140 µm and 150 µm, respectively. It was
measured that thickness of deposited electrode and pads were 5 µm. A dummy IC chip was used
for flip-chip bonding. Silicon-on-insulator (SOI; 3 µm/50 nm/300 µm) substrate was preferred as a
dummy IC and includes eight bonding pads. Au/Cr bonding pads (80/200 nm) were first patterned
and then 50 µm thick Au bumps were formed on the Au/Cr pads using a wire bonder (7700 West
Bonder, West Bond Inc., Anaheim, CA, USA). Finally, an IC chip was mounted on the second planar
surface of the catheter using a flip-chip bonder (FINEPLACER®lambda, Finetech GmbH & Co. KG,
Berlin, Germany). A bonding force of 25 N was applied for 3 min and heated to 380 ◦C. Flip-chip
bonding results were evaluated by resistance measurement of bonding pads [46].

3. Results

Anodic bonding quality evaluation is needed to show functionality of fabricated devices. The first
bond quality evaluation of the bonded sample was dicing of samples into small pieces (0.6 cm × 0.6 cm)
using a dicing machine (DAD 522, DISCO Co., Tokyo, Japan). Bonding is considered as successful when
bonded samples stayed together. In order to inspect the bonding quality more accurately, the fabricated
devices were tested with three additional different measurements: (1) Visual inspection of bonded
samples to detect misalignment using IR camera, (2) impedance analyzer for the measurement of
admittance (G (conductance)-B (susceptance)) as a function of the frequency, and (3) static membrane
deflection by topography measurement system (TMS) (Polytec Japan, Kanagawa, Japan) to show
hermiticity of the sealed cavity. Visual inspections of bonded samples were firstly tested using
the IR camera. Top views of four different CMUT devices obtained by IR camera are shown in
Figure 4a,c,d. Our results showed that there was a misalignment between the top and bottom electrode
of CMUTs with membrane diameter of 48 µm, 50 µm, and 80 µm. In addition to the LTCC via
error (30 µm), an approximately 20 µm mechanical error was measured during samples preparation
(alignment, clamping etc.) before the bonding process. It was assumed that the mechanical error
related with the bonding machine was the reason for misalignment in addition to the via fabrication
error. Gold diffusion into silicon was also observed due to short contact of the Si membrane and
bottom electrode made of Au/Pt/Cr as a result of misalignment (Figure 4b). It was noted that the
CMUT cell with a dimension of 120 µm has no misalignment as shown in Figure 4d. Misalignment
and a short connection between the top and bottom electrode is also confirmed by complex admittance
measurement. Conductance, G (ω), refers to the real part and susceptance, B (ω), presents the
imaginary part of complex admittance. Lumped equivalent circuit and values of circuit parameters
can be obtained by plotting B (ω) versus G (ω) as described in [49].
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Complex admittance measurement by impedance analyzer (HP4194A, Hewlett Packard, Co., Palo
Alto, CA, USA) was employed to obtain G (conductance)-B (susceptance) plot of fabricated devices.
It simply gives an idea about the characteristics (equivalent circuit) of fabricated devices that can be
a resistor, capacitor, inductor, or a combination of three electronic circuit elements. Resistance and
frequency value of fabricated devices were derived by plotting the imaginary part of the admittance,
B (ω), versus the real part, G (ω). G–B plot of four different CMUT designs and their equivalent
circuits are shown in Figure 5 and the inset of Figure 5, respectively. Fabrication results showed that
equivalent circuits of three fabricated devices (40 µm, 50 µm, and 80 µm) consist of a capacitor with a
series resistor (R1) and a parallel resistor (R2). For CMUT with a 72 µm membrane size, a capacitor
is the only parameter of equivalent circuits as expected. Logarithmical curve fitting was applied to
find the best suited function for the first three designs, and linear curve fitting matches the data of the
last design (72 µm). Lastly, TMS was used to measure static deflection of the CMUT membrane under
atmospheric pressure as shown in Figure 6. It was observed that the membrane deflection profile of
the Si membrane was in an upward direction. In contrast to the CMUT membrane, deflection of the
Si part around the wet etched LTCC via was downward, as shown in Figure 6c,d. Mechanical and
electrical characterization of CMUTs in air were determined by resonance frequency and impedance
measurements. Resonance frequency of a device in air was measured using a vibrometer (UHF-120,
Polytec Japan, Kanagawa, Japan), and a network analyzer (MS4630B, Anritsu, Co., Morgan Hill, CA,
USA) was used for impedance measurement. CMUT with a 120 µm membrane size was used for
experimentation. The measured maximum membrane displacement in air was 10.3 pm at 2.88 MHz
under excitation with a 7 Vpp AC signal without DC bias voltage. A finite element model of a CMUT
cell was constructed in COMSOL Multiphysics (COMSOL®version 5.2, COMSOL, Inc., Burlington,
MA, USA) software, coupling the structural mechanics subdomain and the electrostatics subdomain to
compare experimental and numerical results.

The 2D electromechanical coupling model was used. The free triangular mesh and defaults
parameters were set for calculation. The Minimum feature size was 0.054 µm. The fixed mesh was
applied to LTCC and the bottom electrode when modeling. However, Si membrane and cavities were
free to deform. Squeezed film damping in sealed cavity was omitted for modelling, because it was
analytically proved from a previous study that the presence of air does not cause any squeeze film
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damping for flexural membrane [50]. Resonance frequency and maximum membrane displacement
were obtained as 1.5755 MHz and 2.42 pm according to the numerical analysis as shown in Figure 7 [44].
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Experimental results of the impedance measurement are shown in Figure 8a. Applied DC voltages
are changed from 10 V to 40 V and resonance span is changed from 1–4 MHz. The second experimental
setup is the pitch-catch setup where one of the transducers transmits an acoustical signal, and this signal
was measured by a hydrophone (TC4038, Teledyne RESON Inc., Thousand Oaks, CA, USA) placed at
a distance from the CMUT surface in water as shown in Figure 8b. This hydrophone has a frequency
ranging up to 20 MHz. However, we could not observe any peak around the resonance frequency.
Moreover, CMUT devices used in electrical and acoustical measurement were not successfully driven
by different AC and DC voltages while device fabrication was successful.
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Surface roughness measurement of catheter after micromachining were the first experimental
results of packaging. It was measured that the surface roughness of the lateral side of the first planar
surface was about to 20–30 µm. When these surfaces were polished to reduce surface roughness,
the shape of catheter turned into a circular shape. When the assembly process is considered, epoxy
adhesive that is compatible with low temperatures is not a good choice for the assembly of CMUT
and catheter (Figure 9). Experimental results showed that amount of adhesive should be confirmed
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before the assembly process because squeezed adhesive from the interface of the bonded area covered
the side vias and electrodes on catheters and this prevents next electrodes patterning. Experimental
results of planar and nonuniform exposure systems were evaluated in terms of resist patterning and
electrode deposition after the assembly of CMUT and catheter. A requirement for different focusing
points of the laser (due to planar and taper of catheter) was unable to achieve successful photoresist
patterning on the catheter using the nonplanar system. LTCC side vias were used as reference points
for alignment and laser exposure for nonplanar system. However, electrodes patterning on the LTCC
side via and nonuniform catheter surface is a very complex and difficult process using nonuniform
exposure systems. The planar exposure system, therefore, was preferred for electrodes deposition on
the catheter, even on the taper. A longer exposure time is required to resist patterning on the taper
than for planar surfaces of the catheter before electrode deposition. Electrodes and contact pads were
electroplated with a thickness of 5 µm. Contact resistance of bonding pads after flip-chip bonding
was measured using 4-wire measurement setup. Resistance of each bump measured around 2 µm
although the theoretical value of a single bump was about 0.25 µm [46]. These results are considerably
lower than in previous studies in literature [33]. In addition to evaluation of flip-chip bonding success,
resistance between electrodes on the side via and catheter was measured with a 100% yield [46].
Figure 10 shows summary of successful packaging process flow from micromachining of the CMUT
and catheter to IC mounting.
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4. Discussion

In this section of paper, drawbacks, limitations, possible reasons behind undesired results of
CMUT fabrication and packaging were discussed. The IR picture also revealed that no void and
bubbles on the active area of the bonded surface were observed with the help of gas releasing channels.
These channels were patterned between array elements and the circumference of device as shown in
Figure 4d. Thus, we can say that the bonding strength was enough and voids were only visible in the
gas releasing channels without significant effect on bonding strength. From the complex admittance
results of three unsuccessful CMUTs, we assumed that short connections and particles on the bottom
electrode that remained after the fabrication process are responsible for a parallel and a series resistor
to CMUT device (capacitor), respectively. TMS results prove that the membrane deflection is upward,
however, membrane displacement over the Au-Au bonded area, which was used for the electrical
connection between the top and bottom surface, has a downward direction with 90 nm displacement
(Figure 6c,d). Three possible reasons responsible for membrane deflection were investigated. These are
gas trapped inside the cavity, the residual thermal stress on the Si surface during bonding, and TEC
(thermal expansion coefficient) differences between Si and the LTCC substrate. Our previous study
showed that thermal stress on the Si membrane during bonding was assumed to be a major factor
behind the membrane deflection in an upward direction based on numerical analysis of thermal stress
on silicon [44]. According to [44], membrane displacement due to gas trapped inside the cavity and TEC
mismatch can be ignored. Considering Si membrane displacement due to high thermal stress, it can be
concluded that cavities of fabricated devices were successfully sealed, however, without a vacuum
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due to outgassing during bonding. Previously, acoustical characteristics of the open tool LTCC-based
CMUT device were shown and membrane displacement in the air was measured to be 10 times higher
than in water [24]. According to our experimental results, membrane displacement in air was around
10.3 pm and the membrane displacement of our device in water should be 0.1 pm, when considering
the experimental results of [24]. This displacement is very small and, thus, the output pressure of the
device might not be within the range of hydrophone sensitivity for immersion measurement (acoustic).
After handling layer removal, it was also observed that the silicon membrane had been removed and
the membrane had collapsed to the bottom electrode in some cases, as shown in Figure 11a,b. This
structure was repeatedly observed from several bonded samples. These results proved that holes
and cracks at the surface of the vibration membrane made it unable to operate in the immersion
medium. The Si membrane at this moment (after handling layer removing) might not be stiff enough
to maintain its shape after handling layer removing. Nonlinear behavior of a Si membrane known as
spring hardening can be another reason for unsuccessful device characterization due to high residual
stress. Moreover, a low quality Si membrane due to overdamping in air and water can also prevent
device operation. As a result, unsuccessful CMUT operation in air and water is possible due to
aforementioned reasons related with the Si membrane. Because it was announced that theoretical
modelling of the CMUT membrane with residual stress and cracks affects device performance (eigen
frequency) [51–53], a thicker Si membrane can be a potential solution to eliminate cracks and holes
on the membrane surface in addition to obtaining a stiffer membrane. To confirm this, Si membrane
having 14 µm thickness and 80 µm diameter was used for anodic bonding with open tool LTCC. As
shown in Figure 12, IR pictures of CMUT from the top side show no misalignment and cracks/holes
on the membrane after anodic bonding.

The packaging process used in this was designed for indirect integration of CMUT with IC.
Besides the advantages of CMUT packaging with LTCC, drawbacks and limitations of these new
suggested methods should be considered for further improvements. From the packaging results,
we can say that small size CMUT packaging is possible by using indirect connection of device and
electronics rather than direct bonding. Excitation of a single CMUT array through two side vias
(one is ground and other is hot electrode) might be easier than excitation of a single CMUT cell and
dual ring array through multiple side vias due to a small via pitch. Moreover, it was assumed that
insufficient heat flow, force, and bending of the catheter during flip-chip bonding were the main
reasons behind the high contact resistivity of bump after bonding. Another micromachining method
would be investigated or simple CMUT and catheter geometry would be used for electrode patterning
and flip-chip bonding to gain more reliable results due to the difficulties of electrodes patterning on the
nonuniform shape of the catheter. A square shaped CMUT and catheter, for example, can be a possible
approach to drive a CMUT cell successfully from IC circuits patterned on a catheter. Because the
surface roughness of the square shaped catheter was about the 2 µm, significantly lower than lateral
side of hexagonal shape catheter (20–25 µm), the taper is no longer needed. Moreover, during the
direct integration process, it is inevitable to prevent mechanical damages on a vibrating membrane of
CMUT. To verify and validate mechanical damages on the active area of CMUT, CMUT was mounted
on a dummy substrate (Pyrex glass) with bonding pads using flip-chip bonding by applying 25 N
during 3 min. Cracks on the surface and deformed cells were observed after the bonding process
(Figure 13a). LTCC side via approach for different CMUT shapes rather than a hexagon, therefore, can
enable more functional and high performance CMUT fabrication and packaging. When a small size
CMUT is required, we propose a packaging method where the connection between a square shaped
CMUT and an IC circuit can be achieved using wire bonding and the flip-chip bonding by eliminating
the taper on the catheter. This proposed packaging design is illustrated in Figure 13b.
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5. Conclusions

In this paper, we have discussed various aspects of CMUT fabrication and packaging using LTCC
substrate. Circular shaped CMUT cells with different sizes were successfully fabricated by LTCC-SOI
anodic bonding. Infrared images and complex admittance plots were used to evaluate the bonding
quality of dual, single ring array, and linear array CMUT. Device characteristics were investigated by
obtaining equivalent circuits of devices derived from admittance plots. Our results showed that CMUT
membrane size optimization does not easily achieve successful device fabrication due to via fabrication
error and mechanical error of the bonding machine. It was found that a fabricated device is the only
capacitor when a CMUT has a 72 µm membrane diameter. However, a resistive component was
observed in the case of a CMUT with a diameter of 80 µm. Static membrane deflection at atmospheric
pressure was measured to validate hermiticity of the cavity. The resonance frequency of the CMUTs
with the 120 µm membrane diameters were measured at 2.88 MHz in air with a 10.3 pm displacement.
Electrical and acoustical measurement of CMUTs in air and water were unsuccessful due to fabrication
process related cracks and holes on the vibrating membrane. It is concluded that this caused a short
connect between the top and bottom electrodes. These results indicated that the LTCC based CMUT
might be suitable for air coupled applications such as gas sensing rather than immersion medium.

3D Integration of CMUT with an integrated circuit (IC) has been also investigated by using the
lateral side via of LTCC. Micromachining, assembly, and electronic integration of the CMUT and
catheter were presented. The LTCC side via was obtained by micromachining the CMUT into a
hexagon. Connections between the CMUT and IC were achieved through electrodes patterned on a
catheter that was mounted at the backside of CMUT. Electrode thickness was optimized to prevent
disconnection between CMUT and IC. It was found that 5 µm electrode thickness was high enough
to drive CMUT successfully. Contact resistance of flip-chip bonding was measured using a 4-wire
measurement. 2 µm contact resistance was measured which is an acceptable range compared to
previous studies. This indirect packaging technology might enable the integration of CMUT and
integrated circuit (IC) for small sizes of ultrasonic systems.
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