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Abstract: This paper aims to create a high-quality surface based on the linear contact material removal
mechanism. For this paper, a piezo-driven, flexure-based micro-motion stage was developed for the
vibration-assisted roll-type precision polishing system. Meanwhile, the compliance matrix method
was employed to establish the amplification ratio and compliance model of the flexure mechanism.
The dimensions of the mechanism were optimized using the grey wolves optimization (GWO)
algorithm, aiming to maximize the natural frequencies. Using the optimal parameters, the established
models for the mechanical performance evaluation of the flexure stage were verified with the
finite-element method. Through closed-loop test, it was proven that the proposed micro-motion stage
performs well in positioning micro motions. Finally, high quality surface using silicon carbide (SiC)
ceramic with 36 nm Sa was generated by the independently developed vibration-assisted roll-type
polishing machine to validate the performance of the established polishing system.

Keywords: vibration-assisted; roll-type polishing system; micro-motion stage; grey wolves
optimization (GWO) algorithm; silicon carbide (SiC) ceramic

1. Introduction

Advanced ceramic materials have been found to be used in a new generation of space-to-ground
optical information collection systems, so as to make the optical systems constantly have thermal
stability and a high stiffness to weight ratio. The growth of optical camera key components that
are made of a high-quality optical reflector is also encouraged [1]. Silicon carbide (SiC) ceramic is
a competitive representative material for establishing the ideal space for reflecting mirrors by the
advantages of chemical inertness and corrosion resistance. However, there also remains difficulties
with SiC linked with the inherent properties of high brittleness and low fracture toughness [2,3].
Among the various machining methods for SiC ceramic materials, polishing stands out as the most
suitable way to produce ultra-precision surfaces. In particular, polishing is key in aeronautics for better
mechanical performance [4,5].

Traditionally, the computer numerical control (CNC) polishing method is widely adopted for
processing high-cost, aspheric optics. There is a positive correlation between the accuracy and duration
of polishing. To remove contour errors, Becker et al. designed a CNC polisher with a coordinate
measuring machine (CMM), which feeds error data draw back to the polisher and determines a proper
polishing duration [6]. Inspired by uncertainty processes, Jones et al. developed a large CNC aspheric
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optics polishing machine that polished the target optical profile alternatively by interferometric
inspection method [7]. Mori et al. extended the theory on an atomic scale fracture to CNC shaping
and finishing of semiconductors, creating a polishing tool that applied a constant load from the
normal direction on the substrate surface; in the meantime, loose abrasives were supplied. Unlike the
conventional CNC polishing method, this tool wrapped up the rotating sphere with a relatively
soft polyurethane material [8,9]. Though diamond polishing is still the most widely used finishing
process, some subsurface damages and cracks may also be generated by the great force and high
temperature. In particular, the rapid blunting and wear of the polishing tool will shorten the service
life, suppress the productivity, and push up the cost. To solve these defects, many studies have been
done to apprehend the polishing mechanism. For example, vibration assistance has been introduced
to enhance the surface integrity and machining efficiency of hard and brittle materials through
the alteration of process kinematics. Suzuki et al. applied ultrasonic vibration transversely to the
workpiece surface under constant pressure, using loose abrasive and a micro-spherical polyurethane
tool. In the subsequent study, an ultrasonic two-axis vibration-assisted polishing machine with hybrid
piezo-electric actuators was developed for finishing micro-aspheric optics molds with ultra-precise
high numerical aperture (NA) [10,11]. Both non-rotating tools were applicable to small aspherical
targets, which were based on the measured material removal depth and the surface morphologies.
Zhao et al. conducted ultrasonic vibration-assisted polishing (UVAP) of cylindrical groove arrays
on silicon carbide (SiC), revealing that the two-body abrasion mechanism could be transferred to
the three-body abrasion mechanism at low relatively speed and polishing force [12]. To improve the
machining efficiency, elliptical ultrasonic-assisted grinding (EUAG) has been proposed by Liang et al.
and successfully applied to the machining of mono-crystal sapphire, and carried out the brittle-ductile
transition characteristics using single diamond abrasive grain [13]. Through 2D ultrasonic assisted
polishing, Yu et al. enhanced the material removal rate (MRR) and reduced the surface roughness of
Inconel 718 nickel-based alloy [14].

Despite the aforementioned efforts, most vibration-assisted polishing devices are still resonant
types that convert electrical energy to mechanical energy using the piezo-electric transducers. Some of
them even resort to ultrasonic frequencies (>20 kHz). The resonant types are more energy efficient,
but they can only work at certain discrete frequencies. Comparatively speaking, non-resonant types
typically use the piezo-driven flexure mechanism and can operate at a large range of continuous
frequencies. Considering the complexity of the polishing process, it is highly necessary to design
non-resonant, multi-dimensional vibration-assisted polishing device. So many researchers have
reported numerous research results on non-resonant, multi-dimensional devices in recent years [15,16].
Below is a brief review of related studies. Suzuki et al. proposed a low contact force polishing system
using 2D low frequency vibrations (2DLFV) based on the piezo-driven flexure mechanism, which was
capable of deterministic surface error correction of the complicated shapes on micro molds, as a result
of its flexibility in view of applicable polishing tools [17]. Micromilling is in direct competition with
laser and other mechanical surface treatments [18]. In order to generate specific surface textures
and design hydrophobicity surface property, Chen et al. developed a method of the surface texture
formation using non-resonant vibration assisted micro milling [19]. Gu et al. developed a non-resonant
vibration-assisted polishing device (VAPD) with parallel-driven piezo-electric (PZT) actuators aiming
to solve the processing limitations of hard and brittle materials, and the maximum working bandwidth
could reach up to 1879 Hz [20]. Nevertheless, the new electronics manufacturing process is suitable for
continuous production lines, but not compatible with the conventional batch-type polishing process.
To overcome the limitations of the traditional polishing system, the roll-type linear chemical mechanical
polishing (roll-CMP) system came into being, which relied on a low-friction removal material system
for linear contact to reduce the flexural deformation of ultrathin substrates or brittle fracture of large
rectangular glass substrates [21]. Targeting the material removal system, Lee et al. investigated
the influences of the process parameters on the mean MRR (MRRavg) and non-uniformity (NU) in
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a roll-CMP system and proposed a mathematical model for linear roll-CMP to disclose the effects of
polishing pads on the MRR of Cu, which laid a solid theoretical basis for the roll-CMP process [22,23].

Motivated by the above-mentioned problems, we target the development of an elliptical
vibration-assisted roll-type polishing (EARP) system considering the flexural mechanism to extend the
capabilities of existing mechanisms for precision polishing. This system has the following advantages:
it works in the non-resonant mode and can deliver large working stroke; benefiting from the principle
of linear contact, ultrathin substrates without brittle fracture could be realized; the flexible system
supports frequency adjustment and suits the continuous production line in new electronics production;
high polishing accuracy can be realized through the integration of feed and machining modules.

2. Structural Design and Prototype Development

2.1. Assembly of the EARP System

The EARP system consists of a ball-screw feed drive system, a polishing roller processing system,
and an XY micro-motion stage with a large workspace. In particular, the ball-screw feed drive
system should be noted, which includes servo motors, ball-screws, couplings, supporting bearings,
linear guides, and other machine structures. Another part is the polishing roller processing system,
which involves an aluminum roller, a hard polyurethane polishing pad (to ensure the flatness of
substrate surface), and a DC motor. The polishing roller processing system could achieve its own
rotation and translation in the XZ plane. The resolution of motion of the ball-screw feed drive system
is 1 µm in the Z direction. The value of the roller scanning and rotation speed is calculated based on
the requirement of the workpiece surface quality and the NC program is generated by the personal
computer. The XY micro-motion stage is driven by two PZT actuators (PZT1 and PZT2), owing to its
high input stiffness. Considering that fixing holes can be easily machined with a tolerance of ±5 µm,
precise assembly of the components is not impossible nowadays.

The computer-aided design assembly processes of the EARP system are shown graphically in
Figure 1. The components of the stage can be assembled together through two steps (Figure 1a,b).
The fixing bolts in Figure 1a are the fixed holes constrained in all directions, and the support plate
in Figure 1b is only limited by the contact area in the X direction. In the additional steps shown
in Figure 1c–e, the micro-motion stage, the ball-screw feed drive system, and the polishing roller
processing system are assembled together and fixed at the base. The front, side, and top views of the
assembled model are shown in Figure 1f–h.
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2.2. Vibration Trajectory of the XY Micro-Motion Stage

As reviewed in the introduction, some parameters can be arbitrarily altered by the non-resonant
vibration device. It is simple and directly generates the ellipse with two orthogonal actuators, compared
with those devices with two parallel actuators. The micro-motion stage aims to vibrate at a certain
frequency and time about the center point O in the plane XOY. According to the basic vibration
principles, the vibration process of the 2D micro-motion stage with variable parameters can be
expressed as

x = Ax sin (2π f1t)
y = (1− η′) · Ay sin (2π f2t + ϕ)

(1)

where Ax and Ay are the signal amplitudes in the x and y directions, respectively; f 1 and f 2 are the
signals frequencies in the directions of x and y, respectively; ϕ is the phase difference between the
initial phases in x and y directions; and η′ is the displacement loss rate induced by hinges 7, 8, 9, and 10
in the y direction. Then, the stage trajectories were analyzed with different vibration parameters.

The trajectory of the stage in the XOY plane exhibited as a Lissajous curve when signals with
different frequencies were applied to directions of x and y. The parameters of f 1 = f 2, ϕ = π/2 are
provided in Equation (1). Figure 2 shows the effects of 2D vibration amplitudes on the closed trajectory
motion of the stage.
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Figure 2. The composition trajectory for different amplitudes. (a) same amplitudes: Ax = Ay = 5 µm;
(b) different amplitudes: Ax = 6 µm, Ay = 5 µm; (c) different amplitudes: Ax = 5 µm, Ay = 6 µm;
(d) same amplitudes: Ax = Ay = 6 µm.

As shown in Figure 2, the vibration amplitudes in the x and y directions formed a square trajectory
area under the same conditions. The magnitude of amplitudes affects only the size for the area, without
affecting the uniformity of the Lissajous figures.

2.3. Design of the EARP System

The EARP system is designed with a XY micro-motion stage, a roller, and a pair of PZT actuators,
as shown in Figure 3. The substrate should be placed on the stage and attached to the rubber backing
layer. The polishing pad is tightly coiled around the high-stiffness roller, which can dampen the
vibrations at a high rolling speed.

As the conventional roll-type polishing system performs polishing with line-contact material
removal mechanism, the polishing contact area is much smaller than that of the rotary CMP system.
Accordingly, the abrasives directly involved in the polishing are insufficient, which impacts the surface
roughness. In order to raise the amount of abrasives involved in polishing, an elliptical vibration is
introduced in the processing, as shown in Figure 4. L is the roller length, D is the roller diameter, and A
is the apparent area of contact between the pad and the substrate.
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3. Determination of Amplification Ratio and Compliance Matrix Modeling

3.1. Determination of Amplification Ratio and Compliance Matrix Modelling

Modelling may be the suitable way to improve the use of the EARP on several applications [24].
Before the kinematics analysis, it is necessary to simplify the bridge-type mechanism as an ideal
multi-rigid body mechanism with ideal pivots, as shown in Figure 5. Let la be the length of the arm
and α be the angle between the connecting line of arm pivots and the horizontal line.
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Considering the huge topological differences, each arm in the bridge-type mechanism is simulated
as a link between two flexure hinges, and each flexure hinge is modelled as an elastic beam. As the
structure is symmetrical, only one bridge arm of the mechanical model needs to be analyzed. Through
kinematic analysis, the static mechanics model of the flexure hinge AB can be simplified as a quarter
mechanic model, as shown in Figure 6.
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As shown in Figure 7, there are only two symmetric, horizontally balanced forces at point B.
Meanwhile, the arm AB has two moments, and the force at point A is provided by point B. From the
force equilibrium theory, the equations showing that FA = FB = F and 2MA = 2MB = M can be
easily derived.
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The equation would appear when the force F is applied at point A (Figure 7) [25].

M
Fl

=
Fh

F cos α
=

2Kα∆α

Kl∆l
(2)

At point A on arm AB,

F∆x = Fl · ∆l + M · ∆α = F cos α · ∆l + Fh · ∆α (3)

The bridge-type mechanism often has an extremely small deformation, that is, the ∆α is very
small. Therefore, the chord length produced by the rigid body rotation is approximately equal to the
arc length corresponding to ∆α [26]. Then, ∆y can be expressed as follows:

∆y = la cos α · ∆α, (4)

According to beam theory, the compliance matrix of the right-angle hinge can be obtained by the
following [27]:

Ch =


l

Ebw 0 0
0 4l3

3Ebw3 +
l

Gbw
6l2

Ebw3

0 6l2

Ebw3
12l

Ebw3

 (5)

where E is the elastic modulus and G is the shear modulus of the hinge material. The coordinate
system of the right-angle hinge is shown in Figure 8.
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According to Equation (5), Kl and Kα can be derived as follows:

Kl =
Ebw

l
, Kα =

Ebw3

12l
(6)

Considering the elastic stiffness of the right-angle hinge, the theoretic displacement amplification
ratio can be calculated as

Ramp1 =
∆y
∆x

=
la cos α
cos2 α·w2

6h

+ h (7)

The ideal displacement amplification ratio of the lever model is

Ramp2 =
L
m

(8)

where L is the total length of the lever and m is input length.
Thus, the actual amplification ratio of the displacement amplifier can be obtained as

Ramp = Ramp1 · Ramp2 =


la cos α·L

( cos2 α·ω2
6h +h)m

x direction

(1− η′) · la cos α·L
( cos2 α·ω2

6h +h)m
y direction

(9)

3.2. Compliance Matrix Modelling of XY Micro-Motion Stage

3.2.1. Compliance Matrix Method

According to the simplified model of Wu & Zhou [28], the compliance matrix of the right-circular
hinge in its local coordinate system can be defined as follows:

C f =

 c11 0 0
0 c22 c23

0 c32 c33

 (10)

As the links have much higher stiffness than flexure hinges, the motions of micro-motion stage
can be viewed as the elastic deformation of the flexure hinges [29]. According to Figures 8 and 9,

when a load vector F =
[

fx fy mz

]T
is applied on point Oi of the flexure in/around certain axes,

the displacement D =
[

dx dy θz

]T
of that point in its local coordinate system Oi − xy can be

described as
D = COiF (11)

where COi is the compliance matrix of the flexure hinge in its local coordinate system Oi − xy [30].
Note that the compliance factors in the matrices of the right-angle hinge and the right-circular hinge
can be derived from Equations (5) and (10), respectively.
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The coordinate system of the right-circular hinge is shown in Figure 9.
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For a flexure hinge, the compliance matrix can be transferred from the local coordinate system
Oi − xy to another coordinate system Oj − xy by the following equation

COj = T j
i COi

(
T j

i

)T
(12)

where the transformation matrix T j
i can be described,

T j
i = Rj

i · P
j
i (13)

The matrix Pj
i can be obtained by

Pj
i =

 1 0 ry

0 1 −rx

0 0 1

 (14)

If the matrix Rj
i rotates around the x, y and z axes, it can be written as

Rj
x =

 1 0 0
0 cos α sin α

0 − sin α cos α

, Rj
y =

 cos β 0 − sin β

0 1 0
sin β 0 cos β

, Rj
z =

 cos ε sin ε 0
− sin ε cos ε 0

0 0 1

 (15)

where α, β, and ε are the rotation angles of x, y, and z axes, respectively.

3.2.2. Output Compliance Modelling

Because of the double symmetric property, a quarter of the bridge-type mechanism is modelled
(Figure 10). In the coordinate system E-xy, the compliance of flexure hinge d can be expressed as follows:

CE
d = CE

1 + CE
2 = TE

1 C1

(
TE

1

)T
+ TE

2 C2

(
TE

2

)T
(16)

where CE
i is defined as the compliance of flexure hinge i with respect to the point E in the coordinate

system E-xy, Ci is the compliance of flexure hinge i in the local coordinate system, and TE
i is the

transformation matrix from the coordinate system E-xy to the local coordinate system.
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The compliance of the left section can be written as

CE
Le f t = CE

d + RE
x (π)CE

d

(
RE

x (π)
)T

(17)

Thanks to the symmetric property, half of the lever mechanism is simulated (Figure 11).
Then, the compliance of the left limb M in the coordinate system C-xy can be described as

CC
Le f t =

{[
TC

E CE
Le f t
(
TC

E
)T

+ TC
3 C3

(
TC

3
)T
]−1

+
[

TC
4 C4

(
TC

4
)T
]−1
}−1

+ TC
5 C5

(
TC

5
)T

+ TC
6 C6

(
TC

6
)T (18)
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Hence, the compliance of limb M in the coordinate system O-xy can be obtained as

CO
M = TO

C

{(
CC

Le f t

)−1
+

[
RC

y (π)CC
Le f t

(
RC

y (π)
)T
]−1

}−1(
TO

C

)T
(19)

Similarly, the compliance matrix of flexible limb N can be expressed as

CN = TN
O CO

M

(
TN

O

)T
(20)

Therefore, the output compliance of the micro-motion stage in the coordinate system O-xy can be
derived as

KO = (CO)
−1 =

[
TO

N CN
(
TO

N
)T
]−1

+
[(

CO
7
)−1

+
(
CO

8
)−1

+
(
CO

9
)−1

+
(
CO

10
)−1
]−1

+
(
CO

M
)−1 (21)

3.2.3. Input Compliance Modelling

Excluding the bridge-type amplifier in limb M, the compliance model of the micro-motion stage is
simulated as the stiffness model in Figure 12. The bridge-type amplifier will tolerate the force applied



Micromachines 2018, 9, 499 10 of 25

by the rest of the stage at the interface D. Then, integral compliance of chains 7 and 8 with respect to
point B can be derived as

C78 =

[(
CB

7

)−1
+
(

CB
8

)−1
]−1

(22)
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The two hinges are connected to the limb N of chains 9 and 10; thus, we have

C910N = TB
NCN

(
TB

N

)T
+

[(
CB

9

)−1
+
(

CB
10

)−1
]−1

(23)

Therefore, the compliance of point D can be calculated as

CD =

[(
CD

78

)−1
+
(

CD
910N

)−1
]−1

+ CD
C (24)

Let CA
D denote the compliance of point D with respect to input end A can be derived by

CA
D = TA

D CD

(
TA

D

)T
(25)

Figure 13 shows the free body diagram of the quarter model of bridge-type mechanism.
Assuming that point D remains fixed [31], the following equations can be obtained according to
the force-deflection relationship at the input end A

uAy = c22FDy + c23MAz + c11Fin (26)

θAz = c32FDy + c33MAz = 0 (27)

where cij (i, j = 1, 2 and 3) is the compliance factors in the i-th row and j-th column of the matrix CA
D;

and FDy defines the force applied by the micro-motion stage excepting the bridge-type mechanism
along the y direction, which is actuated by a force Fin (input force of PZT).
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Accordingly, the output displacement uAy can be obtained as a function of input displacement uin

uAy = Ramp1 · uin (28)

where Ramp1 is the amplification ratio of the bridge-type model.
Then, the relationship between the load and deflection along the y-direction can be obtained as

uAy = −d22FDy (29)

where d22 is a compliance factor of matrix CD.
According to Equations (26)–(29), the input compliance for the micro-motion stage in the

Y-direction can be derived as follows

kin =
Fin
uin

=

(
1 +

c22

d22
− c23 · c32

c33 · d22

)
· Ramp1

c11
(30)

The stiffness model of the micro-motion stage with one limb actuated is established to calculate
the input stiffness in the x-direction, as shown in Figure 14. The compliance of the point D′ can be
calculated by

CD′ =

[(
CD′

M

)−1
+
(

CD′
78

)−1
]−1

+ CD′
910C′ (31)
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The compliance of point D′ with respect to input end A′ is

CA′
D′ = TA′

D′CD′
(

TA′
D′

)T
(32)

Then, the input compliance for the micro-motion stage in the x-direction can be derived as follows:

kin
′ =

(
1 +

c22
′

d22′
− c23

′ · c32
′

c33′ · d22′

)
· Ramp1

c11
′ (33)

where c′ ij (i, j = 1, 2 and 3) is the compliance factors in the i-th row and j-th column of matrix CA′
D′ , d′22

is a compliance factor of matrix CD′ , and Ramp1 is the amplification ratio of the bridge-type model.
Machine stiffness could also be obtained in the experimental testing [32].

4. Dynamics Model

Compared with vector equations, energy methods can easily derive the energy equations of
compliance mechanisms [33]. Thus, the natural frequencies of the 2D micro-motion stage are
determined by energy equilibrium-based Lagrange equation, aiming to give a panorama of the
free vibrations in the 2D micro-motion stage.
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The kinetic energies of the compliant system are expressed by the generalized coordinates, that is,
the input-displacement variable DI =

[
dix diy

]
. It is assumed that the kinetic energies come from

the rigid links between the flexure hinges [34]. As shown in Figure 15, translational motions are
generated by links e, j, and k in limb M; rotational motions are generated by links g and f in that limb;
and both translational and rotational motions are generated by links a, b, c, d, h, and i. Moreover,
the central point O of the motion stage moves along x and y axes without any rotation. The kinetic
energy of limb M, consisting of the bridge-type mechanism and the lever model, can be expressed as

TA = 1
2 mt(

1
2

.
diy)

2
+ 1

2 (
1

12 )mtl12(

.
diy
l1
)

2

+ 1
2 mt

.
dix

2 + 1
2 me

.
diy

2 + 1
2 mv

.
dix

2 + 1
2 mp(

1
2

.
dix)

2

+ 1
2 mp

.
diy

2 + 1
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where
mt = ma + mb + mc + md (35)

mv = mj + mk (36)

mp = mh + mi (37)

mq = mg + m f (38)
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Because of the symmetric property, the kinetic energies of limbs N in the x direction can be
considered as

TB = 1
2 mt(

1
2

.
dix)

2
+ 1

2 (
1

12 )mtl12(
.
dix
l1
)

2
+ 1

2 mt
.
diy

2 + 1
2 me

.
dix

2 + 1
2 mv

.
diy

2 + 1
2 mp(

1
2

.
diy)

2

+ 1
2 mp

.
dix

2 + 1
2 (

1
12 )mpl22(

.
diy
l2
)

2

+ 1
2 (

1
12 )mql32(

.
dix
l3
)

2 (39)

As limb W undergoes translational motions and contains limb M, the centre mobile platform,
and the decoupler of ideal prismatic joints, the kinetic energies of limbs W in the x direction can be
derived as

TW =
1
2

mW ·
.
dix

2 (40)

The kinetic energy TO of the centre mobile platform can be calculated by

TO =
1
2

mo ·
.
diy

2 (41)

where mo is the mass of the motion stage.
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Then, the kinetic energy of the whole mechanism can be obtained as follows

T = ( 2
3 mt +

1
2 mv +

2
3 mp +

1
2 me +

1
24 mq +

1
2 mW)

.
dix

2 + ( 2
3 mt +

1
2 mv +

2
3 mp

+ 1
2 mo +

1
2 me +

1
24 mq)

.
diy

2
(42)

Next, the kinetic energy should be substituted into the Lagrange’s equation below,

d
dt

∂T

∂
.

DI
− ∂T

∂DI
= Qj (43)

The dynamics equation of undamped free vibration of the compliant system can be derived as

M
..
D + KD = 0 (44)

According to the characteristic equation, we have

|K−Mλi
2| = 0 (45)

The natural frequency can be calculated by

f =
λi
2π

= (
1

2π
)

√
K
M

(46)

5. Workspace and Material Analysis

The relationship between the actual and nominal maximum output displacement of the PZT in
the steady state can be expressed as

D =
kp∆D− fpl

kp + ks
(47)

where kp is the stiffness of the PZT, ks is the stiffness of spring load on the PZT, fpl is the preload on
PZT, ∆D is the nominal stroke of the PZT without external load, and ks = kin when the micro-motion
stage has no external load.

5.1. Maximum Stress Subject to Rotation

If a flexure hinge bears a bending moment around its rotation axis, the maximum angular
displacement θmax occurs when the maximum stress σmax reaches the yield stress σy. The maximum
stress usually appears at each outer surface of the thinnest part of the hinge. Therefore, the relationship
between θmax and σmax can be expressed as

σmax =
E(1 + η)9/20

η2 f (η)
θmax (48)

where η1 = w/l and η2 = t/2r are dimensionless geometry factors and f (η) is a dimensionless
compliance factor. The latter can be defined as

f (η) =
1

2η + η2

[
3 + 4η + 2η2

(1 + η)(2η + η2)
+

6(1 + η)

(2η + η2)3/2 tan−1

√
2 + η

η

]
(49)

According to the geometry of the micro-motion stage, the maximum angular deflection may occur
on the hinge, which belongs to either bridge-type mechanism or level model. If the stage is actuated
with a full stroke of the PZT, it could arrive at the maximum values [35]. Under such a case, we have
d1 = Ramp1D and d2 = RampD.
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Concerning the bridge-type mechanism, the flexure hinges rotation can be derived by

θ1
m =

d1

la
(50)

For the lever model, the deformation of the flexure hinges can be expressed as

θ2
m =

d2

lb
(51)

According to Equations (48) and (51), the maximum stresses subject to the rotation of the flexures
are obtained by

σ1
m =

E(1 + η1)
9/20Ramp1D

η1
2 f (η1)la

, σ2
m =

E(1 + η2)
9/20RampD

η22 f (η2)lb
(52)

The following relationship must be satisfied to prevent material failure:

S f σ1
m ≤ σy, S f σ2

m ≤ σy (53)

where S f ∈ (1,+∞) is a specified safety factor. Substituting Equation (52) into (53) allows the
derivation of the relationships,

la ≥
E(1 + η1)

9/20Ramp1DS f

η1
2 f (η1)σy

, lb ≥
E(1 + η2)

9/20RampDS f

η22 f (η2)σy
(54)

5.2. Maximum Tensile Stress Calculation

Under the axial load, the maximum tensile stress may occur on the thinnest portions of the flexure
hinges constructing the bridge-type mechanism, which can be determined by

σ3
m =

Fin
Smin

=
KinD
2bw

(55)

It should be noted that bw is multiplied by 2 because flexures a and d simultaneously bear the
axial load. The maximum tensile stress should be limited to the allowable stress σy,

KinD
bw

≤
2σy

S f
(56)

In the other links of the stage, the maximum tensile stress in the thinnest part of flexure hinges
can be expressed as

σm
4 =

F1

Smin
=

uAy/d22

dt
(57)

where Smin is the minimum cross-sectional area of the hinge. Then, it will lead to another constraint
relationship for this design,

uAy

dt · d22
≤

σy

S f
(58)

This is another guideline to avoid the risk of plastic failure in the size design of the stage.

6. Dimension Optimization

This chapter optimizes the dimensions of the 2D XY micro-motion stage to maximize the natural
frequency, the determinant of the dynamic performance of the stage. Thus, the dimensions r, t,
and w should be optimized. The analytical models on compliance and natural frequency show
that the frequency has a nonlinear positive correlation with t and w, and a negative one with
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r. The increase of the frequency can significantly enhance the input stiffness and slightly reduce
the quality. The parameters ta1, ta2 of the lever model and la of the bridge-type mechanism are
optimized to obtain the maximum amplification ratio. Further, parameter lb is optimized to achieve
a compact structure. However, the optimal values of these parameters must be determined by
computational method.

In this paper, grey wolves optimization (GWO) is introduced for dimensional optimization.
Inspired by the leadership hierarchy and hunting mechanism of grey wolves. The applications of
solving classical engineering design problems and the real problem in optical engineering have proven
that the algorithm is suitable for challenging problems with unknown search spaces [36]. Compared
with well-know heuristics genetic algorithms (GA), GWO is able highly competitive. GWO has a very
high level of local optimal avoidance, which enhances the probability of finding proper approximations
of the optimal weight and biases. Moreover, the accuracy of the optimal values for weights and biases
is very high because of the high exploitation of GWO [37]. The optimization conditions are as follows:

(1) Objective: maximize the natural frequency (f )
(2) Related parameters: r, t, w, ta1, ta2, la, and lb
(3) Constraints: parameters of right-circular flexure hinge: 0.05 ≤ t/r ≤ 0.65; amplification

ratio:Am ≥ 6; constraint Equations (54), (56), and (58); ranges of parameters: 0.3 mm ≤ t ≤ 0.9 mm,
0.3 mm ≤ w ≤ 0.9 mm, 17 mm ≤ la ≤ 22 mm, 0.3 mm ≤ ta1 ≤ 0.9 mm, 0.3 mm ≤ ta1 ≤ 0.9 mm,
5 mm ≤ lb ≤ 10 mm, and 2 mm ≤ r ≤ 4 mm.

The constraints are determined by the following factors: The value of t/r is limited to ensure
the accuracy of the selected compliance factors Ci. To prevent plastic failure of the material,
the constraint equations of the stress analysis must be satisfied, and the safety factor Sf is set to
1.5. In addition, the thinnest part of the flexible hinge should not be smaller than 0.3 mm; otherwise,
the wire electro-discharge machining (WEDM) technique of the micro-motion stage cannot ensure the
tolerance of 0.01 mm. Under lever bending and hinge stretching, the displacement loss may produce
a sub-optimal lever amplification ratio in the optimization of lever dimension.

The maximum number of iterations is set to 552. The convergence process of the GWO is presented
in Figure 16. The optimal results are as follows: t = w = ta1 = 0.6 mm, ta2 = 0.4 mm, la = 20.88 mm,
lb = 8 mm, r = 3 mm (ta1, ta2 are the thickness of the right-angle hinge and the right-circular hinge,
respectively, in the lever model). Based on these optimal dimensions, the natural frequency is computed
as 234.885 Hz.
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7. Performance Evaluation with Finite-Element Analysis

The output stiffness, input stiffness, amplification ratio, and natural frequency of the XY
micro-motion stage were validated without damping on the finite element software ABAQUS/Explicit
(Abaqus Inc., Palo Alto, CA, USA). The material used in the simulations was 6061 Al, for which
the modulus of elasticity was 69,000 Mpa, possion’s ratio was 0.3, and density was 2700 kg/m3.
Further, a 3.9 mm tetrahedral grid was chosen in mesh. The boundary conditions were set up after the
geometric model meshing step and the input ends of the proposed micro-motion stage were applied to
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the load. The parameters of the model were described in Table 1. Sensitivity and convergence tests
were performed at points B and C, respectively, as shown in Figure 15. During the EARP process,
the hinges suffer from reciprocating tensile deformation, resulting in internal stress. Accordingly,
internal stress on the compliance structure was tested in this paper. Specifically, the input load and
output motion of the XY micro-motion stage were obtained as a given displacement on the input end
of bridge-type mechanism; then, the input stiffness and amplification ratio of the flexure-based stage
were determined based on the input load and output motion (Figure 17). Furthermore, the output
stiffness can be evaluated by exerting an external force onto the stage.

Table 1. Main parameters of the flexure-based stage.

r b t w ta1 ta2
3 mm 15 mm 0.6 mm 0.6 mm 0.6 mm 0.4 mm

la lb E σ µ ρ
20.88 mm 8 mm 69,000 MPa 228 MPa 0.3 2700 kg/m3
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The force-displacement curves of XY micro-motion stage are presented in Figure 18. It can
be seen from Figure 18a that the driving point displacement in the x direction increased linearly
with the corresponding input load, when the stage was driven in x and y directions, respectively.
The finite-element analysis shows that the input stiffness was 30.57 N/µm, 6.9% smaller than the
theoretical value obtained by compliance matrix method. As shown in Figure 18c, the stiffness
(31.2 N/µm) obtained by finite-element analysis was 7.4% smaller than that the theoretical value
(33.71 N/µm) acquired by compliance matrix method. The output stiffness was tested by applying
an external force on the flexure-based stage, and the resulting force-displacement curves are shown in
Figure 18b,d.

In the x direction, the output stiffness was 9.02 N/µm, 18.3% smaller than the theoretical value
10.67 N/µm. In the y direction, the output stiffness was 11.31 N/µm, 18.6% smaller than the theoretical
value 13.41 N/µm. The deviation mainly comes from the accuracy of the compliance factors equations
and the hypothesized rigidity of these links in the matrix model.

Next, the finite-element analysis software was employed to measure the output displacements of
the points on the sensor brackets. Similarly, the input displacements can be obtained by measuring
the displacement of the input end in the bridge-type mechanism. The input-output displacement
relationship of the flexure-based stage is displayed in Figure 19. It can be seen that the displacement
amplification ratio was around 6.78 along the x axis, 11% smaller than the theoretical value of 7.55;
that along the y axis was around 5.53, 6.5% greater than the theoretical value of 5.89. The differences
are attributable to the fact that the deflections of the lever model reduced the displacement of the
flexure-based stage. The deviation about displacement ratio between the x and y directions resulted
from the displacement loss of the flexure hinges 7, 8, 9, and 10.
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Figure 19. Input-output displacement relationship of the flexure-based stage.

The maximum stress of the thinnest hinge must be lower than the yield stress of the material
(152 MPa). This is to prevent the hinges from failure in the production and application processes.
To test the stress on the flexure-based stage, an input force FI = [1010, 1010]T was applied at the input
end so that the analysis results indicated the developed XY micro-motion stage possesses the potential
to achieve the maximum workspace around 112 µm× 89 µm, while the maximum von Mises stress are
62.09 MPa and 102.98 MPa, occurring in the right-angle hinge and right-circular hinge, respectively,
without material failure as shown in Figure 20.
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Figure 20. Stress test of the flexure-based stage.

The first four mode shapes of the flexure-based stage (Figure 21) show that the two translational
vibrations occurred at the first and the second modes with the frequencies 220.43 Hz and 233.67 Hz,
respectively. Because of the structure symmetry, the first two modes had almost the same frequencies.
The corresponding theoretical values obtained from Lagrange’s equation were both 239.7 Hz, 8.7% and
2.6% higher than the results of the finite-element analysis, respectively. The third and fourth modes
had frequencies of 513.20 Hz and 628.36 Hz, leading to rotation and twisting, respectively. These two
modes were neglected in analytical modelling, owing to the simulation difficulties.
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8. Testing Experiments

Several offline tests were carried out to verify the performance of the XY micro-motion stage.
The experimental setup is schematically shown in Figure 22. Two PZT actuators (40 vs. 12, Core
Tomorrow Science Co., Ltd., Harbin, China), whose sizes are ϕ12 mm× 51.5 mm and Kpzt = 35 N/µm,
respectively, were embedded into the drive structures to achieve impact structure sizes. A power
amplifier (PI, E-500) was utilized to amplify the excitation signals, which were generated by the
power PMAC controller. A four-channel capacitive displacement sensor (Micro-sense DE 5300-013)
was chosen for dynamic position measurements. To reduce external disturbances on the sensing
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and measurement system, a vibration-isolated air-floating platform was used to mount the XY
micro-motion stage.
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8.1. Sine Sweep Response

The swept excitation method is chosen to study the dynamic characteristic as it is an expedient
method to use. A variable frequency sine sweep signal was applied to the PZT actuators for each
axis, and the displacement response was recorded and analyzed by fast Fourier transform (FFT).
The measured result along y and x axes are shown in Figure 23a,b. It can be obtained from Figure 23a
that the first three natural frequencies were 237.51 Hz, 361.43 Hz, and 522.75 Hz, respectively.
Figure 23b shows the first three natural frequencies were 205.39 Hz, 294.80 Hz, and 502.17 Hz,
which were coincident with the first three natural frequencies measured along the x axis as well.
The marginal difference may be caused by manufacturing errors and additional mass. According to
a higher increase in the equivalent masses compared with the increase in stiffness, the frequencies
obtained are relatively smaller. The working bandwidth of the machining system is limited by
the lowest first natural frequency. If the contacts between PZT actuators and input ends perfectly,
a micro-motion in a high frequency range can be achieved [38]. However, the resonance frequencies
satisfy the requirements of precision polishing at medium or low roll speed.
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8.2. Stroke and Resolution Test

The surface roughness, a key to precision polishing, is positively correlated with the stroke
of XY micro-motion stage. In light of this, a stair control voltage with maximum displacement
of 72 µm was given to the x direction actuator. Similarly, the maximum displacement of 84 µm
was adopted as the driving signal in the y direction. Figure 24 records the displacements in the
x and y directions. In the figure, CMD means command displacement, while ACT refers to the
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actual displacement. It can be seen that the stroke was 71 µm and 83 µm along x and y axes,
respectively. Moreover, Figure 24b shows that the compliant mechanism cannot track the maximum
input command immediately, which demonstrates the tested compliant mechanism is working in the
maximum limitation of displacement output. There is a huge difference between simulated and actual
displacements along the x axis. A possible reason lies in the friction between the flexure-based stage
and fixed base plate, which is generated by manufacturing accuracy and assembly errors. If the contact
surface is sufficiently smooth, the actual displacement could approximate the simulated results.
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displacement.

The resolution is a major design criterion for the flexure-based stage. In theory, the piezo-electric-
driven flexure-based stage can achieve a high resolution. To identify the resolution of the flexure-based
stage, a stair-step command signal was generated from a digital computer, which was provided to
the PEAs to drive flexure stage. In each step, chattering was observed mainly because of the inherent
noise effect of the capacitance sensor. The responses in Figure 25a,b show that the flexure-based stage
achieved the resolution of 70 nm and 56 nm along the x and y axes, respectively. If the performance
of the capacitance sensor could be improved and external disturbance is reduced, a higher output
resolution (~50 nm) can be obtained [39].
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8.3. Step Response and Sine Response Test

The step and sine responses along the two directions were examined to inspect the XY
micro-motion stage performance. A typical proportional-integral-derivative (PID) controller was
implemented to position the flexure-based stage. According to the results in Figure 26, the rise
times of the x axis and y axis motions were approximately 29 ms and 24 ms, respectively. Moreover,
very small and steady errors and overshoots were observed thanks to the feedback control during the
positioning process.
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To sum up, all the test results show that the proposed EARP system can follow external commands
with fast response speed and high accuracy, and thus can be applied to precision polishing.

9. Polishing Experiment

9.1. Experiment Setup

The polishing experiments were performed on the independently developed vibration-assisted
roll-type polishing machine. Figure 27 shows photographs of the machine. The polishing roll is
mounted on an XZ table by linear guides. The micro-motion stage is mounted on a B-axis tilting
table and the workpiece is mounted on the flexure stage with bonding wax. The experiment setup
consists of the machines, the micro-motion stage, the charge amplifer (Type 5018, Kistler, Winterthur,
Switzerland), the force sensor (Type 9211B, Kistler), the PEAs (40 vs. 12, Core Tomorrow Science Co.,
Ltd., Harbin, China), signal generator (DG4162, Rigol, Beijing, China), power amplifier (PI, E-500),
and so on. The control signals provided by the signal generator were amplified using power amplifier
and were then sent to drive the piezo-electric stacks. To achieve accurate polishing, the force sensor
was applied to detect abrasive-workpiece engagement and the charge amplifier was used to measure
the polishing forces.
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The specific experimental parameters were as follows: roll speed: 240 r/min; frequency (f 1, f 2):
120 Hz, 120 Hz; amplitude (A1, A2): 5 µm, 6 µm; input voltage (V1, V2): 4 V, 8 V; phase difference:
90◦. The workpiece material was ground prior to polishing of SiC ceramic, as shown in Figure 28.
The white-light interferometer (ZygoNewview, Middlefield, CT, USA) was employed to capture the
topography features.
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Figure 28. Silicon carbide ceramic workpiece.

9.2. Results and Discussions

The workpiece surface morphology with non-vibration and vibration polishing are given in
Figure 29. Because of the unstable control of polishing slurry, some marks can be observed at the
workpiece with both methods. Figure 29a shows the surface roughness was improved from 95 nm Sa
to 80 nm Sa and 504 nm Sz reduced with form deviation by non-vibration polishing. The polishing
scratches can apparently be observed in the area. As shown in Figure 29b, the scratches were increased
compared with the former as a result of more abrasives involved in polishing (44 nm Sa), and 856 nm Sz
smaller than non-vibration by applying vibration. The performance of the vibration assisted roll-type
polishing was evaluated by experiment, indicating that the developed method could effectively
improve the surface quality.
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10. Conclusions

In this paper, the aim was the generation of a high-quality surface based on the linear contact
material removal mechanism. The theoretical model for the micro-motion stage’s statics, compliance,
and dynamic properties were given and validated by the GWO, followed by prototype fabrication.
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A closed-loop test and polishing experiment were determined to meet the critical requirements for
precision finishing. Compared with existing mechanisms, dedicated to polishing, the advantages of
the proposed EARP system are listed as follows:

(1) It is capable to deliver large 2D vibration amplitudes, while maintaining favourable resolution.
Experimental tests performed show that the vibration strokes in the x- and y-directions can reach
71 µm and 83 µm, respectively, while the resolution at points B and C of the micro-motion stage
are 70 nm and 56 nm, respctively.

(2) Because of the high stiffness of the proposed flexure-based stage, natural frequencies that meet
the requirements are also achieved, which were examined to be 205.39 Hz and 237.51 Hz in the x-
and y-directions, respectively.

(3) Compared with the non-vibration roll-type polishing system, 44 nm Sa and 856 nm Sz
are improved by proposed EARP system used independently developed polishing machine.
Accordingly, the micro-motion stage could increase the number of abrasive particles involved
in polishing.

Author Contributions: Y.G. and X.C. designed the experiments, analyzed the results and wrote the paper; F.L. and
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